Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.430
Filtrar
1.
Sci Rep ; 14(1): 10539, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719941

RESUMO

Abnormal angiogenesis leads to tumor progression and metastasis in colorectal cancer (CRC). This study aimed to elucidate the association between angiogenesis-related genes, including VEGF-A, ANGPT-1, and ANGPT-2 with both metastatic and microsatellite alterations at selected tetranucleotide repeats (EMAST) subtypes of CRC. We conducted a thorough assessment of the ANGPT-1, ANGPT-2, and VEGF-A gene expression utilizing publicly available RNA sequencing and microarray datasets. Then, the experimental validation was performed in 122 CRC patients, considering their disease metastasis and EMAST+/- profile by using reverse transcription polymerase chain reaction (RT-PCR). Subsequently, a competing endogenous RNA (ceRNA) network associated with these angiogenesis-related genes was constructed and analyzed. The expression level of VEGF-A and ANGPT-2 genes were significantly higher in tumor tissues as compared with normal adjacent tissues (P-value < 0.001). Nevertheless, ANGPT-1 had a significantly lower expression in tumor samples than in normal colon tissue (P-value < 0.01). We identified a significantly increased VEGF-A (P-value = 0.002) and decreased ANGPT-1 (P-value = 0.04) expression in EMAST+ colorectal tumors. Regarding metastasis, a significantly increased VEGF-A and ANGPT-2 expression (P-value = 0.001) and decreased ANGPT-1 expression (P-value < 0.05) were established in metastatic CRC patients. Remarkably, co-expression analysis also showed a strong correlation between ANGPT-2 and VEGF-A gene expressions. The ceRNA network was constructed by ANGPT-1, ANGPT-2, VEGF-A, and experimentally validated miRNAs (hsa-miR-190a-3p, hsa-miR-374c-5p, hsa-miR-452-5p, and hsa-miR-889-3p), lncRNAs (AFAP1-AS1, KCNQ1OT1 and MALAT1), and TFs (Sp1, E2F1, and STAT3). Network analysis revealed that colorectal cancer is amongst the 82 significant pathways. We demonstrated a significant differential expression of VEGF-A and ANGPT-1 in colorectal cancer patients exhibiting the EMAST+ phenotype. This finding provides novel insights into the molecular pathogenesis of colorectal cancer, specifically in EMAST subtypes. Yet, the generalization of in silico findings to EMAST+ colorectal cancer warrants future experimental investigations. In the end, this study proposes that the EMAST biomarker could serve as an additional perspective on CMS4 biology which is well-defined by activated angiogenesis and worse overall survival.


Assuntos
Angiopoietina-1 , Angiopoietina-2 , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Metástase Neoplásica , Idoso , Repetições de Microssatélites/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Angiogênese
2.
Mol Cancer ; 23(1): 94, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720298

RESUMO

BACKGROUND: The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS: Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS: Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION: Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.


Assuntos
Proteínas de Transporte , Ácidos Graxos , Proteínas de Membrana , Proteínas de Neoplasias , Neoplasias Ovarianas , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos , Microambiente Tumoral , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Animais , Hormônios Tireóideos/metabolismo , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Efeito Warburg em Oncologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células , Proteoglicanas
3.
Clin Exp Pharmacol Physiol ; 51(7): e13868, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38745265

RESUMO

Cervical cancer (CC) is a gynaecological malignancy tumour that seriously threatens women's health. Recent evidence has identified that interferon regulatory factor 5 (IRF5), a nucleoplasm shuttling protein, is a pivotal transcription factor regulating the growth and metastasis of various human tumours. This study aimed to investigate the function and molecular basis of IRF5 in CC development. IRF5, protein phosphatase 6 catalytic subunit (PPP6C) and methyltransferase-like 3 (METTL3) mRNA levels were evaluated by quantitative real-time (qRT)-polymerase chain reaction (PCR). IRF5, PPP6C, METTL3, B-cell lymphoma 2 and Bax protein levels were detected using western blot. Cell proliferation, migration, invasion, angiogenesis and apoptosis were determined by using colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, tube formation assay and flow cytometry assay, respectively. Glucose uptake and lactate production were measured using commercial kits. Xenograft tumour assay in vivo was used to explore the role of IRF5. After JASPAR predication, binding between IRF5 and PPP6C promoter was verified using chromatin immunoprecipitation and dual-luciferase reporter assays. Moreover, the interaction between METTL3 and IRF5 was verified using methylated RNA immunoprecipitation (MeRIP). IRF5, PPP6C and METTL3 were highly expressed in CC tissues and cells. IRF5 silencing significantly inhibited cell proliferation, migration, invasion, angiogenesis and glycolytic metabolism in CC cells, while induced cell apoptosis. Furthermore, the absence of IRF5 hindered tumour growth in vivo. At the molecular level, IRF5 might bind with PPP6C to positively regulate the expression of PPP6C mRNA. Meanwhile, IRF5 was identified as a downstream target of METTL3-mediated m6A modification. METTL3-mediated m6A modification of mRNA might promote CC malignant progression by regulating PPP6C, which might provide a promising therapeutic target for CC treatment.


Assuntos
Proliferação de Células , Progressão da Doença , Fatores Reguladores de Interferon , Metiltransferases , Regulação para Cima , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Linhagem Celular Tumoral , Animais , Proliferação de Células/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Movimento Celular/genética , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo
4.
J Exp Clin Cancer Res ; 43(1): 135, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702792

RESUMO

BACKGROUND: Rhabdomyosarcoma (RMS) is a rare malignancy and the most common soft tissue sarcoma in children. Vasculogenic mimicry (VM) is a novel tumor microcirculation model different from traditional tumor angiogenesis, which does not rely on endothelial cells to provide sufficient blood supply for tumor growth. In recent years, VM has been confirmed to be closely associated with tumor progression. However, the ability of RMS to form VM has not yet been reported. METHODS: Immunohistochemistry, RT-qPCR and western blot were used to test the expression level of SNAI2 and its clinical significance. The biological function in regulating vasculogenic mimicry and malignant progression of SNAI2 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of SNAI2. RESULTS: Our study indicated that SNAI2 was abnormally expressed in patients with RMS and RMS cell lines and promoted the proliferation and metastasis of RMS. Through cell tubule formation experiments, nude mice Matrigel plug experiments, and immunohistochemistry (IHC), we confirmed that RMS can form VM and that SNAI2 promotes the formation of VM. Due to SNAI2 is a transcription factor that is not easily drugged, we used Co-IP combined with mass spectrometry to screen for the SNAI2-binding protein USP7 and TRIM21. USP7 depletion inhibited RMS VM formation, proliferation and metastasis by promoting SNAI2 degradation. We further demonstrated that TRIM21 is expressed at low levels in human RMS tissues and inhibits VM in RMS cells. TRIM21 promotes SNAI2 protein degradation through ubiquitination in the RMS. The deubiquitinase USP7 and E3 ligase TRIM21 function in an antagonistic rather than competitive mode and play a key role in controlling the stability of SNAI2 to determine the VM formation and progression of RMS. CONCLUSION: Our findings reveal a previously unknown mechanism by which USP7 and TRIM21 balance the level of SNAI2 ubiquitination, determining RMS vasculogenic mimicry, proliferation, and migration. This new mechanism may provide new targeted therapies to inhibit the development of RMS by restoring TRIM21 expression or inhibiting USP7 expression in RMS patients with high SNAI2 protein levels.


Assuntos
Neovascularização Patológica , Rabdomiossarcoma , Ribonucleoproteínas , Fatores de Transcrição da Família Snail , Peptidase 7 Específica de Ubiquitina , Humanos , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Animais , Camundongos , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Rabdomiossarcoma/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Feminino , Progressão da Doença , Proliferação de Células , Masculino , Homeostase , Linhagem Celular Tumoral , Camundongos Nus , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
5.
Thorac Cancer ; 15(14): 1164-1175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38587042

RESUMO

BACKGROUND: Sphingolipids not only serve as structural components for maintaining cell membrane fluidity but also function as bioactive molecules involved in cell signaling and the regulation of various biological processes. Their pivotal role in cancer cell development, encompassing cancer cell proliferation, migration, angiogenesis, and metastasis, has been a focal point for decades. However, the contribution of sphingolipids to the complexity of tumor microenvironment promoting cancer progression has been rarely investigated. METHODS: Through the integration of publicly available bulk RNA-seq and single-cell RNA-seq data, we conducted a comprehensive analysis to compare the transcriptomic features between tumors and adjacent normal tissues, thus elucidating the intricacies of the tumor microenvironment (TME). RESULTS: Disparities in sphingolipid metabolism (SLM)-associated genes were observed between normal and cancerous tissues, with the TME characterized by the enrichment of sphingolipid signaling in macrophages. Cellular interaction analysis revealed robust communication between macrophages and cancer cells exhibiting low SLM, identifying the crucial ligand-receptor pair, macrophage inhibitory factor (MIF)-CD74. Pseudo-time analysis unveiled the involvement of SLM in modulating macrophage polarization towards either M1 or M2 phenotypes. Categorizing macrophages into six subclusters based on gene expression patterns and function, the SPP1+ cluster, RGS1+ cluster, and CXCL10+ cluster were likely implicated in sphingolipid-induced M2 macrophage polarization. Additionally, the CXCL10+, AGER+, and FABP4+ clusters were likely to be involved in angiogenesis through their interaction with endothelial cells. CONCLUSION: Based on multiple scRNA-seq datasets, we propose that a MIF-targeted strategy could potentially impede the polarization from M1 to M2 and impair tumor angiogenesis in low-SLM non-small cell lung cancer (NSCLC), demonstrating its potent antitumor efficacy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neovascularização Patológica , Esfingolipídeos , Macrófagos Associados a Tumor , Humanos , Esfingolipídeos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Macrófagos Associados a Tumor/metabolismo , Transdução de Sinais , Análise de Célula Única , Camundongos , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Análise de Sequência de RNA , Microambiente Tumoral , Angiogênese
6.
Cell Death Dis ; 15(4): 292, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658527

RESUMO

Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.


Assuntos
Ativinas , Inibidores da Angiogênese , Bevacizumab , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Proteína 1 Inibidora de Diferenciação , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/irrigação sanguínea , Humanos , Animais , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteína 1 Inibidora de Diferenciação/genética , Camundongos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Ativinas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Camundongos Nus , Apoptose/efeitos dos fármacos
7.
Clin Lab ; 70(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623655

RESUMO

BACKGROUND: A typical non-neoplastic connective tissue proliferations called a pyogenic granuloma. A vascular adhesion molecule used to assess angiogenesis is the CD34 marker. The primary memberof a family of growth factors, VEGF helps in generating and maintaining the lymphatic and blood circulation systems. OBJECTIVE: The aim of the study was to know the correlation between VEGF and CD34 protein marker and pyogenic granuloma. METHODS: Thirty-one formalin fixed paraffin embedded (FFPE) blocks were taken from female pyogenic granuloma patients ranging in age from 29 to 70. The IHC was used to identify VEGF and CD34 expression in the cytoplasm of the cells. RESULTS: Seventeenout of 31 patients had VEGF positive expression. Twenty-sixout of 31 had CD34 positive expression and 5 with no expression (negative expression). Brown-stained cytoplasm showed high VEGF and CD34 expression, whereas blue stained cytoplasm showed no VEGF and CD34 expression in these cells. CONCLUSIONS: The results suggest the role of suchbiomarkers in the oral pyogenic granuloma pathogenesis, and it appears that CD34 and VEGF are valuable biomarkers in evaluating vascular and inflammatory diseases like pyogenic granuloma.


Assuntos
Granuloma Piogênico , Humanos , Feminino , Granuloma Piogênico/diagnóstico , Granuloma Piogênico/etiologia , Granuloma Piogênico/metabolismo , Fator A de Crescimento do Endotélio Vascular , Molécula 1 de Adesão de Célula Vascular , Neovascularização Patológica/complicações , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Antígenos CD34
8.
PeerJ ; 12: e17222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650654

RESUMO

Targeting tumor angiogenesis is an important approach in advanced tumor therapy. Here we investigated the effect of the suppressor of variegation 3-9 homolog 1 (SUV39H1) on tumor angiogenesis in oral squamous cell carcinoma (OSCC). The GEPIA database was used to analyze the expression of SUV39H1 in various cancer tissues. The expression of SUV39H1 in OSCC was detected by immunohistochemistry, and the correlation between SUV39H1 and Notch1 and microvascular density (MVD) was analyzed. The effect of SUV39H1 inhibition on OSCC was investigated in vivo by chaetocin treatment. The migration and tube formation of vascular endothelial cells by conditioned culture-medium of different treatments of oral squamous cell cells were measured. The transcriptional level of SUV39H1 is elevated in various cancer tissues. The transcription level of SUV39H1 in head and neck squamous cell carcinoma was significantly higher than that in control. Immunohistochemistry result showed increased SUV39H1 expression in OSCC, which was significantly correlated with T staging. The expression of SUV39H1 was significantly correlated with Notch1 and CD31. In vivo experiment chaetocin treatment significantly inhibit the growth of tumor, and reduce SUV39H1, Notch1, CD31 expression. The decreased expression of SUV39H1 in OSCC cells lead to the decreased expression of Notch1 and VEGF proteins, as well as the decreased migration and tube formation ability of vascular endothelial cells. Inhibition of Notch1 further enhance this effect. Our results suggest inhibition of SUV39H1 may affect angiogenesis by regulating Notch1 expression. This study provides a foundation for SUV39H1 as a potential therapeutic target for OSCC.


Assuntos
Carcinoma de Células Escamosas , Metiltransferases , Neoplasias Bucais , Neovascularização Patológica , Receptor Notch1 , Proteínas Repressoras , Humanos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/irrigação sanguínea , Neovascularização Patológica/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/irrigação sanguínea , Linhagem Celular Tumoral , Camundongos , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Angiogênese
9.
Nat Commun ; 15(1): 3599, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678014

RESUMO

Targeting the supportive tumor microenvironment (TME) is an approach of high interest in cancer drug development. However, assessing TME-targeted drug candidates presents a unique set of challenges. We develop a comprehensive screening platform that allows monitoring, quantifying, and ranking drug-induced effects in self-organizing, vascularized tumor spheroids (VTSs). The confrontation of four human-derived cell populations makes it possible to recreate and study complex changes in TME composition and cell-cell interaction. The platform is modular and adaptable for tumor entity or genetic manipulation. Treatment effects are recorded by light sheet fluorescence microscopy and translated by an advanced image analysis routine in processable multi-parametric datasets. The system proved to be robust, with strong interassay reliability. We demonstrate the platform's utility for evaluating TME-targeted antifibrotic and antiangiogenic drugs side-by-side. The platform's output enabled the differential evaluation of even closely related drug candidates according to projected therapeutic needs.


Assuntos
Neoplasias da Mama , Microscopia de Fluorescência , Esferoides Celulares , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Microscopia de Fluorescência/métodos , Feminino , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia
10.
J Transl Med ; 22(1): 383, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659028

RESUMO

BACKGROUND: Loss of AZGP1 expression is a biomarker associated with progression to castration resistance, development of metastasis, and poor disease-specific survival in prostate cancer. However, high expression of AZGP1 cells in prostate cancer has been reported to increase proliferation and invasion. The exact role of AZGP1 in prostate cancer progression remains elusive. METHOD: AZGP1 knockout and overexpressing prostate cancer cells were generated using a lentiviral system. The effects of AZGP1 under- or over-expression in prostate cancer cells were evaluated by in vitro cell proliferation, migration, and invasion assays. Heterozygous AZGP1± mice were obtained from European Mouse Mutant Archive (EMMA), and prostate tissues from homozygous knockout male mice were collected at 2, 6 and 10 months for histological analysis. In vivo xenografts generated from AZGP1 under- or over-expressing prostate cancer cells were used to determine the role of AZGP1 in prostate cancer tumor growth, and subsequent proteomics analysis was conducted to elucidate the mechanisms of AZGP1 action in prostate cancer progression. AZGP1 expression and microvessel density were measured in human prostate cancer samples on a tissue microarray of 215 independent patient samples. RESULT: Neither the knockout nor overexpression of AZGP1 exhibited significant effects on prostate cancer cell proliferation, clonal growth, migration, or invasion in vitro. The prostates of AZGP1-/- mice initially appeared to have grossly normal morphology; however, we observed fibrosis in the periglandular stroma and higher blood vessel density in the mouse prostate by 6 months. In PC3 and DU145 mouse xenografts, over-expression of AZGP1 did not affect tumor growth. Instead, these tumors displayed decreased microvessel density compared to xenografts derived from PC3 and DU145 control cells, suggesting that AZGP1 functions to inhibit angiogenesis in prostate cancer. Proteomics profiling further indicated that, compared to control xenografts, AZGP1 overexpressing PC3 xenografts are enriched with angiogenesis pathway proteins, including YWHAZ, EPHA2, SERPINE1, and PDCD6, MMP9, GPX1, HSPB1, COL18A1, RNH1, and ANXA1. In vitro functional studies show that AZGP1 inhibits human umbilical vein endothelial cell proliferation, migration, tubular formation and branching. Additionally, tumor microarray analysis shows that AZGP1 expression is negatively correlated with blood vessel density in human prostate cancer tissues. CONCLUSION: AZGP1 is a negative regulator of angiogenesis, such that loss of AZGP1 promotes angiogenesis in prostate cancer. AZGP1 likely exerts heterotypical effects on cells in the tumor microenvironment, such as stromal and endothelial cells. This study sheds light on the anti-angiogenic characteristics of AZGP1 in the prostate and provides a rationale to target AZGP1 to inhibit prostate cancer progression.


Assuntos
Movimento Celular , Proliferação de Células , Neovascularização Patológica , Neoplasias da Próstata , Masculino , Animais , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Linhagem Celular Tumoral , Camundongos Knockout , Glicoproteínas/metabolismo , Invasividade Neoplásica , Camundongos , Regulação Neoplásica da Expressão Gênica , Angiogênese , Glicoproteína Zn-alfa-2
11.
In Vivo ; 38(3): 1192-1198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688651

RESUMO

BACKGROUND/AIM: Probing brain tumor microvasculature holds significant importance in both basic cancer research and medical practice for tracking tumor development and assessing treatment outcomes. However, few imaging methods commonly used in clinics can noninvasively monitor the brain microvascular network at high precision and without exogenous contrast agents in vivo. The present study aimed to investigate the characteristics of microvasculature during brain tumor development in an orthotopic glioma mouse model. MATERIALS AND METHODS: An orthotopic glioma mouse model was established by surgical orthotopic implantation of U87-MG-luc cells into the mouse brain. Then, optical coherence tomography angiography (OCTA) was utilized to characterize the microvasculature progression within 14 days. RESULTS: The orthotopic glioma mouse model evaluated by bioluminescence imaging and MRI was successfully generated. As the tumor grew, the microvessels within the tumor area slowly decreased, progressing from the center to the periphery for 14 days. CONCLUSION: This study highlights the potential of OCTA as a useful tool to noninvasively visualize the brain microvascular network at high precision and without any exogenous contrast agents in vivo.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Glioma , Tomografia de Coerência Óptica , Animais , Tomografia de Coerência Óptica/métodos , Camundongos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Linhagem Celular Tumoral , Humanos , Microvasos/diagnóstico por imagem , Microvasos/patologia , Imageamento por Ressonância Magnética/métodos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Angiografia/métodos
12.
ACS Appl Mater Interfaces ; 16(17): 21709-21721, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651381

RESUMO

Antiangiogenic therapy is an effective way to disrupt nutrient supply and starve tumors, but it is restricted by poor efficacy and negative feedback-induced tumor relapse. In this study, a neuropilin-1 (NRP-1)-targeted nanomedicine (designated as FPPT@Axi) is reported for spatiotemporal tumor suppression by combining photodynamic therapy (PDT) with antiangiogenesis. In brief, FPPT@Axi is prepared by utilizing an NRP-1-targeting chimeric peptide (Fmoc-K(PpIX)-PEG8-TKPRR) to encapsulate the antiangiogenic drug Axitinib (Axi). Importantly, the NRP-1-mediated targeting property enables FPPT@Axi to selectively concentrate at vascular endothelial and breast cancer cells, facilitating the production of reactive oxygen species (ROS) in situ for specific vascular disruption and enhanced cell apoptosis under light stimulation. Moreover, the codelivered Axi can further inhibit vascular endothelial growth factor receptor (VEGFR) to impair the negative feedback of PDT-induced tumor neovascularization. Consequently, FPPT@Axi spatiotemporally restrains the tumor growth through blocking angiogenesis, destroying tumor vessels, and inducing tumor apoptosis. Such an NRP-1-mediated targeting codelivery system sheds light on constructing an appealing candidate with translational potential by using clinically approved PDT and chemotherapy.


Assuntos
Inibidores da Angiogênese , Neovascularização Patológica , Neuropilina-1 , Fotoquimioterapia , Neuropilina-1/metabolismo , Humanos , Animais , Camundongos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Feminino , Axitinibe/farmacologia , Axitinibe/química , Axitinibe/uso terapêutico , Nanomedicina , Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus
13.
Biochem Biophys Res Commun ; 714: 149965, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657447

RESUMO

At present, the molecular mechanisms driving the progression and metastasis of oral squamous cell carcinoma (OSCC) remain largely uncharacterized. The activation of transforming growth factor-ß (TGF-ß) signaling in the tumor microenvironment has been observed in various types of cancer and has been implicated their progression by enhancing the migration and invasion of epithelial cancer cells. However, its specific roles in the oral cancer progression remain unexplored. In this study, we examined the effects of TGF-ß signaling on the murine squamous cell carcinoma, SCCVII cells in vitro and in vivo. The incubation of SCCVII cells with TGF-ß induced the activation of TGF-ß signals and epithelial-mesenchymal transition (EMT). Notably, the motility of SCCVII cells was increased upon the activation of the TGF-ß signaling. RNA sequencing revealed upregulation of genes related to EMT and angiogenesis. Consistent with these in vitro results, the inhibition of TGF-ß signals in SCCVII cell-derived primary tumors resulted in suppressed angiogenesis. Furthermore, we identified six candidate factors (ANKRD1, CCBE1, FSTL3, uPA, TSP-1 and integrin ß3), whose expression was induced by TGF-ß in SCCVII cells, and associated with poor prognosis for patients with head and neck squamous cell carcinoma. These results highlight the role of TGF-ß signals in the progression of OSCC via multiple mechanisms, including EMT and angiogenesis, and suggest novel therapeutic targets for the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Progressão da Doença , Transição Epitelial-Mesenquimal , Neovascularização Patológica , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Fator de Crescimento Transformador beta/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/irrigação sanguínea , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/genética , Camundongos , Linhagem Celular Tumoral , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/irrigação sanguínea , Movimento Celular/efeitos dos fármacos , Humanos , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Angiogênese
14.
Clin Cancer Res ; 30(10): 2206-2224, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38470497

RESUMO

PURPOSE: Microvascular invasion (MVI) is a major unfavorable prognostic factor for intrahepatic metastasis and postoperative recurrence of hepatocellular carcinoma (HCC). However, the intervention and preoperative prediction for MVI remain clinical challenges due to the absent precise mechanism and molecular marker(s). Herein, we aimed to investigate the mechanisms underlying vascular invasion that can be applied to clinical intervention for MVI in HCC. EXPERIMENTAL DESIGN: The histopathologic characteristics of clinical MVI+/HCC specimens were analyzed using multiplex immunofluorescence staining. The liver orthotopic xenograft mouse model and mechanistic experiments on human patient-derived HCC cell lines, including coculture modeling, RNA-sequencing, and proteomic analysis, were used to investigate MVI-related genes and mechanisms. RESULTS: IQGAP3 overexpression was correlated significantly with MVI status and reduced survival in HCC. Upregulation of IQGAP3 promoted MVI+-HCC cells to adopt an infiltrative vessel co-optive growth pattern and accessed blood capillaries by inducing detachment of activated hepatic stellate cells (HSC) from the endothelium. Mechanically, IQGAP3 overexpression contributed to HCC vascular invasion via a dual mechanism, in which IQGAP3 induced HSC activation and disruption of the HSC-endothelial interaction via upregulation of multiple cytokines and enhanced the trans-endothelial migration of MVI+-HCC cells by remodeling the cytoskeleton by sustaining GTPase Rac1 activity. Importantly, systemic delivery of IQGAP3-targeting small-interfering RNA nanoparticles disrupted the infiltrative vessel co-optive growth pattern and reduced the MVI of HCC. CONCLUSIONS: Our results revealed a plausible mechanism underlying IQGAP3-mediated microvascular invasion in HCC, and provided a potential target to develop therapeutic strategies to treat HCC with MVI.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Invasividade Neoplásica , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Microvasos/patologia , Microvasos/metabolismo , Masculino , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Proliferação de Células , Prognóstico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Movimento Celular/genética
15.
Cancer Sci ; 115(5): 1520-1535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38475666

RESUMO

Tumor endothelial cells (TECs), which are thought to be structurally and functionally different from normal endothelial cells (NECs), are increasingly attracting attention as a therapeutic target in hypervascular malignancies. Although colorectal liver metastasis (CRLM) tumors are hypovascular, inhibitors of angiogenesis are a key drug in multidisciplinary therapy, and TECs might be involved in the development and progression of cancer. Here, we analyzed the function of TEC in the CRLM tumor microenvironment. We used a murine colon cancer cell line (CT26) and isolated TECs from CRLM tumors. TECs showed higher proliferation and migration than NECs. Coinjection of CT26 and TECs yielded rapid tumor formation in vivo. Immunofluorescence analysis showed that coinjection of CT26 and TECs increased vessel formation and Ki-67+ cells. Transcriptome analysis identified kallikrein-related peptide 10 (KLK10) as a candidate target. Coinjection of CT26 and TECs after KLK10 downregulation with siRNA suppressed tumor formation in vivo. TEC secretion of KLK10 decreased after KLK10 downregulation, and conditioned medium after KLK10 knockdown in TECs suppressed CT26 proliferative activity. Double immunofluorescence staining of KLK10 and CD31 in CRLM tissues revealed a significant correlation between poor prognosis and positive KLK10 expression in TECs and tumor cells. On multivariate analysis, KLK10 expression was an independent prognostic factor in disease-free survival. In conclusion, KLK10 derived from TECs accelerates colon cancer cell proliferation and hematogenous liver metastasis formation. KLK10 in TECs might offer a promising therapeutic target in CRLM.


Assuntos
Proliferação de Células , Neoplasias do Colo , Células Endoteliais , Calicreínas , Neoplasias Hepáticas , Animais , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Camundongos , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Humanos , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Calicreínas/metabolismo , Calicreínas/genética , Microambiente Tumoral , Masculino , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Movimento Celular , Feminino , Camundongos Endogâmicos BALB C
16.
Oncogene ; 43(18): 1386-1396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467852

RESUMO

Clear cell renal cell carcinoma (ccRCC) presents a unique profile characterized by high levels of angiogenesis and robust vascularization. Understanding the underlying mechanisms driving this heterogeneity is essential for developing effective therapeutic strategies. This study revealed that ubiquitin B (UBB) is downregulated in ccRCC, which adversely affects the survival of ccRCC patients. UBB exerts regulatory control over vascular endothelial growth factor A (VEGFA) by directly interacting with specificity protein 1 (SP1), consequently exerting significant influence on angiogenic processes. Subsequently, we validated that DNA methyltransferase 3 alpha (DNMT3A) is located in the promoter of UBB to epigenetically inhibit UBB transcription. Additionally, we found that an unharmonious UBB/VEGFA ratio mediates pazopanib resistance in ccRCC. These findings underscore the critical involvement of UBB in antiangiogenic therapy and unveil a novel therapeutic strategy for ccRCC.


Assuntos
Carcinoma de Células Renais , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Neovascularização Patológica , Fator de Transcrição Sp1 , Fator A de Crescimento do Endotélio Vascular , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Linhagem Celular Tumoral , Animais , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Indazóis/farmacologia , Indazóis/uso terapêutico , DNA Metiltransferase 3A/metabolismo , Sulfonamidas/farmacologia , Camundongos , Ubiquitina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regiões Promotoras Genéticas , Feminino , Masculino , Angiogênese
17.
PLoS One ; 19(3): e0300370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536827

RESUMO

Anti-VEGF (vascular endothelial growth factor) drugs such as aflibercept (AFL) and bevacizumab (BVZ) inhibit pathological neo-angiogenesis and vascular permeability in retinal vascular diseases. As cytokines and growth factors are produced by Müller glial cells under stressful and pathological conditions, we evaluated the in vitro effect of AFL (Eylea®, 0.5 mg/mL) and BVZ (Avastin®, 0.5 mg/mL) on cell viability/metabolism, and cytokine/growth factor production by Müller cells (MIO-M1) under cobalt chloride (CoCl2)-induced hypoxia after 24h, 48h and 72h. Cell viability/metabolism were analyzed by Trypan Blue and MTT assays and cytokine/growth factors in supernatants by Luminex xMAP-based multiplex bead-based immunoassay. Cell viability increased with AFL at 48h and 72h and decreased with BVZ or hypoxia at 24h. BVZ-treated cells showed lower cell viability than AFL at all exposure times. Cell metabolism increased with AFL but decreased with BVZ (72h) and hypoxia (48h and72h). As expected, AFL and BVZ decreased VEGF levels. AFL increased PDGF-BB, IL-6 and TNF-α (24h) and BVZ increased PDGF-BB (72h). Hypoxia reduced IL-1ß, -6, -8, TNF-α and PDGF-BB at 24h, and its suppressive effect was more prominent than AFL (EGF, PDGF-BB, IL-1ß, IL-6, IL-8, and TNF-α) and BVZ (PDGF-BB and IL-6) effects. Hypoxia increased bFGF levels at 48h and 72h, even when combined with anti-VEGFs. However, the stimulatory effect of BVZ predominated over hypoxia for IL-8 and TNF-α (24h), as well as for IL-1ß (72h). Thus, AFL and BVZ exhibit distinct exposure times effects on MIO-M1 cells viability, metabolism, and cytokines/growth factors. Hypoxia and BVZ decreased MIO-M1 cell viability/metabolism, whereas AFL likely induced gliosis. Hypoxia resulted in immunosuppression, and BVZ stimulated inflammation in hypoxic MIO-M1 cells. These findings highlight the complexity of the cellular response as well as the interplay between anti-VEGF treatments and the hypoxic microenvironment.


Assuntos
Células Ependimogliais , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Fator A de Crescimento do Endotélio Vascular , Humanos , Bevacizumab/farmacologia , Bevacizumab/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Ependimogliais/metabolismo , Sobrevivência Celular , Becaplermina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Interleucina-6/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Citocinas/metabolismo , Hipóxia/metabolismo , Neovascularização Patológica/patologia , Inflamação/patologia
18.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542288

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.


Assuntos
Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição , Fatores de Crescimento do Endotélio Vascular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/patologia
19.
EMBO J ; 43(8): 1519-1544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528180

RESUMO

Pericytes and endothelial cells (ECs) constitute the fundamental components of blood vessels. While the role of ECs in tumor angiogenesis and the tumor microenvironment is well appreciated, pericyte function in tumors remains underexplored. In this study, we used pericyte-specific deletion of the nitric oxide (NO) receptor, soluble guanylate cyclase (sGC), to investigate via single-cell RNA sequencing how pericytes influence the vascular niche and the tumor microenvironment. Our findings demonstrate that pericyte sGC deletion disrupts EC-pericyte interactions, impairing Notch-mediated intercellular communication and triggering extensive transcriptomic reprogramming in both pericytes and ECs. These changes further extended their influence to neighboring cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) through paracrine signaling, collectively suppressing tumor growth. Inhibition of pericyte sGC has minimal impact on quiescent vessels but significantly increases the vulnerability of angiogenic tumor vessels to conventional anti-angiogenic therapy. In conclusion, our findings elucidate the role of pericytes in shaping the tumor vascular niche and tumor microenvironment and support pericyte sGC targeting as a promising strategy for improving anti-angiogenic therapy for cancer treatment.


Assuntos
Neoplasias , Pericitos , Humanos , Pericitos/patologia , Pericitos/fisiologia , Guanilil Ciclase Solúvel , Células Endoteliais/fisiologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neoplasias/genética , Neoplasias/patologia , Guanilato Ciclase , Microambiente Tumoral
20.
Angiogenesis ; 27(2): 173-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38468017

RESUMO

C-type lectins, distinguished by a C-type lectin binding domain (CTLD), are an evolutionarily conserved superfamily of glycoproteins that are implicated in a broad range of physiologic processes. The group XIV subfamily of CTLDs are comprised of CD93, CD248/endosialin, CLEC14a, and thrombomodulin/CD141, and have important roles in creating and maintaining blood vessels, organizing extracellular matrix, and balancing pro- and anti-coagulative processes. As such, dysregulation in the expression and downstream signaling pathways of these proteins often lead to clinically relevant pathology. Recently, group XIV CTLDs have been shown to play significant roles in cancer progression, namely tumor angiogenesis and metastatic dissemination. Interest in therapeutically targeting tumor vasculature is increasing and the search for novel angiogenic targets is ongoing. Group XIV CTLDs have emerged as key moderators of tumor angiogenesis and metastasis, thus offering substantial therapeutic promise for the clinic. Herein, we review our current knowledge of group XIV CTLDs, discuss each's role in malignancy and associated potential therapeutic avenues, briefly discuss group XIV CTLDs in the context of two other relevant lectin families, and offer future direction in further elucidating mechanisms by which these proteins function and facilitate tumor growth.


Assuntos
Lectinas Tipo C , Neoplasias , Humanos , Angiogênese , Neovascularização Patológica/patologia , Neoplasias/tratamento farmacológico , Transdução de Sinais , Antígenos de Neoplasias , Antígenos CD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA