Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Neuroscience ; 499: 40-63, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870563

RESUMO

Huntingtin-associated protein 1 (HAP1) is a core component of stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for various neurodegenerative diseases. Brain regions rich in STB/HAP1 immunoreactivity are usually spared from cell death, whereas brain regions with negligible STB/HAP1 immunoreactivity are the major neurodegenerative targets. Recently, we have shown that STB/HAP1 is abundantly expressed in the spinal preganglionic sympathetic/parasympathetic neurons but absent in the motoneurons of spinal cord, indicating that spinal motoneurons are more vulnerable to neurodegenerative diseases. In light of STB/HAP1 neuroprotective effects, it is also essential to clarify the distribution of STB/HAP1 in another major neurodegenerative target, the brainstem. Here, we examined the expression and detailed immunohistochemical distribution of STB/HAP1 and its relationships with choline acetyltransferase (ChAT) in the midbrain, pons, and medulla oblongata of adult mice. Abundant STB/HAP1 immunoreactive neurons were disseminated in the periaqueductal gray, Edinger-Westphal nucleus, raphe nuclei, locus coeruleus, pedunculopontine tegmental nucleus, superior/inferior salivatory nucleus, and dorsal motor nucleus of vagus. Double-label immunohistochemistry of HAP1 with ChAT (or with urocortin-1 for Edinger-Westphal nucleus centrally projecting population) confirmed that STB/HAP1 was highly present in parasympathetic preganglionic neurons but utterly absent in cranial nerve motor nuclei throughout the brainstem. These results suggest that due to deficient putative STB/HAP1-protectivity, cranial nerve motor nuclei might be more vulnerable to certain neurodegenerative stresses than STB/HAP1-expressing brainstem nuclei, including preganglionic parasympathetic nuclei. Our current results also lay a basic foundation for future studies that seek to clarify the physiological/pathological roles of STB/HAP1 in the brainstem.


Assuntos
Tronco Encefálico , Colina O-Acetiltransferase , Animais , Tronco Encefálico/metabolismo , Colina O-Acetiltransferase/metabolismo , Nervos Cranianos/metabolismo , Bulbo , Camundongos , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Cell Rep ; 37(12): 110140, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936864

RESUMO

Neural crest (NC) cells migrate throughout vertebrate embryos to give rise to a huge variety of cell types, but when and where lineages emerge and their regulation remain unclear. We have performed single-cell RNA sequencing (RNA-seq) of cranial NC cells from the first pharyngeal arch in zebrafish over several stages during migration. Computational analysis combining pseudotime and real-time data reveals that these NC cells first adopt a transitional state, becoming specified mid-migration, with the first lineage decisions being skeletal and pigment, followed by neural and glial progenitors. In addition, by computationally integrating these data with RNA-seq data from a transgenic Wnt reporter line, we identify gene cohorts with similar temporal responses to Wnts during migration and show that one, Atp6ap2, is required for melanocyte differentiation. Together, our results show that cranial NC cell lineages arise progressively and uncover a series of spatially restricted cell interactions likely to regulate such cell-fate decisions.


Assuntos
Linhagem da Célula , Crista Neural/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Região Branquial/metabolismo , Comunicação Celular , Diferenciação Celular , Movimento Celular , Nervos Cranianos/metabolismo , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , RNA-Seq , Transdução de Sinais , Análise de Célula Única
3.
Eur Rev Med Pharmacol Sci ; 24(21): 10960-10965, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33215409

RESUMO

OBJECTIVE: To explore the protective effect of micro ribonucleic acid (miR)-210 on cranial nerves in rats with preeclampsia (PE) by regulating the transforming growth factor-ß (TGF-ß) signaling pathway. MATERIALS AND METHODS: A total of 36 pregnant Sprague-Dawley rats were randomly divided into normal group (n=12), model group (n=12), and miR-210 mimics group (n=12). The rats were fed normally in the normal group. In the latter two groups, the PE model was established, followed by injection of normal saline or miR-210 mimics via the caudal vein, respectively. The above intervention lasted until 20 d of gestational age in pregnant rats. Then, the systolic blood pressure of the caudal vein was measured. The relative levels of Caspase3, phosphorylated TGF-ß (p-TGF-ß), and miR-210 were detected via immunohistochemistry, Western blotting, and quantitative Polymerase Chain Reaction (qPCR). Cell apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. RESULTS: The systolic blood pressure of the caudal vein significantly increased in the other two groups compared with that in the normal group (p<0.05), while it significantly decreased in the miR-210 mimics group compared with that in the model group (p<0.05). The results of immunohistochemistry showed that the positive expression of Caspase3 significantly rose in the other two groups compared with that in the normal group (p<0.05), while it remarkably declined in miR-210 mimics group compared with that in the model group (p<0.05). The results of Western blotting revealed that the protein expression of p-TGF-ß was evidently higher in the other two groups than that in the normal group (p<0.05), while it was evidently lower in the miR-210 mimics group than that in the model group (p<0.05). Moreover, it was found via qPCR that the other two groups had remarkably lower relative expression of miR-210 than normal group (p<0.05), while miR-210 mimics group had remarkably higher relative expression of miR-210 than the model group (p<0.05). According to the results of TUNEL assay, the apoptosis rate markedly increased in the other two groups compared with that in the normal group (p<0.05), while it markedly decreased in the miR-210 mimics group compared with that in the model group (p<0.05). CONCLUSIONS: MiR-210 inhibits apoptosis via suppressing the TGF-ß signaling pathway, thereby exerting a protective effect on cranial nerves in PE rats.


Assuntos
Nervos Cranianos/metabolismo , MicroRNAs/metabolismo , Pré-Eclâmpsia/metabolismo , Substâncias Protetoras/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Nervos Cranianos/patologia , Feminino , Pré-Eclâmpsia/patologia , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
4.
ACS Chem Neurosci ; 11(13): 1868-1870, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32605374

RESUMO

Cytokine storm in COVID-19 is characterized by an excessive inflammatory response to SARS-CoV-2 that is caused by a dysregulated immune system of the host. We are proposing a new hypothesis that SARS-CoV-2 mediated inflammation of nucleus tractus solitarius (NTS) may be responsible for the cytokine storm in COVID 19. The inflamed NTS may result in a dysregulated cholinergic anti-inflammatory pathway and hypothalamic-pituitary-adrenal axis.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Citocinas/metabolismo , Pneumonia Viral/metabolismo , Núcleo Solitário/metabolismo , Axônios/imunologia , Axônios/metabolismo , Axônios/virologia , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Nervos Cranianos/imunologia , Nervos Cranianos/metabolismo , Nervos Cranianos/virologia , Citocinas/imunologia , Humanos , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/virologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Pandemias , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/virologia , Pneumonia Viral/imunologia , SARS-CoV-2 , Núcleo Solitário/imunologia , Núcleo Solitário/virologia
5.
Eur Rev Med Pharmacol Sci ; 24(6): 2785-2794, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32271395

RESUMO

OBJECTIVE: The aim of this study was to investigate the protective effect of magnesium sulfate (MgSO4) on the cranial nerves of preeclampsia (PE) rats through the nuclear factor-κB (NF-κB)/intercellular adhesion molecule-1 (ICAM-1) pathway. MATERIALS AND METHODS: A total of 30 pregnant rats were randomly divided into three groups, including control group, model group, and treatment group, with 10 rats in each group. Systolic blood pressure was measured at 13 d, 15 d, and 19 d. The apoptosis level in brain tissues was detected via Western blotting and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Protein expression of genes was detected using immunohistochemical staining. Moreover, the messenger ribonucleic acid (mRNA) expressions of NF-κB and ICAM-1 in brain tissues were determined through Reverse Transcription-Polymerase Chain Reaction (RT-PCR). RESULTS: Systolic blood pressure exhibited significant differences among the three groups at 15 d and 19 d of gestational age (p<0.05). At 15 d of gestational age, systolic blood pressure was significantly higher in model group than that of control group (p<0.05). However, it was slightly lower in treatment group than model group (p<0.05). At 19 d of gestational age, systolic blood pressure was significantly higher in model group than control group (p<0.05). However, it decreased remarkably in treatment group when compared with model group (p<0.05). In treatment group, systolic blood pressure at 19 d was significantly lower than that at 15 d (p<0.05). Subsequent Western blotting revealed that the protein expression of B-cell lymphoma-2 (Bcl-2) in brain tissues decreased evidently, whereas the expression of Bcl-2 associated X protein (Bax) increased significantly in model group compared with control group, showing statistically significant differences (p<0.01). The protein expression of Bcl-2 in brain tissues increased significantly, while the expression of Bax declined remarkably in treatment group compared with model group (p<0.01). The number of apoptotic cells in model group and treatment group increased significantly compared with that in control group, with the largest in model group (p<0.05). However, it remarkably declined in treatment group compared with model group (p<0.05). These results suggested that MgSO4 treatment could significantly reduce neuronal apoptosis in PE rats. According to the results of immunohistochemistry, the protein expressions of NF-κB and ICAM-1 in brain tissues were significantly higher in model group and treatment group than those in control group (p<0.05). However, they were significantly lower in treatment group than model group (p<0.05). RT-PCR results manifested that the mRNA expressions of NF-κB and ICAM-1 in brain tissues exhibited evident differences among the three groups (p<0.05). Model group and treatment group showed significantly up-regulated mRNA expressions of NF-κB and ICAM-1 in brain tissues compared with control group (p<0.05). The highest mRNA expression was observed in model group. However, treatment group exhibited remarkably decreased mRNA expressions of NF-κB and ICAM-1 in brain tissues compared with model group (p<0.05). CONCLUSIONS: MgSO4 exerts a protective effect on cranial nerves of PE rats by inhibiting the NF-κB/ICAM-1 signaling pathway.


Assuntos
Nervos Cranianos/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , NF-kappa B/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Nervos Cranianos/metabolismo , Modelos Animais de Doenças , Feminino , Sulfato de Magnésio/farmacologia , Pré-Eclâmpsia , Gravidez , Substâncias Protetoras , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178439

RESUMO

While the descending dopaminergic control system is not fully understood, it is reported that the hypothalamic A11 nucleus is its principle source. To better understand the impact of this system, particularly the A11 nucleus, on neuropathic pain, we created a chronic constriction injury model of the infraorbital nerve (ION-CCI) in rats. ION-CCI rats received intraperitoneal administrations of quinpirole (a dopamine D2 receptor agonist). ION-CCI rats received microinjections of quinpirole, muscimol [a gamma-aminobutyric acid type A (GABAA) receptor agonist], or neurotoxin 6-hydroxydopamine (6-OHDA) into the A11 nucleus. A von Frey filament was used as a mechanical stimulus on the maxillary whisker pad skin; behavioral and immunohistochemical responses to the stimulation were assessed. After intraperitoneal administration of quinpirole and microinjection of quinpirole or muscimol, ION-CCI rats showed an increase in head-withdrawal thresholds and a decrease in the number of phosphorylated extracellular signal-regulated kinase (pERK) immunoreactive (pERK-IR) cells in the superficial layers of the trigeminal spinal subnucleus caudalis (Vc). Following 6-OHDA microinjection, ION-CCI rats showed a decrease in head-withdrawal thresholds and an increase in the number of pERK-IR cells in the Vc. Our findings suggest the descending dopaminergic control system is involved in the modulation of trigeminal neuropathic pain.


Assuntos
Nervos Cranianos/metabolismo , Dopamina/metabolismo , Traumatismos do Nervo Facial/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Hiperalgesia/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Muscimol/farmacologia , Neuralgia/metabolismo , Oxidopamina/farmacologia , Medição da Dor/métodos , Limiar da Dor/fisiologia , Fosforilação/efeitos dos fármacos , Quimpirol/farmacologia , Ratos , Ratos Wistar , Receptores de Dopamina D2/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Ácido gama-Aminobutírico/metabolismo
7.
Acta Neuropathol Commun ; 7(1): 79, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109380

RESUMO

Pathogenic variants of the huntingtin (HTT) protein and their aggregation have been investigated in great detail in brains of Huntington's disease patients and HTT-transgenic animals. However, little is known about the physiological brain region- and cell type-specific HTT expression pattern in wild type mice and a potential recruitment of endogenous HTT to other pathogenic protein aggregates such as amyloid plaques in cross seeding events. Employing a monoclonal anti-HTT antibody directed against the HTT mid-region and using brain tissue of three different mouse strains, we detected prominent immunoreactivity in a number of brain areas, particularly in cholinergic cranial nerve nuclei, while ubiquitous neuronal staining appeared faint. The region-specific distribution of endogenous HTT was found to be comparable in wild type rat and hamster brain. In human amyloid precursor protein transgenic Tg2576 mice with amyloid plaque pathology, similar neuronal HTT expression patterns and a distinct association of HTT with Abeta plaques were revealed by immunohistochemical double labelling. Additionally, the localization of HTT in reactive astrocytes was demonstrated for the first time in a transgenic Alzheimer's disease animal model. Both, plaque association of HTT and occurrence in astrocytes appeared to be age-dependent. Astrocytic HTT gene and protein expression was confirmed in primary cultures by RT-qPCR and by immunocytochemistry. We provide the first detailed analysis of physiological HTT expression in rodent brain and, under pathological conditions, demonstrate HTT aggregation in proximity to Abeta plaques and Abeta-induced astrocytic expression of endogenous HTT in Tg2576 mice.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Nervos Cranianos/metabolismo , Proteína Huntingtina/metabolismo , Placa Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Cricetinae , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Agregação Patológica de Proteínas , Ratos Wistar
8.
Anat Rec (Hoboken) ; 302(3): 394-404, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29663690

RESUMO

Originally discovered in elasmobranchs by Fritsh in 1878, the nervus terminalis has been found in virtually all species, including humans. After more than one-century debate on its nomenclature, it is nowadays recognized as cranial pair zero. The nerve mostly originates in the olfactory placode, although neural crest contribution has been also proposed. Developmentally, the nervus terminalis is clearly observed in human embryos; subsequently, during the fetal period loses some of its ganglion cells, and it is less recognizable in adults. Fibers originating in the nasal cavity passes into the cranium through the middle area of the cribiform plate of the ethmoid bone. Intracranially, fibers joint the telencephalon at several sites including the olfactory trigone and the primordium of the hippocampus to reach preoptic and precommissural regions. The nervus terminalis shows ganglion cells, that sometimes form clusters, normally one or two located at the base of the crista galli, the so-called ganglion of the nervus terminalis. Its function is uncertain. It has been described that its fibers facilitates migration of luteinizing hormone-releasing hormone cells to the hypothalamus thus participating in the development of the hypothalamic-gonadal axis, which alteration may provoke Kallmann's syndrome in humans. This review summarizes current knowledge on this structure, incorporating original illustrations of the nerve at different developmental stages, and focuses on its anatomical and clinical relevance. Anat Rec, 302:394-404, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Nervos Cranianos/anatomia & histologia , Síndrome de Kallmann/patologia , Mucosa Nasal/anatomia & histologia , Terminações Nervosas/química , Animais , Nervos Cranianos/metabolismo , Humanos , Síndrome de Kallmann/metabolismo , Hormônio Luteinizante/metabolismo , Mucosa Nasal/metabolismo , Terminações Nervosas/metabolismo
9.
Int J Biol Macromol ; 124: 460-468, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391592

RESUMO

Facial nerve injury is a clinically common disease accompanied by demyelination of damaged nerves. The remyelination of damaged nerves and the unsatisfactory function recovery are problems that have been plaguing people for a long time. The role that CXCL12 plays after facial nerve injury remains unknown. Our experiments found that the expression of CXCL12 was up-regulated in the early stage of facial nerve injury and decreased after two weeks. Further research found that CXCL12 had no effect on Schwann cells proliferation, apoptosis and cell cycle, while significantly promoted Schwann cells migration. Treatment with CXCL12 decreased the phosphorylation of PI3K, AKT and mTOR, but increased autophagy marker LC3II/I. The CXCL12-induced Schwann cells migration was significantly attenuated by inhibition of autophagy and activation of PI3K pathway through pretreatment with 3-MA and IGF-1 respectively, and this effect was enhanced by PI3K pathway inhibitor LY294002. Animal experiment also confirmed that CXCL12 could improve facial nerve function and myelin regeneration. The findings of this study indicate that CXCL12 can promote the migration of Schwann cells and potentially become a key molecule in the repair of facial nerve injury.


Assuntos
Autofagia/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Traumatismos do Nervo Facial/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Nervos Cranianos/efeitos dos fármacos , Nervos Cranianos/metabolismo , Nervos Cranianos/patologia , Modelos Animais de Doenças , Nervo Facial/efeitos dos fármacos , Nervo Facial/metabolismo , Nervo Facial/patologia , Traumatismos do Nervo Facial/genética , Traumatismos do Nervo Facial/metabolismo , Traumatismos do Nervo Facial/patologia , Regulação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Células de Schwann/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
Wiley Interdiscip Rev Dev Biol ; 7(6): e324, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29944783

RESUMO

Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.


Assuntos
Vias Auditivas/metabolismo , Tronco Encefálico/metabolismo , Cóclea/metabolismo , Nervos Cranianos/metabolismo , Vias Eferentes/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Animais , Vias Auditivas/citologia , Vias Auditivas/crescimento & desenvolvimento , Tronco Encefálico/citologia , Tronco Encefálico/crescimento & desenvolvimento , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Cóclea/inervação , Nervos Cranianos/citologia , Nervos Cranianos/crescimento & desenvolvimento , Vias Eferentes/citologia , Vias Eferentes/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Morfogênese/genética , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Neurônios Eferentes/citologia , Neurônios Eferentes/metabolismo , Transdução de Sinais , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Anat ; 233(2): 222-242, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29797482

RESUMO

Orofacial clefting represents the most common craniofacial birth defect. Cleft lip with or without cleft palate (CL/P) is genetically distinct from cleft palate only (CPO). Numerous transcription factors (TFs) regulate normal development of the midface, comprising the premaxilla, maxilla and palatine bones, through control of basic cellular behaviors. Within the Pbx family of genes encoding Three Amino-acid Loop Extension (TALE) homeodomain-containing TFs, we previously established that in the mouse, Pbx1 plays a preeminent role in midfacial morphogenesis, and Pbx2 and Pbx3 execute collaborative functions in domains of coexpression. We also reported that Pbx1 loss from cephalic epithelial domains, on a Pbx2- or Pbx3-deficient background, results in CL/P via disruption of a regulatory network that controls apoptosis at the seam of frontonasal and maxillary process fusion. Conversely, Pbx1 loss in cranial neural crest cell (CNCC)-derived mesenchyme on a Pbx2-deficient background results in CPO, a phenotype not yet characterized. In this study, we provide in-depth analysis of PBX1 and PBX2 protein localization from early stages of midfacial morphogenesis throughout development of the secondary palate. We further establish CNCC-specific roles of PBX TFs and describe the developmental abnormalities resulting from their loss in the murine embryonic secondary palate. Additionally, we compare and contrast the phenotypes arising from PBX1 loss in CNCC with those caused by its loss in the epithelium and show that CNCC-specific Pbx1 deletion affects only later secondary palate morphogenesis. Moreover, CNCC mutants exhibit perturbed rostro-caudal organization and broadening of the midfacial complex. Proliferation defects are pronounced in CNCC mutants at gestational day (E)12.5, suggesting altered proliferation of mutant palatal progenitor cells, consistent with roles of PBX factors in maintaining progenitor cell state. Although the craniofacial skeletal abnormalities in CNCC mutants do not result from overt patterning defects, osteogenesis is delayed, underscoring a critical role of PBX factors in CNCC morphogenesis and differentiation. Overall, the characterization of tissue-specific Pbx loss-of-function mouse models with orofacial clefting establishes these strains as unique tools to further dissect the complexities of this congenital craniofacial malformation. This study closely links PBX TALE homeodomain proteins to the variation in maxillary shape and size that occurs in pathological settings and during evolution of midfacial morphology.


Assuntos
Nervos Cranianos/embriologia , Proteínas de Homeodomínio/fisiologia , Palato/embriologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Fissura Palatina/genética , Nervos Cranianos/metabolismo , Feminino , Camundongos , Camundongos Transgênicos , Palato/metabolismo , Gravidez
12.
Cell Rep ; 22(7): 1666-1680, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444422

RESUMO

During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR), and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.


Assuntos
Netrina-1/metabolismo , Neurônios/metabolismo , Rombencéfalo/citologia , Animais , Membrana Basal/metabolismo , Movimento Celular , Nervos Cranianos/metabolismo , Receptor DCC/metabolismo , Cistos Glanglionares/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Sistema Nervoso Periférico/citologia , Ponte/citologia , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Raízes Nervosas Espinhais/metabolismo
13.
J Comp Neurol ; 526(5): 836-857, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218708

RESUMO

Xenopus laevis is one of the most widely used model organism in neurobiology. It is therefore surprising, that no detailed and complete description of the cranial nerves exists for this species. Using classical histological sectioning in combination with fluorescent whole mount antibody staining and micro-computed tomography we prepared a detailed innervation map and a freely-rotatable three-dimensional (3D) model of the cranial nerves and anterior-most spinal nerves of early X. laevis tadpoles. Our results confirm earlier descriptions of the pre-otic cranial nerves and present the first detailed description of the post-otic cranial nerves. Tracing the innervation, we found two previously undescribed head muscles (the processo-articularis and diaphragmatico-branchialis muscles) in X. laevis. Data on the cranial nerve morphology of tadpoles are scarce, and only one other species (Discoglossus pictus) has been described in great detail. A comparison of Xenopus and Discoglossus reveals a relatively conserved pattern of the post-otic and a more variable morphology of the pre-otic cranial nerves. Furthermore, the innervation map and the 3D models presented here can serve as an easily accessible basis to identify alterations of the innervation produced by experimental studies such as genetic gain- and loss of function experiments.


Assuntos
Nervos Cranianos/diagnóstico por imagem , Imageamento Tridimensional , Nervos Espinhais/diagnóstico por imagem , Tomógrafos Computadorizados , Xenopus laevis/anatomia & histologia , Animais , Nervos Cranianos/metabolismo , Modelos Neurológicos , Músculos/anatomia & histologia , Músculos/metabolismo , Nervos Espinhais/metabolismo , Proteínas de Xenopus/metabolismo
14.
Development ; 143(10): 1800-10, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27034424

RESUMO

A striking characteristic of vertebrate development is the pharyngeal arches, which are a series of bulges on the lateral surface of the head of vertebrate embryos. Although each pharyngeal arch is segmented by the reiterative formation of endodermal outpocketings called pharyngeal pouches, the molecular network underlying the reiterative pattern remains unclear. Here, we show that pax1 plays crucial roles in pouch segmentation in medaka (Oryzias latipes) embryos. Importantly, pax1 expression in the endoderm prefigures the location of the next pouch before the cells bud from the epithelium. TALEN-generated pax1 mutants did not form pharyngeal pouches posterior to the second arch. Segmental expression of tbx1 and fgf3, which play essential roles in pouch development, was almost non-existent in the pharyngeal endoderm of pax1 mutants, with disturbance of the reiterative pattern of pax1 expression. These results suggest that pax1 plays a key role in generating the primary pattern for segmentation in the pharyngeal endoderm by regulating tbx1 and fgf3 expression. Our findings illustrate the crucial roles of pax1 in vertebrate pharyngeal segmentation and provide insights into the evolutionary origin of the deuterostome gill slit.


Assuntos
Padronização Corporal , Região Branquial/embriologia , Região Branquial/metabolismo , Oryzias/embriologia , Oryzias/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Animais , Cartilagem/metabolismo , Nervos Cranianos/metabolismo , Embrião não Mamífero , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Brânquias/metabolismo , Modelos Biológicos , Mutação/genética , Fatores de Transcrição Box Pareados/genética , Timo/embriologia
15.
Neural Dev ; 11: 3, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26819088

RESUMO

BACKGROUND: The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. RESULTS: Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. CONCLUSIONS: One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities.


Assuntos
Nervos Cranianos/embriologia , Nervos Cranianos/metabolismo , Gânglios Sensitivos/embriologia , Gânglios Sensitivos/metabolismo , Neurônios/fisiologia , Transcriptoma , Animais , Diferenciação Celular , Embrião de Galinha , Neurônios/metabolismo
16.
J Chem Neuroanat ; 72: 34-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724499

RESUMO

The organization of the cholinergic, catecholaminergic, and serotonergic neurons in the brains of five species of insectivores and the orexinergic (hypocretinergic) system in four insectivore species is presented. We aimed to investigate the nuclear complement of these neural systems in comparison to those of other mammalian species. Brains of insectivores were coronally sectioned and immunohistochemically stained with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. The majority of nuclei were similar among the species investigated and to mammals in general, but certain differences in the nuclear complement highlighted potential phylogenetic interrelationships. In the cholinergic system, the three shrew species lacked parabigeminal and Edinger-Westphal nuclei. In addition, the appearance of the laterodorsal tegmental nucleus in all insectivores revealed a mediodorsal arch. All three of these features are the same as those present in microchiropterans. The catecholaminergic system of the three shrew species lacked the A4 and A15d nuclei, as well as having an incipient A9v nucleus, again features found in microchiropteran brains. The serotonergic and orexinergic systems of the insectivores are similar to those seen across most eutherian mammals. The analysis of similarities and differences across mammalian species indicates a potential phylogenetic relationship between the Soricidae (shrews) and the microchiropterans.


Assuntos
Encéfalo/anatomia & histologia , Ouriços/anatomia & histologia , Musaranhos/anatomia & histologia , Animais , Encéfalo/metabolismo , Colina O-Acetiltransferase/metabolismo , Nervos Cranianos/metabolismo , Orexinas/metabolismo , Serotonina/metabolismo , Especificidade da Espécie , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Neuropathology ; 36(3): 262-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26563477

RESUMO

Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA.


Assuntos
Axônios/patologia , Nervos Cranianos/patologia , Doença por Corpos de Lewy/patologia , Nervos Espinhais/patologia , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Axônios/metabolismo , Nervos Cranianos/metabolismo , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Doença por Corpos de Lewy/metabolismo , Masculino , Fosforilação , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervos Espinhais/metabolismo
18.
J Comp Neurol ; 524(5): 1033-61, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26356988

RESUMO

During development, transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors but rather emerge through the intersection of their expression domains. Brn3a, Brn3b, and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of retinal ganglion cells (RGC), spiral and vestibular ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the dorsal root ganglia. The present study investigates the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII, and VIII and visceromotor nuclei of nerves VII, IX, and X as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3b(KO) RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However, loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor.


Assuntos
Nervos Cranianos/embriologia , Nervos Cranianos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Fator de Transcrição Brn-3B/biossíntese , Fator de Transcrição Brn-3B/genética , Animais , Nervos Cranianos/crescimento & desenvolvimento , Feminino , Técnicas de Introdução de Genes , Camundongos , Camundongos Transgênicos , Gravidez
19.
J Chem Neuroanat ; 70: 42-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26562782

RESUMO

The nuclear organization of the cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brains of three species of strepsirrhine primates is presented. We aimed to investigate the nuclear complement of these neural systems in comparison to those of simian primates, megachiropterans and other mammalian species. The brains were coronally sectioned and immunohistochemically stained with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. The nuclei identified were identical among the strepsirrhine species investigated and identical to previous reports in simian primates. Moreover, a general similarity to other mammals was found, but specific differences in the nuclear complement highlighted potential phylogenetic interrelationships. The central feature of interest was the structure of the locus coeruleus complex in the primates, where a central compactly packed core (A6c) of tyrosine hydroxylase immunopositive neurons was surrounded by a shell of less densely packed (A6d) tyrosine hydroxylase immunopositive neurons. This combination of compact and diffuse divisions of the locus coeruleus complex is only found in primates and megachiropterans of all the mammalian species studied to date. This neural character, along with variances in a range of other neural characters, supports the phylogenetic grouping of primates with megachiropterans as a sister group.


Assuntos
Encéfalo/anatomia & histologia , Galago/anatomia & histologia , Lemur/anatomia & histologia , Lorisidae/anatomia & histologia , Animais , Encéfalo/metabolismo , Colina O-Acetiltransferase/metabolismo , Nervos Cranianos/metabolismo , Galago/metabolismo , Lemur/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Lorisidae/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Serotonina/metabolismo , Especificidade da Espécie , Tirosina 3-Mono-Oxigenase/metabolismo
20.
PLoS One ; 10(4): e0122048, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25835709

RESUMO

Dysregulation of the complement system is evident in many CNS diseases but mechanisms regulating complement activation in the CNS remain unclear. In a recent large rat genome-wide expression profiling and linkage analysis we found co-regulation of complement C3 immediately downstream of butyrylcholinesterase (BuChE), an enzyme hydrolyzing acetylcholine (ACh), a classical neurotransmitter with immunoregulatory effects. We here determined levels of neurofilament-light (NFL), a marker for ongoing nerve injury, C3 and activity of the two main ACh hydrolyzing enzymes, acetylcholinesterase (AChE) and BuChE, in cerebrospinal fluid (CSF) from patients with MS (n = 48) and non-inflammatory controls (n = 18). C3 levels were elevated in MS patients compared to controls and correlated both to disability and NFL. C3 levels were not induced by relapses, but were increased in patients with ≥9 cerebral lesions on magnetic resonance imaging and in patients with progressive disease. BuChE activity did not differ at the group level, but was correlated to both C3 and NFL levels in individual samples. In conclusion, we show that CSF C3 correlates both to a marker for ongoing nerve injury and degree of disease disability. Moreover, our results also suggest a potential link between intrathecal cholinergic activity and complement activation. These results motivate further efforts directed at elucidating the regulation and effector functions of the complement system in MS, and its relation to cholinergic tone.


Assuntos
Butirilcolinesterase/líquido cefalorraquidiano , Complemento C3/líquido cefalorraquidiano , Traumatismos dos Nervos Cranianos/líquido cefalorraquidiano , Nervos Cranianos/metabolismo , Esclerose Múltipla/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Acetilcolinesterase/líquido cefalorraquidiano , Adulto , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Traumatismos dos Nervos Cranianos/tratamento farmacológico , Traumatismos dos Nervos Cranianos/imunologia , Traumatismos dos Nervos Cranianos/patologia , Nervos Cranianos/efeitos dos fármacos , Nervos Cranianos/imunologia , Nervos Cranianos/patologia , Avaliação da Deficiência , Feminino , Proteínas Ligadas por GPI/líquido cefalorraquidiano , Humanos , Fatores Imunológicos/uso terapêutico , Imageamento por Ressonância Magnética , Masculino , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Recidiva , Indução de Remissão , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA