Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3773, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145239

RESUMO

Abnormalities in GABAergic inhibitory circuits have been implicated in the aetiology of autism spectrum disorder (ASD). ASD is caused by genetic and environmental factors. Several genes have been associated with syndromic forms of ASD, including FOXG1. However, when and how dysregulation of FOXG1 can result in defects in inhibitory circuit development and ASD-like social impairments is unclear. Here, we show that increased or decreased FoxG1 expression in both excitatory and inhibitory neurons results in ASD-related circuit and social behavior deficits in our mouse models. We observe that the second postnatal week is the critical period when regulation of FoxG1 expression is required to prevent subsequent ASD-like social impairments. Transplantation of GABAergic precursor cells prior to this critical period and reduction in GABAergic tone via Gad2 mutation ameliorates and exacerbates circuit functionality and social behavioral defects, respectively. Our results provide mechanistic insight into the developmental timing of inhibitory circuit formation underlying ASD-like phenotypes in mouse models.


Assuntos
Transtorno do Espectro Autista/genética , Encéfalo/crescimento & desenvolvimento , Fatores de Transcrição Forkhead/genética , Neurônios GABAérgicos/citologia , Proteínas do Tecido Nervoso/genética , Comportamento Social , Animais , Encéfalo/fisiologia , Modelos Animais de Doenças , Neurônios GABAérgicos/transplante , Glutamato Descarboxilase/genética , Camundongos
2.
J Alzheimers Dis ; 75(1): 245-260, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280096

RESUMO

Excitatory (E) and inhibitory (I) balance of neural network activity is essential for normal brain function and of particular importance to memory. Disturbance of E/I balance contributes to various neurological disorders. The appearance of neural hyperexcitability in Alzheimer's disease (AD) is even suggested as one of predictors of accelerated cognitive decline. In this study, we found that GAD67+, Parvalbumin+, Calretinin+, and Neuropeptide Y+ interneurons were progressively lost in the brain of APP/PS1 mice. Transplanted embryonic medial ganglionic eminence derived interneuron progenitors (IPs) survived, migrated, and differentiated into GABAergic interneuron subtypes successfully at 2 months after transplantation. Transplantation of IPs hippocampally rescued impaired synaptic plasticity and cognitive deficits of APP/PS1 transgenic mice, concomitant with a suppression of neural hyperexcitability, whereas transplantation of IPs failed to attenuate amyloid-ß accumulation, neuroinflammation, and synaptic loss of APP/PS1 transgenic mice. These observations indicate that transplantation of IPs improves learning and memory of APP/PS1 transgenic mice via suppressing neural hyperexcitability. This study highlights a causal contribution of GABAergic dysfunction to AD pathogenesis and the potentiality of IP transplantation in AD therapy.


Assuntos
Doença de Alzheimer/cirurgia , Disfunção Cognitiva/cirurgia , Neurônios GABAérgicos/transplante , Interneurônios/transplante , Células-Tronco Neurais/transplante , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Cognição/fisiologia , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Presenilina-1/genética
3.
Pain ; 161(2): 379-387, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31972853

RESUMO

Neuropathic pain causes severe suffering, and most patients are resistant to current therapies. A core element of neuropathic pain is the loss of inhibitory tone in the spinal cord. Previous studies have shown that foetal GABAergic neuron precursors can provide relief from pain. However, the source of these precursor cells and their multipotent status make them unsuitable for therapeutic use. Here, we extend these findings by showing, for the first time, that spinally transplanted, terminally differentiated human induced pluripotent stem cell-derived GABAergic (iGABAergic) neurons provide significant, long-term, and safe relief from neuropathic pain induced by peripheral nerve injury in mice. Furthermore, iGABAergic neuron transplants survive long term in the injured spinal cord and show evidence of synaptic integration. Together, this provides the proof in principle for the first viable GABAergic transplants to treat human neuropathic pain patients.


Assuntos
Transplante de Células , Neurônios GABAérgicos/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Interneurônios/transplante , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Corno Dorsal da Medula Espinal , Animais , Comportamento Animal , Cálcio/metabolismo , Neurônios GABAérgicos/citologia , Humanos , Interneurônios/citologia , Camundongos , Inibição Neural , Neuralgia/terapia , Neurogênese , Imagem Óptica
4.
Exp Neurol ; 327: 113208, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31962127

RESUMO

Spinal cord injury (SCI) produces both locomotor deficits and sensory dysfunction that greatly reduce the overall quality of life. Mechanisms underlying chronic pain include increased neuro-inflammation and changes in spinal processing of sensory signals, with reduced inhibitory GABAergic signaling a likely key player. Our previous research demonstrated that spinal transplantation of GABAergic neural progenitor cells (NPCs) reduced neuropathic pain while intensive locomotor training (ILT) could reduce development of pain and partially reverse already established pain behaviors. Therefore, we evaluate the potential mutually beneficial anti-hypersensitivity effects of NPC transplants cells in combination with early or delayed ILT. NPC transplants were done at 4 weeks post-SCI. ILT, using a progressive ramping treadmill protocol, was initiated either 5 days post-SCI (early: pain prevention group) or at 5 weeks post-SCI (delayed: to reverse established pain) in male Sprague Dawley rats. Results showed that either ILT alone or NPCs alone could partially attenuate SCI neuropathic pain behaviors in both prevention and reversal paradigms. However, the combination of ILT with NPC transplants significantly enhanced neuropathic pain reduction on most of the outcome measures including tests for allodynia, hyperalgesia, and ongoing pain. Immunocytochemical and neurochemical analyses showed decreased pro-inflammatory markers and spinal pathology with individual treatments; these measures were further improved by the combination of either early or delayed ILT and GABAergic cellular transplantation. Lumbar dorsal horn GABAergic neuronal and process density were nearly restored to normal levels by the combination treatment. Together, these interventions may provide a less hostile and more supportive environment for promoting functional restoration in the spinal dorsal horn and attenuation of neuropathic pain following SCI. These findings suggest mutually beneficial effects of ILT and NPC transplants for reducing SCI neuropathic pain.


Assuntos
Neurônios GABAérgicos/transplante , Atividade Motora/fisiologia , Células-Tronco Neurais/transplante , Neuralgia/terapia , Condicionamento Físico Animal/fisiologia , Traumatismos da Medula Espinal/terapia , Medula Espinal/patologia , Animais , Transplante de Células , Modelos Animais de Doenças , Masculino , Neuralgia/etiologia , Neuralgia/patologia , Limiar da Dor/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Resultado do Tratamento
5.
Nat Commun ; 10(1): 5156, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727894

RESUMO

Repair of the traumatically injured brain has been envisioned for decades, but regenerating new neurons at the site of brain injury has been challenging. We show GABAergic progenitors, derived from the embryonic medial ganglionic eminence, migrate long distances following transplantation into the hippocampus of adult mice with traumatic brain injury, functionally integrate as mature inhibitory interneurons and restore post-traumatic decreases in synaptic inhibition. Grafted animals had improvements in memory precision that were reversed by chemogenetic silencing of the transplanted neurons and a long-lasting reduction in spontaneous seizures. Our results reveal a striking ability of transplanted interneurons for incorporating into injured brain circuits, and this approach is a powerful therapeutic strategy for correcting post-traumatic memory and seizure disorders.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/terapia , Interneurônios/transplante , Memória , Animais , Movimento Celular , Sobrevivência Celular , Neurônios GABAérgicos/transplante , Eminência Mediana/transplante , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Sinapses/metabolismo
6.
Brain ; 142(9): 2655-2669, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31321411

RESUMO

Dysfunction of inhibitory circuits in the rostral anterior cingulate cortex underlies the affective (aversive), but not the sensory-discriminative features (hypersensitivity) of the pain experience. To restore inhibitory controls, we transplanted inhibitory interneuron progenitor cells into the rostral anterior cingulate cortex in a chemotherapy-induced neuropathic pain model. The transplants integrated, exerted a GABA-A mediated inhibition of host pyramidal cells and blocked gabapentin preference (i.e. relieved ongoing pain) in a conditioned place preference paradigm. Surprisingly, pain aversiveness persisted when the transplants populated both the rostral and posterior anterior cingulate cortex. We conclude that selective and long lasting inhibition of the rostral anterior cingulate cortex, in the mouse, has a profound pain relieving effect against nerve injury-induced neuropathic pain. However, the interplay between the rostral and posterior anterior cingulate cortices must be considered when examining circuits that influence ongoing pain and pain aversiveness.


Assuntos
Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/transplante , Giro do Cíngulo/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Neuropatia Ciática/terapia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuralgia/patologia , Receptores de GABA-B/metabolismo , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia
7.
eNeuro ; 6(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31043461

RESUMO

The dentate gyrus (DG) is a region of the adult rodent brain that undergoes continuous neurogenesis. Seizures and loss or dysfunction of GABAergic synapses onto adult-born dentate granule cells (GCs) alter their dendritic growth and migration, resulting in dysmorphic and hyperexcitable GCs. Additionally, transplants of fetal GABAergic interneurons in the DG of mice with temporal lobe epilepsy (TLE) result in seizure suppression, but it is unknown whether increasing interneurons with these transplants restores GABAergic innervation to adult-born GCs. Here, we address this question by birth-dating GCs with retrovirus at different times up to 12 weeks after pilocarpine-induced TLE in adult mice. Channelrhodopsin 2 (ChR2)-enhanced yellow fluorescent protein (EYFP)-expressing medial-ganglionic eminence (MGE)-derived GABAergic interneurons from embryonic day (E)13.5 mouse embryos were transplanted into the DG of the TLE mice and GCs with transplant-derived inhibitory post-synaptic currents (IPSCs) were identified by patch-clamp electrophysiology and optogenetic interrogation. Putative synaptic sites between GCs and GABAergic transplants were also confirmed by intracellular biocytin staining, immunohistochemistry, and confocal imaging. 3D reconstructions of dendritic arbors and quantitative morphometric analyses were carried out in >150 adult-born GCs. GABAergic inputs from transplanted interneurons correlated with markedly shorter GC dendrites, compared to GCs that were not innervated by the transplants. Moreover, these effects were confined to distal dendritic branches and a short time window of six to eight weeks. The effects were independent of seizures as they were also observed in naïve mice with MGE transplants. These findings are consistent with the hypothesis that increased inhibitory currents over a smaller dendritic arbor in adult-born GCs may reduce their excitability and lead to seizure suppression.


Assuntos
Dendritos/fisiologia , Giro Denteado , Epilepsia do Lobo Temporal/cirurgia , Neurônios GABAérgicos/transplante , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/transplante , Neurogênese/fisiologia , Animais , Giro Denteado/citologia , Giro Denteado/fisiologia , Giro Denteado/cirurgia , Modelos Animais de Doenças , Embrião de Mamíferos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Técnicas de Patch-Clamp
8.
World Neurosurg ; 128: e1-e11, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30790741

RESUMO

OBJECTIVE: This study aimed to explore whether intrahippocampal transplantation of GABAergic neurons generated in vitro ameliorated seizures and epileptiform discharges via increasing γ-aminobutyric acid (GABA)-associated inhibition mediated by the addition of new GABAergic neurons. METHODS: Neural stem cells (NSCs) isolated from newborn rats were induced and differentiated into GABAergic neurons. A total of 36 Pilocarpine-induced pharmacoresistant epileptic rats were divided into 3 groups: PBS (phosphate-buffered saline) group, NSCs group, and GABAergic neurons group (GABA group), with an additional 10 normal rats used (normal rat control group). The effects of grafting on spontaneous recurrent seizures (SRS) were examined and hippocampal GABA content was measured after grafting. RESULTS: In the GABA group, the frequency of electroencephalography decreased significantly compared with the PBS group (P < 0.001), but there was no significant difference between the GABA group and NSCs group. Compared with the PBS group, the overall frequency and duration of SRS significantly decreased in the transplantation group, especially in the GABA group (P < 0.01). The number of GABAergic neurons was highest in the GABA group compared with the other groups (P < 0.001). Furthermore, hippocampal GABA concentrations significantly increased in the GABA group. CONCLUSIONS: We show that GABAergic neurons generated in vitro from NSCs and grafted into the hippocampi of chronically epileptic rats can significantly reduce the frequency of electroencephalography and frequency and duration of SRS via increasing GABA-associated inhibition mediated by the addition of new GABAergic neurons.


Assuntos
Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Neurônios GABAérgicos/transplante , Hipocampo/metabolismo , Células-Tronco Neurais/citologia , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos/induzido quimicamente , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Neurônios GABAérgicos/citologia , Masculino , Agonistas Muscarínicos/toxicidade , Pilocarpina/toxicidade , Ratos , Convulsões
9.
Methods Mol Biol ; 1780: 585-605, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856037

RESUMO

Efficient generation of disease relevant neuronal subtypes from human pluripotent stem cells (PSCs) is fundamental for realizing their promise in disease modeling, pharmaceutical drug screening and cell therapy. Here we describe a step-by-step protocol for directing the differentiation of human embryonic and induced PSCs (hESCs and hiPSCs, respectively) toward medium spiny neurons, the type of cells that are preferentially lost in Huntington's disease patients. This method is based on a novel concept of Activin A-dependent induction of the lateral ganglionic/striatal fate using a simple monolayer culture paradigm under chemically defined conditions. Transplantable medium spiny neuron progenitors amenable for cryopreservation are produced in less than 20 days, which differentiate and mature into a high yield of dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP32) expressing gamma-aminobutyric acid (GABA)-ergic neurons in vitro and in the adult rat brain after transplantation. This method has been validated in multiple hESC and hiPSC lines, and is independent of the regime for PSC maintenance.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Ativinas/farmacologia , Técnicas de Cultura de Células/instrumentação , Terapia Baseada em Transplante de Células e Tecidos/métodos , Corpo Estriado/citologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Neurônios GABAérgicos/transplante , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Doença de Huntington/terapia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos
10.
Front Neural Circuits ; 10: 64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27582692

RESUMO

Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Neurônios GABAérgicos/transplante , Interneurônios/transplante , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Animais
11.
Curr Protoc Stem Cell Biol ; 38: 2D.7.1-2D.7.47, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27532817

RESUMO

Grafting of neural stem cells (NSCs) or GABA-ergic progenitor cells (GPCs) into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts >30% of temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). On the other hand, GPCs could be generated from the medial and lateral ganglionic eminences of the embryonic brain and from hESCs and hiPSCs. To provide comprehensive methodologies involved in testing the efficacy of transplantation of NSCs and GPCs in a rat model of chronic TLE, NSCs derived from the rat medial ganglionic eminence (MGE) and MGE-like GPCs derived from hiPSCs are taken as examples in this unit. The topics comprise description of the required materials, reagents and equipment, methods for obtaining rat MGE-NSCs and hiPSC-derived MGE-like GPCs in culture, generation of chronically epileptic rats, intrahippocampal grafting procedure, post-grafting evaluation of the effects of grafts on spontaneous recurrent seizures and cognitive and mood impairments, analyses of the yield and the fate of graft-derived cells, and the effects of grafts on the host hippocampus. © 2016 by John Wiley & Sons, Inc.


Assuntos
Epilepsia do Lobo Temporal/terapia , Neurônios GABAérgicos/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Afeto , Animais , Diferenciação Celular , Doença Crônica , Cognição , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Neurônios GABAérgicos/citologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Eminência Mediana/patologia , Células-Tronco Neurais/citologia , Ratos Endogâmicos F344
12.
Cell Transplant ; 25(4): 629-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26817412

RESUMO

Chronic neuropathic pain represents a clinically challenging state with a poor response to current treatment options. Long-term management of chronic pain is often associated with the development of tolerance, addiction, and other side effects, reducing the therapeutic value of treatment. Alternative strategies based on cell therapy and gene manipulation, balancing the inhibitory and excitatory events in the spinal cord, may provide sustained pain relief in the long term. Transplantation of GABAergic cells has been successfully used to enhance inhibition and to restore physiological spinal pain processing. However, since the underlying mechanism of chronic pain development involves changes in several pain-signaling pathways, it is essential to develop an approach that targets several components of pain signaling. Recombinant cell therapy offers the possibility to deliver additional analgesic substances to the restricted area in the nervous system. The current study explores the analgesic potential of genetically modified rat embryonic GABAergic cells releasing a peptidergic NMDA receptor antagonist, Serine(1)-histogranin (SHG). Overactivation of glutamate NMDA receptors contributes to the hyperexcitability of spinal neurons observed in chronic pain models. Our approach allows us to simultaneously target spinal hyperexcitability and reduced inhibitory processes. Transplantable cells were transduced by viral vectors encoding either one or six copies of SHG cDNAs. The analgesic potential of recombinant cells after their intraspinal transplantation was evaluated in a model of peripheral nerve injury. Enhanced reduction of hypersensitivity to thermal and mechanical stimuli was observed in animals treated by recombinant cells compared to the nonrecombinant group. The recombinant peptide was detected in the spinal tissue, suggesting its successful production by transplanted cells. Our results demonstrate the feasibility of using recombinant cells releasing adjunct analgesic peptides in the therapy of neuropathic pain.


Assuntos
Engenharia Celular , Dor Crônica , Neurônios GABAérgicos , Neuralgia , Traumatismos dos Nervos Periféricos , Proteínas , Animais , Dor Crônica/metabolismo , Dor Crônica/patologia , Dor Crônica/terapia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/transplante , Masculino , Neuralgia/metabolismo , Neuralgia/patologia , Neuralgia/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/terapia , Proteínas/genética , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Pain ; 157 Suppl 1: S42-S47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26780378

RESUMO

Among many mechanisms implicated in the development of neuropathic pain after nerve damage is a profound dysfunction of GABAergic inhibitory controls, manifested by ongoing pain, mechanical hypersensitivity, and thermal hyperalgesia. In some respects, neuropathic pain can be considered a "disease" of the nervous system, with features in common with trauma-induced seizures. Indeed, first-line management involves anticonvulsant therapy. An alternative to pharmacotherapy for neuropathic pain is an approach that reestablishes the inhibitory tone that is lost after nerve damage. To this end, we have transplanted embryonic cortical GABAergic precursor neurons into the spinal cord of nerve-injured mice. Using a combination of light and electron microscopic analyses, and also in vitro electrophysiological recordings from spinal cord slice preparations, we demonstrated remarkable integration of the transplants into the host, adult spinal cord. Most importantly, transplants produced a complete reversal of the hypersensitivity in a sciatic nerve injury model and in a paclitaxel-generated chemotherapy model of neuropathic pain. In related studies, we demonstrated that medial ganglionic eminence cell transplants are also effective in a chronic neuropathic itch model in which there is a significant loss of dorsal horn inhibitory interneurons. Most importantly, in contrast to systemic or intrathecal pharmacological therapies, adverse side effects are minimized when the inhibitory control, namely, γ-aminobutyric acid release, occurs in a spinal cord circuit. These studies suggest that therapy targeted at repairing the GABAergic dysfunction is a viable and novel alternative to the management of neuropathic pain and itch, particularly those that are or become refractory to traditional pharmacotherapy.


Assuntos
Transplante de Células/métodos , Neuralgia/cirurgia , Prurido/cirurgia , Animais , Neurônios GABAérgicos/transplante , Humanos , Neuralgia/complicações , Prurido/complicações , Ácido gama-Aminobutírico/metabolismo
14.
Cell Transplant ; 25(3): 593-607, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26407027

RESUMO

Neuropathic pain following spinal cord injury (SCI) is a devastating disease characterized by spontaneous pain such as hyperalgesia and allodynia. In this study, we investigated the therapeutic potential of ESC-derived spinal GABAergic neurons to treat neuropathic pain in a SCI rat model. Mouse embryonic stem cell-derived neural precursor cells (mESC-NPCs) were cultured in media supplemented with sonic hedgehog (SHH) and retinoic acid (RA) and efficiently differentiated into GABAergic neurons. Interestingly, low doses of SHH and RA induced MGE-like progenitors, which expressed low levels of DARPP32 and Nkx2.1 and high levels of Irx3 and Pax6. These cells subsequently generated the majority of the DARPP32(-) GABAergic neurons after in vitro differentiation. The spinal mESC-NPCs were intrathecally transplanted into the lesion area of the spinal cord around T10-T11 at 21 days after SCI. The engrafted spinal GABAergic neurons remarkably increased both the paw withdrawal threshold (PWT) below the level of the lesion and the vocalization threshold (VT) to the level of the lesion (T12, T11, and T10 vertebrae), which indicates attenuation of chronic neuropathic pain by the spinal GABAergic neurons. The transplanted cells were positive for GABA antibody staining in the injured region, and cells migrated to the injured spinal site and survived for more than 7 weeks in L4-L5. The mESC-NPC-derived spinal GABAergic neurons dramatically attenuated the chronic neuropathic pain following SCI, suggesting that the spinal GABAergic mESC-NPCs cultured with low doses of SHH and RA could be alternative cell sources for treatment of SCI neuropathic pain by stem cell-based therapies.


Assuntos
Células-Tronco Embrionárias/citologia , Neurônios GABAérgicos/transplante , Células-Tronco Neurais/transplante , Neuralgia/etiologia , Neuralgia/terapia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Animais , Linhagem Celular , Neurônios GABAérgicos/citologia , Masculino , Camundongos , Células-Tronco Neurais/citologia , Neuralgia/patologia , Neurogênese , Limiar da Dor , Ratos Sprague-Dawley , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
15.
Brain Res ; 1638(Pt A): 74-87, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26423935

RESUMO

Several neurological and psychiatric disorders present hyperexcitability of neurons in specific regions of the brain or spinal cord, partly because of some loss and/or dysfunction of gamma-amino butyric acid positive (GABA-ergic) inhibitory interneurons. Strategies that enhance inhibitory neurotransmission in the affected brain regions may therefore ease several or most deficits linked to these disorders. This perception has incited a huge interest in testing the efficacy of GABA-ergic interneuron cell grafting into regions of the brain or spinal cord exhibiting hyperexcitability, dearth of GABA-ergic interneurons or impaired inhibitory neurotransmission, using preclinical models of neurological and psychiatric disorders. Interneuron progenitors from the embryonic ventral telencephalon capable of differentiating into diverse subclasses of interneurons have particularly received much consideration because of their ability for dispersion, migration and integration with the host neural circuitry after grafting. The goal of this review is to discuss the premise, scope and advancement of GABA-ergic cell therapy for easing neurological deficits in preclinical models of schizophrenia, chronic neuropathic pain, Alzheimer's disease and Parkinson's disease. As grafting studies in these prototypes have so far utilized either primary cells from the embryonic medial and lateral ganglionic eminences or neural progenitor cells expanded from these eminences as donor material, the proficiency of these cell types is highlighted. Moreover, future studies that are essential prior to considering the possible clinical application of these cells for the above neurological conditions are proposed. Particularly, the need for grafting studies utilizing medial ganglionic eminence-like progenitors generated from human pluripotent stem cells via directed differentiation approaches or somatic cells through direct reprogramming methods are emphasized. This article is part of a Special Issue entitled SI: PSC and the brain.


Assuntos
Doença de Alzheimer/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Neurônios GABAérgicos/transplante , Doença de Parkinson/terapia , Esquizofrenia/terapia , Diferenciação Celular/fisiologia , Humanos , Interneurônios/citologia , Células-Tronco Neurais/citologia , Neuralgia/terapia , Células-Tronco Pluripotentes/citologia
16.
Stem Cell Res Ther ; 6: 186, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26420220

RESUMO

INTRODUCTION: Despite attempts to prevent brain injury during the hyperacute phase of stroke, most sufferers end up with significant neuronal loss and functional deficits. The use of cell-based therapies to recover the injured brain offers new hope. In the current study, we employed human neural stem cells (hNSCs) isolated from subventricular zone (SVZ), and directed their differentiation into GABAergic neurons followed by transplantation to ischemic brain. METHODS: Pre-differentiated GABAergic neurons, undifferentiated SVZ-hNSCs or media alone were stereotaxically transplanted into the rat brain (n=7/group) 7 days after endothelin-1 induced stroke. Neurological outcome was assessed by neurological deficit scores and the cylinder test. Transplanted cell survival, cellular phenotype and maturation were assessed using immunohistochemistry and confocal microscopy. RESULTS: Behavioral assessments revealed accelerated improvements in motor function 7 days post-transplant in rats treated with pre-differentiated GABAergic cells in comparison to media alone and undifferentiated hNSC treated groups. Histopathology 28 days-post transplant indicated that pre-differentiated cells maintained their GABAergic neuronal phenotype, showed evidence of synaptogenesis and up-regulated expression of both GABA and calcium signaling proteins associated with neurotransmission. Rats treated with pre-differentiated cells also showed increased neurogenic activity within the SVZ at 28 days, suggesting an additional trophic role of these GABAergic cells. In contrast, undifferentiated SVZ-hNSCs predominantly differentiated into GFAP-positive astrocytes and appeared to be incorporated into the glial scar. CONCLUSION: Our study is the first to show enhanced exogenous repopulation of a neuronal phenotype after stroke using techniques aimed at GABAergic cell induction prior to delivery that resulted in accelerated and improved functional recovery.


Assuntos
Neurônios GABAérgicos/transplante , Infarto da Artéria Cerebral Média/terapia , Ataque Isquêmico Transitório/terapia , Células-Tronco Neurais/fisiologia , Animais , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral/patologia , Neurônios GABAérgicos/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Masculino , Atividade Motora , Neurogênese , Ratos Wistar , Recuperação de Função Fisiológica
17.
J Vis Exp ; (98)2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25938985

RESUMO

GABAergic cortical interneurons, derived from the embryonic medial and caudal ganglionic eminences (MGE and CGE), are functionally and morphologically diverse. Inroads have been made in understanding the roles of distinct cortical interneuron subgroups, however, there are still many mechanisms to be worked out that may contribute to the development and maturation of different types of GABAergic cells. Moreover, altered GABAergic signaling may contribute to phenotypes of autism, schizophrenia and epilepsy. Specific Cre-driver lines have begun to parcel out the functions of unique interneuron subgroups. Despite the advances in mouse models, it is often difficult to efficiently study GABAergic cortical interneuron progenitors with molecular approaches in vivo. One important technique used to study the cell autonomous programming of these cells is transplantation of MGE cells into host cortices. These transplanted cells migrate extensively, differentiate, and functionally integrate. In addition, MGE cells can be efficiently transduced with lentivirus immediately prior to transplantation, allowing for a multitude of molecular approaches. Here we detail a protocol to efficiently transduce MGE cells before transplantation for in vivo analysis, using available Cre-driver lines and Cre-dependent expression vectors. This approach is advantageous because it combines precise genetic manipulation with the ability of these cells to disperse after transplantation, permitting greater cell-type specific resolution in vivo.


Assuntos
Transplante de Células/métodos , Neurônios GABAérgicos/transplante , Interneurônios/fisiologia , Interneurônios/virologia , Eminência Mediana/fisiologia , Eminência Mediana/virologia , Animais , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/virologia , Células HEK293 , Humanos , Interneurônios/citologia , Interneurônios/transplante , Lentivirus/genética , Eminência Mediana/citologia , Eminência Mediana/transplante , Camundongos , Células-Tronco Neurais/citologia , Gravidez , Transdução de Sinais , Transdução Genética
18.
Cereb Cortex ; 25(9): 2970-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24812085

RESUMO

Epilepsies are debilitating neurological disorders characterized by repeated episodes of pathological seizure activity. Absence epilepsy (AE) is a poorly understood type of seizure with an estimated 30% of affected patients failing to respond to antiepileptic drugs. Thus, novel therapies are needed for the treatment of AE. A promising cell-based therapeutic strategy is centered on transplantation of embryonic neural stem cells from the medial ganglionic eminence (MGE), which give rise to gamma-aminobutyric acidergic (GABAergic) interneurons during embyronic development. Here, we used the Stargazer (Stg) mouse model of AE to map affected loci using c-Fos immunohistochemistry, which revealed intense seizure-induce activity in visual and somatosensory cortices. We report that transplantation of MGE cells into the primary visual cortex (V1) of Stg mice significantly reduces AE episodes and lowers mortality. Electrophysiological analysis in acute cortical slices of visual cortex demonstrated that Stg V1 neurons exhibit more pronounced increases in activity in response to a potassium-mediated excitability challenge than wildtypes (WT). The defective network activity in V1 was significantly altered following WT MGE transplantation, associating it with behavioral rescue of seizures in Stgs. Taken together, these findings present MGE grafting in the V1 as a possible clinical approach in the treatment of AE.


Assuntos
Canais de Cálcio/genética , Epilepsia Tipo Ausência/cirurgia , Neurônios GABAérgicos/transplante , Córtex Visual/transplante , Animais , Canais de Cálcio/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Epilepsia Tipo Ausência/genética , Neurônios GABAérgicos/fisiologia , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Eminência Mediana/citologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resultado do Tratamento , Ácido gama-Aminobutírico/metabolismo
19.
Cell Stem Cell ; 15(5): 527-8, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25517456

RESUMO

Stem cells represent a promising source of neurons for the potential treatment of a host of neurological conditions, including epilepsy. In this issue of Cell Stem Cell, Cunningham et al. (2014) use cortical GABAergic interneuron progenitors derived from human embryonic stem cells to treat chronic temporal lobe epilepsy in a mouse model.


Assuntos
Comportamento Animal , Neurônios GABAérgicos/transplante , Interneurônios/transplante , Células-Tronco Pluripotentes/citologia , Convulsões/terapia , Transplante de Células-Tronco , Animais , Feminino , Humanos , Masculino
20.
Cell Stem Cell ; 15(5): 559-73, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25517465

RESUMO

Seizure disorders debilitate more than 65,000,000 people worldwide, with temporal lobe epilepsy (TLE) being the most common form. Previous studies have shown that transplantation of GABA-releasing cells results in suppression of seizures in epileptic mice. Derivation of interneurons from human pluripotent stem cells (hPSCs) has been reported, pointing to clinical translation of quality-controlled human cell sources that can enhance inhibitory drive and restore host circuitry. In this study, we demonstrate that hPSC-derived maturing GABAergic interneurons (mGINs) migrate extensively and integrate into dysfunctional circuitry of the epileptic mouse brain. Using optogenetic approaches, we find that grafted mGINs generate inhibitory postsynaptic responses in host hippocampal neurons. Importantly, even before acquiring full electrophysiological maturation, grafted neurons were capable of suppressing seizures and ameliorating behavioral abnormalities such as cognitive deficits, aggressiveness, and hyperactivity. These results provide support for the potential of hPSC-derived mGIN for restorative cell therapy for epilepsy.


Assuntos
Comportamento Animal , Neurônios GABAérgicos/transplante , Interneurônios/transplante , Células-Tronco Pluripotentes/citologia , Convulsões/terapia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Movimento Celular , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/ultraestrutura , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Interneurônios/citologia , Interneurônios/ultraestrutura , Masculino , Eminência Mediana/citologia , Camundongos Endogâmicos NOD , Camundongos SCID , Inibição Neural , Optogenética , Convulsões/patologia , Convulsões/fisiopatologia , Potenciais Sinápticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA