Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.356
Filtrar
1.
Sci Total Environ ; 930: 172859, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38692316

RESUMO

Nitrate, as a crucial nutrient, is consistently targeted for controlling water eutrophication globally. However, there is considerable evidence suggesting that nitrate has endocrine-disrupting potential on aquatic organisms. In this study, the sensitivity of various adverse effects to nitrate nitrogen (nitrate-N) was compared, and a toxicity threshold based on endocrine-disrupting effects was derived. The spatiotemporal variations of nitrate-N concentrations in the Luan River basin were investigated, and the associated aquatic ecological risks were evaluated using a comprehensive approach. The results showed that reproduction and development were the most sensitive endpoints to nitrate, and their distribution exhibited significant differences compared to behavior. The derived threshold based on endocrine-disrupting effects was 0.65 mgL-1, providing adequate protection for the aquatic ecosystem. In the Luan River basin, the mean nitrate-N concentrations during winter (4.4 mgL-1) were significantly higher than those observed in spring (0.7 mgL-1) and summer (1.2 mgL-1). Tributary inputs had an important influence on the spatial characteristics of nitrate-N in the mainstream, primarily due to agricultural and population-related contamination. The risk quotients (RQ) during winter, summer, and spring were evaluated as 6.7, 1.8, and 1.1, respectively, and the frequency of exposure concentrations exceeding the threshold was 100 %, 64.3 %, and 42.5 %, respectively. At the ecosystem level, nitrate posed intermediate risks to aquatic organisms during winter and summer in the Luan River basin and at the national scale in China. We suggest that nitrate pollution control should not solely focus on water eutrophication but also consider the endocrine disruptive effect on aquatic animals.


Assuntos
Disruptores Endócrinos , Monitoramento Ambiental , Nitratos , Rios , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Rios/química , China , Disruptores Endócrinos/análise , Nitratos/análise , Animais , Medição de Risco , Organismos Aquáticos/efeitos dos fármacos , Ecossistema
2.
Environ Monit Assess ; 196(6): 517, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710902

RESUMO

Nowadays, the introduction of nutrients caused by human activities is considered an environmental issue and a significant problem in river basins and coastal ecosystems. In this study, the concentration of nutrients ( NO 3 - and PO 4 3 - ) in the surface water sources of the Maroon-Jarahi watershed in the southwest of Iran was determined, and the pollution status and health risk assessment were done. The average concentration of nitrate and phosphate in Ludab, Maroon, Zard, Allah, Jarahi rivers, and Shadegan wetland were obtained at 2.25-0.59, 4.59-1.84, 4.07-2.02, 5.40-2.81, 11.51-4.67, 21.63 and 6.20 (mg/l), respectively. A comparison of the results with the World Health Organization (WHO) limit showed that nitrate was lower than in all stations, but phosphate was higher than the limit in some stations of the Maroon, Allah, Jarahi rivers, and Shadegan wetland. Calculation of linear regression analysis showed significant positive relationships between nitrate and phosphate in all surface water sources (except Ludab) and based on the N/P ratio, nitrogen was estimated as the limiting factor in phytoplankton growth (N/P < 16). The evaluation of the status of the Nutrient pollution index (NPI) was observed as: Shadegan > Jarahi > Allah > Maroon > Zard > Ludab that the Jarahi River and Shadegan wetland were in the medium pollution class (1 < NPI ≤ 3) and other waterbodies were in the non-polluted to low pollution state (NPI < 1). Calculation of the chronic daily intake (CDI) showed that water body nutrients cause more non-carcinogenic health risks through the oral route than dermal exposure, and according to HI, children's health is more at risk than adults. Findings showed that surface water resources especially downstream of the Maroon-Jarahi watershed are at eutrophication risk, and to control the nearby human activities and as a result increase the nutrients in these water resources, measures should be taken.


Assuntos
Monitoramento Ambiental , Nitratos , Rios , Poluentes Químicos da Água , Irã (Geográfico) , Poluentes Químicos da Água/análise , Medição de Risco , Humanos , Rios/química , Nitratos/análise , Fosfatos/análise , Áreas Alagadas , Poluição Química da Água/estatística & dados numéricos , Nutrientes/análise , Recursos Hídricos
3.
Environ Geochem Health ; 46(6): 183, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696054

RESUMO

Pollution of water resources with nitrate is currently one of the major challenges at the global level. In order to make macro-policy decisions in water safety plans, it is necessary to carry out nitrate risk assessment in underground water, which has not been done in Fars province for all urban areas. In the current study, 9494 drinking water samples were collected in four seasons in 32 urban areas of Fars province in Iran, between 2017 and 2021 to investigate the non-carcinogenic health risk assessment. Geographical distribution maps of hazard quotient were drawn using geographical information system software. The results showed that the maximum amount of nitrate in water samples in 4% of the samples in 2021, 2.5% of the samples in 2020 and 3% of the samples in 2019 were more than the standard declared by World Health Organization guidelines (50 mg/L). In these cases, the maximum amount of nitrate was reported between 82 and 123 mg/L. The HQ values for infants did not exceed 1 in any year, but for children (44% ± 10.8), teenagers (10.8% ± 8.4), and adults (3.2% ± 1.7) exceeded 1 in cities, years, and seasons, indicating that three age groups in the studied area are at noticeably significant non-carcinogenic risk. The results of the Monte Carlo simulation showed that the average value of non-carcinogenic risk was less than 1 for all age groups. Moreover, the maximum HQ values (95%) were higher than 1 for both children and teenager, indicating a significant non-carcinogenic risk for the two age groups.


Assuntos
Água Potável , Sistemas de Informação Geográfica , Método de Monte Carlo , Nitratos , Poluentes Químicos da Água , Nitratos/análise , Medição de Risco , Irã (Geográfico) , Água Potável/química , Água Potável/análise , Poluentes Químicos da Água/análise , Humanos , Adolescente , Cidades , Lactente , Criança , Adulto , Monitoramento Ambiental/métodos
4.
Anal Methods ; 16(19): 3131-3141, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38712986

RESUMO

Plastics are ubiquitous in today's lifestyle, and their indiscriminate use has led to the accumulation of plastic waste in landfills and oceans. The waste accumulates and breaks into micro-particles that enter the food chain, causing severe threats to human health, wildlife, and the ecosystem. Environment-friendly and bio-based degradable materials offer a sustainable alternative to the vastly used synthetic materials. Here, a polylactic acid and carbon nanofiber-based membrane and a paper-based colorimetric sensor have been developed. The membrane had a surface area of 3.02 m2 g-1 and a pore size of 18.77 nm. The pores were evenly distributed with a pore volume of 0.0137 cm3 g-1. The membrane was evaluated in accordance with OECD guidelines and was found to be safe for tested aquatic and terrestrial models. The activated PLA-CNF membrane was further used as a bio-based electrode for the electrochemical detection of nitrates (NO3-) in water samples with a detection limit of 0.046 ppm and sensitivity of 1.69 × 10-4 A ppm-1 mm-2, whereas the developed paper-based colorimetric sensor had a detection limit of 156 ppm for NO3-. This study presents an environment-friendly, low-carbon footprint disposable material for sensing applications as a sustainable alternative to plastics.


Assuntos
Carbono , Colorimetria , Nanofibras , Nitratos , Papel , Poliésteres , Nanofibras/química , Colorimetria/métodos , Colorimetria/instrumentação , Nitratos/análise , Nitratos/química , Poliésteres/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Poluentes Químicos da Água/análise , Condutividade Elétrica , Membranas Artificiais
5.
Sci Total Environ ; 931: 172902, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697539

RESUMO

Typhoons and rainstorms (>250 mm/day) are extreme weather events changing hydrological characteristics and thus nitrogen (N) cycle in coastal waters. However, responses of N cycle to rainstorms and typhoons and their underlying mechanisms need to be elucidated. In this study, we conducted an analysis of a comparative dataset encompassing concentrations of nitrate (NO3-), ammonium (NH4+), dissolved oxygen (DO), chlorophyll a (Chl a), hydrological parameters, dual isotopic composition of NO3- (δ15N-NO3- and δ18O-NO3-) in Zhanjiang Bay during three distinct periods: the normal wet season, rainstorm, and typhoon periods. After the rainstorm, the salinity front in Zhanjiang Bay was more weakened and steadier than that during the normal wet season, mainly because onshore wind and a large amount of freshwater was inputted into the ocean surface. This weakened and steady salinity front strengthened water stratification and provided a favorable condition for phytoplankton blooms. Correspondingly, evident NO3- deficits coincided with elevated δ15N-NO3- and δ18O-NO3- values indicated that sufficient NO3- sustained phytoplankton blooms, leading to NO3- assimilation during the rainstorm period. By contrast, due to the onshore wind induced by the typhoon, the salinity front in Zhanjiang Bay was more intensified and unsteady after the typhoon than the normal wet season. The salinity front after the typhoon was unsteady enough to enhance vertical mixing in the water column. Relatively high DO concentrations suggested that enhanced vertical mixing after the typhoon support freshly organic matter decomposition and nitrification via oxygen injection from the air into the water column. In addition, NO3- deficits coincided with elevated δ15N-NO3- values and δ18O-NO3- values demonstrated the coexistence of NO3- assimilation during the typhoon period. This study suggests that the changing processes involved in NO3- cycling after typhoons and rainstorms are associated with the stability and intensity of the salinity front altered by these weather events.


Assuntos
Baías , Tempestades Ciclônicas , Monitoramento Ambiental , Nitratos , Estações do Ano , Nitratos/análise , China , Poluentes Químicos da Água/análise , Chuva , Fitoplâncton , Ciclo do Nitrogênio , Salinidade , Água do Mar/química
6.
Sci Total Environ ; 931: 172970, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705293

RESUMO

Rivers in agricultural countries widely suffer from diffuse nitrate (NO3-) pollution. Although pollution sources and fates of riverine NO3- have been reported worldwide, the driving mechanisms of riverine NO3- pollution associated with mineral dissolution in piedmont zones remain unclear. This study combined hydrogeochemical compositions, stable isotopes (δ18O-NO3-, δ15N-NO3-, δ18O-H2O, and δ2H-H2O), and molecular bioinformation to determine the pollution sources, biogeochemical evolution, and natural attenuation of riverine NO3- in a typical piedmont zone (Qingshui River). High NO3- concentration (37.5 ± 9.44 mg/L) was mainly observed in the agricultural reaches of the river, with ~15.38 % of the samples exceeding the acceptable limit for drinking purpose (44 mg/L as NO3-) set by the World Health Organization. Ammonium inputs, microbial nitrification, and HNO3-induced calcite dissolution were the dominant driving factors that control riverine NO3- contamination in the piedmont zone. Approximately 99.4 % of riverine NO3- contents were derived from NH4+-containing pollutants, consisted of manure & domestic sewage (74.0 % ± 13.0 %), NH4+-synthetic fertilizer (16.1 % ± 8.99 %), and soil organic nitrogen (9.35 % ± 4.49 %). These NH4+-containing pollutants were converted to HNO3 (37.2 ± 9.38 mg/L) by nitrifying bacteria, and then the produced HNO3 preferentially participated in the carbonate (mainly calcite) dissolution, which accounted for 40.0 % ± 12.1 % of the total riverine Ca2+ + Mg2+, also resulting in the rapid release of NO3- into the river water. Thus, microbial nitrification could be a new and non-negligible contributor of riverine NO3- pollution, whereas the involvement of HNO3 in calcite dissolution acted as an accelerator of riverine NO3- pollution. However, denitrification had lesser contribution to natural attenuation for high NO3- pollution. The obtained results indicated that the mitigation of riverine NO3- pollution should focus on the management of ammonium discharges, and the HNO3-induced carbonate dissolution needs to be considered in comprehensively understanding riverine NO3- pollution in piedmont zones.


Assuntos
Compostos de Amônio , Carbonato de Cálcio , Monitoramento Ambiental , Nitratos , Nitrificação , Rios , Poluentes Químicos da Água , China , Rios/química , Nitratos/análise , Poluentes Químicos da Água/análise , Carbonato de Cálcio/química
7.
Nature ; 629(8012): 603-608, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750234

RESUMO

Natural iron fertilization of the Southern Ocean by windblown dust has been suggested to enhance biological productivity and modulate the climate1-3. Yet, this process has never been quantified across the Southern Ocean and at annual timescales4,5. Here we combined 11 years of nitrate observations from autonomous biogeochemical ocean profiling floats with a Southern Hemisphere dust simulation to empirically derive the relationship between dust-iron deposition and annual net community production (ANCP) in the iron-limited Southern Ocean. Using this relationship, we determined the biological response to dust-iron in the pelagic perennially ice-free Southern Ocean at present and during the last glacial maximum (LGM). We estimate that dust-iron now supports 33% ± 15% of Southern Ocean ANCP. During the LGM, when dust deposition was 5-40-fold higher than today, the contribution of dust to Southern Ocean ANCP was much greater, estimated at 64% ± 13%. We provide quantitative evidence of basin-wide dust-iron fertilization of the Southern Ocean and the potential magnitude of its impact on glacial-interglacial timescales, supporting the idea of the important role of dust in the global carbon cycle and climate6-8.


Assuntos
Poeira , Ferro , Oceanos e Mares , Água do Mar , Poeira/análise , Ferro/análise , Água do Mar/química , Água do Mar/análise , Nitratos/análise , Camada de Gelo/química , Ciclo do Carbono , Animais
8.
Sci Total Environ ; 932: 173103, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729358

RESUMO

Excessive synthetic nitrogen (N) inputs in intensive orchard agrosystems of developing countries are a growing concern regarding their adverse impacts on fruit production and the environment. Quantifying the distribution and contribution of fertilizer N is essential for increasing N use efficiency and minimizing N loss in orchards. A 15N tracer experiment was performed in a young dwarf apple orchard over two growing seasons to determine the fertilizer N transformation and fate. Fertilizer N primarily contributed to 25 % to 75 % of soil nitrate in the top 60 cm, but the contribution to soil microbial biomass N and fixed ammonium was <8 %, with the contribution to plant N ranging from 9 % to 19 %. In most growth periods, soil nitrate and fixed ammonium contents derived from native soil with N fertilization were higher than those not receiving N fertilizer. The N use efficiency of plants was only 2.6 % and 4.9 % in the first and second seasons, respectively, in contrast to 56.6 % and 54.0 % of N recovered in soil. Meanwhile, N assimilated into microbial biomass accounted for 0.8 %, and the proportion fixed by clay minerals was 3.5 %-5.2 %. One season after N fertilization, the nitrate below the 1 m soil layers accounted for 4.6 % of the applied N fertilizer, and the proportion increased to 22.5 % after two seasons. The N loss rate via N2O emission was 0.4 % over two years. The application of N fertilizer facilitated indigenous soil N mineralization, and abiotic ammonium fixation more efficiently retained synthetic N than microbial immobilization. These findings provide new insight into orchard N cycling, and attention should be given to the improvement of soil N retention and turnover capacity regulated by soil microbial and abiotic processes, as well as the potential environmental impacts of additional soil N mineralization resulting from prolonged chemical N fertilization.


Assuntos
Agricultura , Fertilizantes , Malus , Nitrogênio , Solo , Malus/crescimento & desenvolvimento , Nitrogênio/análise , Agricultura/métodos , Solo/química , Monitoramento Ambiental , Nitratos/análise
9.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629564

RESUMO

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Cobre , Lactuca , Poluentes Ambientais/análise , Solo , Catalase , Nitratos/análise , Antibacterianos , Tetraciclina/análise , Carvão Vegetal , Poluentes do Solo/análise , Clorofila/análise , Malondialdeído , Nitrogênio/análise , Prolina
10.
Sci Rep ; 14(1): 7830, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570538

RESUMO

Groundwater pollution by nitrate has is a major concern in the Tehran-Karaj aquifer, Iran, where the wells provide up to 80% of the water supply for a population of more than 18 million-yet detailed human health risks associated with nitrate are unknown due to the lack of accessible data to adequately cover the aquifer in both place and time. Here, using a rich dataset measured annually in more than 75 wells, we mapped the non-carcinogenic risk of nitrate in the aquifer between 2007 and 2018, a window with the most extensive anthropogenic activities in this region. Nitrate concentration varied from ~ 6 to ~ 150 mg/L, around three times greater than the standard level for drinking use, i.e. 50 mg/L. Samples with a non-carcinogenic risk of nitrate, which mainly located in the eastern parts of the study region, threatened children's health, the most vulnerable age group, in almost all of the years during the study period. Our findings revealed that the number of samples with a positive risk of nitrate for adults decreased in the aquifer from 2007 (17 wells) to 2018 (6 wells). Although we hypothesized that unsustainable agricultural practices, the growing population, and increased industrial activities could have increased the nitrate level in the Tehran-Karaj aquifer, improved sanitation infrastructures helped to prevent the intensification of nitrate pollution in the aquifer during the study period. Our compilation of annually mapped non-carcinogenic risks of nitrate is beneficial for local authorities to understand the high-risk zones in the aquifer and for the formulation of policy actions to protect the human health of people who use groundwater for drinking and other purposes in this densely populated region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , Adulto , Humanos , Nitratos/análise , Irã (Geográfico) , Poluentes Químicos da Água/análise , Água Subterrânea/química , Abastecimento de Água , Monitoramento Ambiental
11.
J Environ Manage ; 357: 120721, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565027

RESUMO

Accurate and frequent nitrate estimates can provide valuable information on the nitrate transport dynamics. The study aimed to develop a data-driven modeling framework to estimate daily nitrate concentrations at low-frequency nitrate monitoring sites using the daily nitrate concentration and stream discharge information of a neighboring high-frequency nitrate monitoring site. A Long Short-Term Memory (LSTM) based deep learning (DL) modeling framework was developed to predict daily nitrate concentrations. The DL modeling framework performance was compared with two well-established statistical models, including LOADEST and WRTDS-Kalman, in three selected basins in Iowa, USA: Des Moines, Iowa, and Cedar River. The developed DL model performed well with NSE >0.70 and KGE >0.70 for 67% and 79% nitrate monitoring sites, respectively. DL and WRTDS-Kalman models performed better than the LOADEST in nitrate concentration and load estimation for all low-frequency sites. The average NSE performance of the DL model in daily nitrate estimation is 20% higher than that of the WRTDS-Kalman model at 18 out of 24 sites (75%). The WRTDS-Kalman model showed unrealistic fluctuations in the estimated daily nitrate time series when the model received limited observed nitrate data (less than 50) for simulation. The DL model indicated superior performance in winter months' nitrate prediction (60% of cases) compared to WRTDS-Kalman models (33% of cases). The DL model also better represented the exceedance days from the USEPA maximum contamination level (MCL). Both the DL and WRTDS-Kalman models demonstrated similar performance in annual stream nitrate load estimation, and estimated values are close to actual nitrate loads.


Assuntos
Aprendizado Profundo , Nitratos , Nitratos/análise , Rios , Monitoramento Ambiental , Modelos Estatísticos
12.
Sci Total Environ ; 927: 171968, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588734

RESUMO

In the northern East African Rift System, the Republic of Djibouti relies exclusively on groundwater, with levels of fluoride (up to 14 mg/L) and nitrate (up to 256 mg/L) posing potential health risks. To address this, 362 samples were considered, including 133 shallow groundwater samples, along with new and previously published data dating back to 2012 on deep (88) and thermal (141) groundwater samples. To understand the enrichment mechanisms, dissolved anion and cation constituents, geochemical and thermodynamic tools, and stable isotope ratios, such as δ2H(H2O), δ18O(H2O), δ15N(NO3-), and δ18O(NO3-), were used. In particular, two activity diagrams (Mg2+ vs. Ca2+ and Na+ vs. Ca2+), focused on aqueous and solid fluoride species in an updated thermodynamic dataset of 15 fluoride-bearing minerals, are shown for the first time. The dataset offers new and valuable insights into fluoride geochemistry (classic thermodynamic datasets combined with geochemical codes rely solely on fluorapatite and fluorite F-bearing minerals). Activity diagrams and geochemical modeling indicate that mineral dissolution primarily drives groundwater fluoride enrichment in all water types, whereas the elevated nitrate levels may stem from organic fertilizers like animal manure, as indicated by nitrate isotopes and NO3-/Cl- vs Cl- diagrams. Despite the arid climate and 2H18O enrichment in shallow waters, evaporation seems to play a minor role. Monte Carlo simulations and sensitivity analysis were used to assess the health risks associated with elevated F- and NO3- concentrations. Mapping-related spatial distribution analysis identified regional contamination hotspots using a global Moran's I and GIS tools. One fluoride and three nitrate contamination hotspots were identified at a p-value of 0.05. Groundwater chemistry revealed that 88 % of groundwater being consumed exceeded the permissible levels for fluoride and nitrate, posing potential health risks, particularly for teenagers and children. This study pinpoints specific areas with excessive nitrate and fluoride contamination, highlighting a high non-carcinogenic risk.


Assuntos
Monitoramento Ambiental , Fluoretos , Água Subterrânea , Nitratos , Poluentes Químicos da Água , Fluoretos/análise , Nitratos/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Humanos , Medição de Risco
13.
J Water Health ; 22(3): 550-564, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557570

RESUMO

Onsite wastewater treatment systems (OWTSs) and private wells are commonly used in Eastern North Carolina, USA. Water from private wells is not required to be tested after the initial startup, and thus persons using these wells may experience negative health outcomes if their water is contaminated with waste-related pollutants including bacteria, nitrate or synthetic chemicals such as hexafluoropropylne oxide dimer acid and its ammonium salt (GenX). Water samples from 18 sites with OWTSs and groundwater wells were collected for nitrate, Escherichia coli (E. coli), total coliform, and GenX concentration analyses. Results showed that none of the 18 water supplies were positive for E. coli, nitrate concentrations were all below the maximum contaminant level of 10 mg L-1, and one well had 1 MPN 100 mL-1 of total coliform. However, GenX was detected in wastewater collected from all 18 septic tanks and 22% of the water supplies tested had concentrations that exceeded the health advisory levels for GenX. Water supplies with low concentrations of traditionally tested for pollutants (nitrate, E. coli) may still pose health risks due to elevated concentrations of emerging contaminants like GenX and thus more comprehensive and routine water testing is suggested for this and similar persistent compounds.


Assuntos
Poluentes Ambientais , Água Subterrânea , Poluentes Químicos da Água , Águas Residuárias , Nitratos/análise , North Carolina , Escherichia coli , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água , Água Subterrânea/microbiologia , Compostos Orgânicos
14.
J Hazard Mater ; 470: 134113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565021

RESUMO

Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.


Assuntos
Compostos de Metilmercúrio , Fotólise , Poluentes Químicos da Água , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/efeitos da radiação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/análise , Luz , Raios Ultravioleta , Nitratos/química , Nitratos/análise , Rios/química
15.
J Water Health ; 22(4): 701-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678423

RESUMO

In order to identify and effectively control the impact of NO3- pollution on human health, on the basis of investigation, sampling, analysis and testing, statistical analysis software (SPSS19), groundwater pollution analysis software, Nemera comprehensive index method, correlation analysis method and human health risk assessment model are applied for analysis and research. The results indicate that the groundwater in the study area is mainly Class II water, with overall good water quality. The main influencing factors for producing Class IV are NO3-, Fe, F- and SO42-. The use of agricultural fertilizers is the main source of NO3- exceeding standards in groundwater in this area. There are significant differences in the health hazards caused by NO3- pollution in groundwater among different populations, and infants and young children are more susceptible to nitrate pollution. The division of pollution areas and high-risk groups plays an important guiding role in preventing health risks. The new achievements will help people improve their awareness of risk prevention, caring for the environment, respecting nature and implementing precise policies, promoting society to step onto the track of scientific and healthy development.


Assuntos
Água Subterrânea , Nitratos , Poluentes Químicos da Água , Nitratos/análise , Água Subterrânea/análise , Água Subterrânea/química , China , Poluentes Químicos da Água/análise , Humanos , Medição de Risco , Monitoramento Ambiental/métodos , Criança , Lactente , Pré-Escolar , Adulto , Adolescente , Adulto Jovem
16.
Bull Environ Contam Toxicol ; 112(4): 55, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565721

RESUMO

In August 2021, the Mar Menor, a saltwater lagoon located in the Region of Murcia (Spain), suffered a tragic environmental episode of dystrophic crisis and anoxia. The appearance of numerous dead fish in different areas of the lagoon over the course of days put all the authorities and the population of the area on alert. This paper shows a case study of what happened in the lagoon in terms of the presence of the most common inorganic pollutants. Measurements of the concentration of nitrogen species, phosphates and main heavy metals were carried out at different sampling sites in the Mar Menor from May 2021 to November 2022. Chemical analyses were carried out for each of the species under study. These analyses provide valuable information about the dystrophic crisis caused by a classic eutrophication process that began with the excessive nutrient input into the Mar Menor. Ion chromatography and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were used as instrumentation for the quantification of these samples. The species whose values were greatly increased after the tragic episode described above were nitrates. The concentration varied significantly at the different sampling sites throughout the study. On the last sampling date, decreased concentrations of all the species were measured at each of the sampling sites, coinciding with the apparent good state of the lagoon.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Nitratos/análise , Espanha
17.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675686

RESUMO

Stevia rebaudiana Bertoni is a plant native to South America that has gathered much interest in recent decades thanks to diterpene glycosides, called steviosides, which it produces. These compounds are characterised by their sweetness, which is 250-300 times higher than saccharose, and they contain almost no caloric value. Stevia is currently also grown outside the South American continent, in various countries characterised by warm weather. This research aimed to determine whether it is viable to grow Stevia rebaudiana plants in Poland, a country characterised by a cooler climate than the native regions for stevia plants. Additionally, the impact of adding various dosages and forms of nitrogen fertiliser was analysed. It was determined that Stevia rebaudiana grown in Poland is characterised by a rather low concentration of steviosides, although proper nitrogen fertilisation can improve various characteristics of the grown plants. The addition of 100 kg or 150 kg of nitrogen per hectare of the field in the form of urea or ammonium nitrate increased the yield of the stevia plants. The stevioside content can be increased by applying fertilisation using 100 kg or 150 kg of nitrogen per hectare in the form of ammonium sulfate. The total yield of the stevia plants grown in Poland was lower than the yield typically recorded in warmer countries, and the low concentration of steviosides in the plant suggests that more research about growing Stevia rebaudiana in Poland would be needed to develop profitable methods of stevia cultivation.


Assuntos
Fertilizantes , Nitrogênio , Stevia , Stevia/química , Stevia/crescimento & desenvolvimento , Polônia , Nitrogênio/análise , Fertilizantes/análise , Diterpenos do Tipo Caurano/análise , Diterpenos do Tipo Caurano/química , Glucosídeos/análise , Glucosídeos/química , Nitratos/análise , Nitratos/química
18.
Sci Total Environ ; 928: 172248, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38582108

RESUMO

Ecological water replenishment (EWR) changes the recharge conditions, flow fields, and physicochemical properties of regional groundwater. However, the resulting impacts on mechanisms regulating the sources and transformation of groundwater nitrate remain unclear. This study investigated how EWR influences the sources and transformation processes of groundwater nitrate using an integrated approach of Water chemistry analysis and stable isotopes (δ15N-NO3- and δ18O-NO3-) along with microbial techniques. The results showed that groundwater NO3-N decreased from 12.98 ± 7.39 mg/L to 7.04 ± 8.52 mg/L after EWR. Water chemistry and isotopic characterization suggested that groundwater nitrate mainly originated from sewage and manure. The Bayesian isotope mixing model (MixSIAR) indicated that EWR increased the average contribution of sewage and manure sources to groundwater nitrate from 46 % to 61 %, whereas that of sources of chemical fertilizer decreased from 43 % to 21 %. Microbial community analysis revealed that EWR resulted in a substantial decrease in the relative abundance of Pseudomonas spp denitrificans, from 13.7 % to 0.6 %. Both water chemistry and microbial analysis indicated that EWR weakened denitrification and enhanced nitrification in groundwater. EWR increases the contribution of nitrate to groundwater by promoting the release of sewage and feces in the unsaturated zone. However, the dilution effect caused by EWR was stronger than the contribution of sewage and fecal sources to groundwater nitrate. As a result, EWR helped to reduce groundwater nitrate concentrations. This study showed the effectiveness of integrated isotope and microbial techniques for delineating the sources and transformations of groundwater nitrate influenced by EWR.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Nitratos , Poluentes Químicos da Água , Água Subterrânea/química , Nitratos/análise , Poluentes Químicos da Água/análise , Desnitrificação , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Esgotos/química , Nitrificação , Abastecimento de Água , Microbiologia da Água
19.
Mar Pollut Bull ; 202: 116324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579447

RESUMO

This study investigated the nitrate dual isotopic compositions (δ15NNO3 and δ18ONO3) of water samples to trace nitrate sources in Lake Sihwa, which encompasses various land-use types (e.g., urban, industry, wetland, and agriculture). The biogeochemical interactions of anthropogenic nitrogen sources (e.g., soil, road dust, and septic water) were also evaluated through multiple pathways from terrestrial boundaries to the water column. Based on increased concentrations of dissolved total nitrogen (DTN; 3.1 ± 1.6 mg/L) after typhoon, the variation of element stoichiometry (N:P:Si) in this system shifted to the relatively N-rich conditions (DIN/DIP; 14.1 ± 8.1, DIN/DSi; 1.4 ± 1.8), potentially triggering the occurrence of harmful algal blooms. Furthermore, discriminative isotopic compositions (δ15NNO3; 4.0 ± 2.1 ‰, δ18ONO3; 6.1 ± 4.3 ‰) after the typhoon suggested the increased DTN input of anthropogenic origins within Lake Sihwa would be mainly transported from urban sources (76 ± 9 %). Consequently, the isotopic-based approach may be useful for effective water quality management under increased anthropogenic activities near aquatic systems.


Assuntos
Tempestades Ciclônicas , Monitoramento Ambiental , Lagos , Nitrogênio , Poluentes Químicos da Água , Lagos/química , República da Coreia , Nitrogênio/análise , Poluentes Químicos da Água/análise , Nitratos/análise
20.
Chemosphere ; 357: 141975, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615960

RESUMO

This study investigated the determinants of personal exposures (PE) to coarse (PM2.5-10) and fine particulate matter (PM2.5) for elderly communities in Hong Kong. The mean PE PM2.5 and PM2.5-10 were 23.6 ± 10.8 and 13.5 ± 22.1 µg/m3, respectively during the sampling period. Approximately 76% of study subjects presented statistically significant differences between PE and ambient origin for PM2.5 compared to approximately 56% for PM2.5-10, possibly due to the coarse-size particles being more influenced by similar sources (road dust and construction dust emissions) compared to the PM2.5 particles. Individual PE to ambient (P/A) ratios for PM2.5 all exceeded unity (≥1), suggesting the dominant influences of non-ambient particles contributed towards total PE values. There were about 80% individual P/A ratios (≤1) for PM2.5-10, implying possible effective infiltration prevention of larger size particulate matter particles leading to dominant influences from the outdoor sources. The higher concentration of NO3- and SO42- in PM2.5-10 compared to PM2.5 suggests possible heterogeneous reactions of alkaline minerals leading to the formation of NO3- and SO42- in PM2.5-10 particles. The PE and ambient OC/EC ratios in PM2.5 (8.8 ± 3.3 and 10.4 ± 22.4, respectively) and in PM2.5-10 (6.0 ± 1.9 and 3.0 ± 1.1, respectively) suggest possible secondary formed OC from surrounding rural areas. Heterogeneous distributions (COD >0.2) between the PE and ambient concentrations were found for both the PM2.5 and PM2.5-10 samples. The calibration coefficient as the association between personal and surrogate exposure measure of PE to PM2.5 (0.84) was higher than PM2.5-10 (0.52). The findings further confirm that local sources were the dominant contributor to the coarse particles and these coefficients can potentially be used to estimate different PE to PM2.5 and PM2.5-10 conditions. A comprehensive understanding of the PE to determinants in coarse particles is essential to further reduce potential exposure misclassification.


Assuntos
Poluição do Ar , Exposição por Inalação , Material Particulado , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Feminino , Material Particulado/análise , Exposição por Inalação/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricos , Hong Kong , Tamanho da Partícula , Monitoramento Ambiental , Nitratos/análise , Sulfatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA