Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 136(6): 430-437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925312

RESUMO

Nitrosomonas europaea, an aerobic ammonia oxidizing bacterium, is responsible for the first and rate-limiting step of the nitrification process, and their ammonia oxidation activities are critical for the biogeochemical cycling and the biological nitrogen removal of wastewater treatment. In the present study, N. europaea cells were cultivated in the inorganic or organic media (the NBRC829 and the nutrient-rich, NR, media, respectively), and the cells proliferated in the form of planktonic and biofilm in those media, respectively. The N. europaea cells in the biofilm growth mode produced larger amounts of the extracellular polymeric substances (EPS), and the composition of the EPS was characterized by the chemical analyses including Fourier transform infrared spectroscopy (FT-IR) and 1H-nuclear magnetic resonance (NMR) measurements. The RNA-Seq analysis of N. europaea in the biofilm or planktonic growth mode revealed that the following gene transcripts involved in central nitrogen metabolisms were abundant in the biofilm growth mode; amo encoding ammonia monooxygenase, hao encoding hydroxylamine dehydrogenase, the gene encoding nitrosocyanine, nirK encoding copper-containing nitrite reductase. Additionally, the transcripts of the pepA and wza involved in the bacterial floc formation and the translocation of EPS, respectively, were also abundant in the biofilm-growth mode. Our study was first to characterize the EPS production and transcriptome of N. europaea in the biofilm and planktonic growth mode.


Assuntos
Nitrosomonas europaea , Nitrosomonas europaea/genética , Nitrosomonas europaea/metabolismo , Amônia/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Oxirredução , Transcriptoma/genética , Plâncton/genética , Plâncton/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Biofilmes , Bactérias/metabolismo , Nitrosomonas/metabolismo
2.
Water Res ; 242: 120266, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421866

RESUMO

Antibiotic resistance genes (ARGs) have recently become an important public health problem and therefore several studies have characterized ARG composition and distribution. However, few studies have assessed their impact on important functional microorganisms in the environment. Therefore, our study sought to investigate the mechanisms through which multidrug-resistant plasmid RP4 affected the ammonia oxidation capacity of ammonia-oxidizing bacteria, which play a key role in the nitrogen cycle. The ammonia oxidation capacity of N. europaea ATCC25978 (RP4) was significantly inhibited, and NO and N2O were produced instead of nitrite. Our findings demonstrated that the decrease in electrons from NH2OH decreased the ammonia monooxygenase (AMO) activity, leading to a decrease in ammonia consumption. In the ammonia oxidation process, N. europaea ATCC25978 (RP4) exhibited ATP and NADH accumulation. The corresponding mechanism was the overactivation of Complex Ⅰ, ATPase, and the TCA cycle by the RP4 plasmid. The genes encoding TCA cycle enzymes related to energy generation, including gltA, icd, sucD, and NE0773, were upregulated in N. europaea ATCC25978 (RP4). These results demonstrate the ecological risks of ARGs, including the inhibition of the ammonia oxidation process and an increased production of greenhouse gases such as NO and N2O.


Assuntos
Nitrosomonas europaea , Nitrosomonas europaea/genética , Amônia , Transporte de Elétrons , Oxirredução , Nitritos , Nitrosomonas
3.
STAR Protoc ; 4(3): 102358, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37347668

RESUMO

RNA-sequencing for whole transcriptome analysis requires high-quality RNA in adequate amounts, which can be difficult to generate with low-biomass-producing bacteria where sample volume is limited. We present an RNA extraction protocol for low-biomass-producing autotrophic bacteria Nitrosomonas europaea and Nitrobacter winogradskyi cultures. We describe steps for sample collection, lysozyme-based enzymatic lysis, and a commercial silica-column-based RNA extraction. We then detail evaluation of RNA yield and quality for downstream applications such as RNA-Seq. For complete details on the use and execution of this protocol, please refer to Verbeelen et al.1.


Assuntos
Nitrobacter , Nitrosomonas europaea , Nitrosomonas europaea/genética , Nitrosomonas/genética , Transcriptoma/genética , Biomassa , Bactérias/genética , RNA
4.
Methods Mol Biol ; 2057: 145-153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31595477

RESUMO

Nitrification is the microbial-mediated transformation of ammonium (NH4+) into nitrate (NO3-). Many plant species depend on the availability of NO3- as the main source of nitrogen (N). On the other hand, because NO3- is highly mobile in the soil profile, its excess concentration can cause environmental pollution. Nitrification can be estimated at the process level, but with the development of molecular techniques it is also possible to estimate the abundance of nitrifying bacteria in the soil. Hence, in this chapter we describe the procedure for detection and quantification of nitrifying bacteria in soil samples using real-time quantitative polymerase chain reaction (PCR).


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Nitrificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Bactérias/genética , DNA Bacteriano/isolamento & purificação , Nitrosomonas europaea/genética , Nitrosomonas europaea/metabolismo , Microbiologia do Solo , Fluxo de Trabalho
5.
Mol Biotechnol ; 61(6): 451-460, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30997666

RESUMO

We have previously shown that the small metal-binding protein (SmbP) extracted from the gram-negative bacterium Nitrosomonas europaea can be employed as a fusion protein for the expression and purification of recombinant proteins in Escherichia coli. With the goal of increasing the amounts of SmbP-tagged proteins produced in the E. coli periplasm, we replaced the native SmbP signal peptide with three different signal sequences: two were from the proteins CusF and PelB, for transport via the Sec pathway, and one was the signal peptide from TorA, for transport via the Tat pathway. Expression of SmbP-tagged Red Fluorescent Protein (RFP) using these three alternative signal peptides individually showed a considerable increase in protein levels in the periplasm of E. coli as compared to its level using the SmbP signal sequence. Therefore, for routine periplasmic expression and purification of recombinant proteins in E. coli, we highly recommend the use of the fusion proteins PelB-SmbP or CusF-SmbP, since these signal sequences increase periplasmic production considerably as compared to the wild-type. Our work, finally, demonstrates that periplasmic expression for SmbP-tagged proteins is not limited to the Sec pathway, in that the TorA-SmbP construct can export reasonable quantities of folded proteins to the periplasm. Although the Sec route has been the most widely used, sometimes, depending on the nature of the protein of interest, for example, if it contains cofactors, it is more appropriate to consider using the Tat route over the Sec. SmbP therefore can be recommended in terms of its particular versatility when combined with signal peptides for the two different routes.


Assuntos
Proteínas de Bactérias/genética , Clonagem Molecular/métodos , Nitrosomonas europaea/genética , Periplasma/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cobre , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Nitrosomonas europaea/metabolismo , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Periplasma/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Proteína Vermelha Fluorescente
6.
Biochimie ; 158: 238-245, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30690134

RESUMO

Nitrosomonas europaea is a chemolithotroph that obtains energy through the oxidation of ammonia to hydroxylamine while assimilates atmospheric CO2 to cover the cell carbon demands for growth. This microorganism plays a relevant role in the nitrogen biogeochemical cycle on Earth but its carbon metabolism remains poorly characterized. Based on sequence homology, we identified two genes (cbbG and gabD) coding for redox enzymes in N. europaea. Cloning and expression of the genes in Escherichia coli, allowed the production of recombinant enzymes purified to determine their biochemical properties. The protein CbbG is a glyceraldehyde-3-phosphate (Ga3P) dehydrogenase (Ga3PDHase) catalyzing the reversible oxidation of Ga3P to 1,3-bis-phospho-glycerate (1,3bisPGA), using specifically NAD+/NADH as cofactor. CbbG showed ∼6-fold higher Km value for 1,3bisPGA but ∼5-fold higher kcat for the oxidation of Ga3P. The protein GabD irreversibly oxidizes Ga3P to 3Pglycerate using NAD+ or NADP+, thus resembling a non-phosphorylating Ga3PDHase. However, the enzyme showed ∼6-fold higher Km value and three orders of magnitude higher catalytic efficiency with succinate semialdehyde (SSA) and NADP+. Indeed, the GabD protein identity corresponds to an SSA dehydrogenase (SSADHase). CbbG seems to be the only Ga3PDHase present in N. europaea; which would be involved in reducing triose-P during autotrophic carbon fixation. Otherwise, in cells grown under conditions deprived of ammonia and oxygen, the enzyme could catalyze the glycolytic step of Ga3P oxidation producing NADH. As an SSADHase, GabD would physiologically act producing succinate and preferentially NADPH over NADH; thus being part of an alternative pathway of the tricarboxylic acid cycle converting α-ketoglutarate to succinate. The properties determined for these enzymes contribute to better identify metabolic steps in CO2 assimilation, glycolysis and the tricarboxylic acid cycle in N. europaea. Results are discussed in the framework of metabolic pathways that launch biosynthetic intermediates relevant in the microorganism to develop and fulfill its role in nature.


Assuntos
Proteínas de Bactérias , Carbono/metabolismo , Gliceraldeído 3-Fosfato/metabolismo , Nitrosomonas europaea , Oxirredutases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Glicólise/fisiologia , Nitrosomonas europaea/enzimologia , Nitrosomonas europaea/genética , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo
7.
Environ Microbiol ; 19(12): 4851-4865, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28752902

RESUMO

Soil ecosystem represents the largest contributor to global nitrous oxide (N2 O) production, which is regulated by a wide variety of microbial communities in multiple biological pathways. A mechanistic understanding of these N2 O production biological pathways in complex soil environment is essential for improving model performance and developing innovative mitigation strategies. Here, combined approaches of the 15 N-18 O labelling technique, transcriptome analysis, and Illumina MiSeq sequencing were used to identify the relative contributions of four N2 O pathways including nitrification, nitrifier-induced denitrification (nitrifier denitrification and nitrification-coupled denitrification) and heterotrophic denitrification in six soils (alkaline vs. acid soils). In alkaline soils, nitrification and nitrifier-induced denitrification were the dominant pathways of N2 O production, and application of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) significantly reduced the N2 O production from these pathways; this is probably due to the observed reduction in the expression of the amoA gene in ammonia-oxidizing bacteria (AOB) in the DMPP-amended treatments. In acid soils, however, heterotrophic denitrification was the main source for N2 O production, and was not impacted by the application of DMPP. Our results provide robust evidence that the nitrification inhibitor DMPP can inhibit the N2 O production from nitrifier-induced denitrification, a potential significant source of N2 O production in agricultural soils.


Assuntos
Archaea/metabolismo , Desnitrificação/efeitos dos fármacos , Nitrificação/efeitos dos fármacos , Nitrosomonas europaea/metabolismo , Óxido Nitroso/metabolismo , Pirazóis/farmacologia , Agricultura , Archaea/genética , Ecossistema , Processos Heterotróficos , Nitrosomonas europaea/genética , Fosfatos/química , Solo , Microbiologia do Solo
8.
Appl Microbiol Biotechnol ; 101(7): 2953-2965, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28074222

RESUMO

The ZnO nanoparticle (NP) effects on typical ammonia-oxidizing bacteria, Nitrosomonas europaea in a chemostat bioreactor, and the cells' toxicity adaptation and recovery potentials were explored. Hardly any inhibition was observed when the NP concentration was high up to 10 mg/L. The cells exposed to 50 mg/L ZnO NPs displayed time-dependent impairment and recovery potentials in terms of cell density, membrane integrity, nitrite production rate, and ammonia monooxygenase activity. The 6-h NP stress impaired cells were nearly completely restored during a 12-h recovery incubation, while the longer exposure time would cause irretrievable cell damage. Microarray analysis further indicated the transcriptional adaptation of N. europaea to NP stress. The regulations of genes encoding for membrane permeability or osmoprotectant, membrane integrity preservation, and inorganic ion transport during NP exposure and cell recovery revealed the importance of membrane fixation and the associated metabolisms for cells' self-protection and the following recovery from NP stress. The oxidative phosphorylation, carbon assimilation, and tricarboxylic acid (TCA) cycling pathways involved in the cells' antitoxicity activities and would promote the energy production/conversion efficiency for cell recovery. The heavy metal resistance, histidine metabolism, toxin-antitoxin defense, glycolysis, and sulfate reduction pathways were also suggested to participate in the cell detoxication and recovery processes. All these findings provided valuable insights into the mechanisms of cell-mediated ZnO NP cytotoxicity and their potential impacts on wastewater nitrogen removal system.


Assuntos
Adaptação Fisiológica , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica , Nanopartículas , Nitrosomonas europaea/efeitos dos fármacos , Nitrosomonas europaea/metabolismo , Óxido de Zinco/farmacologia , Aclimatação , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Amônia/metabolismo , Reatores Biológicos , Carbono/metabolismo , Glicólise , Redes e Vias Metabólicas/genética , Análise em Microsséries , Nitritos/metabolismo , Nitrogênio/metabolismo , Nitrosomonas europaea/genética , Nitrosomonas europaea/crescimento & desenvolvimento , Oxirredução , Oxirredutases/metabolismo , Oxigênio/metabolismo , Óxido de Zinco/metabolismo
9.
Toxins (Basel) ; 8(6)2016 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-27271670

RESUMO

Nitrosomonas europaea carries numerous toxin-antitoxin systems. However, despite the abundant representation in its chromosome, studies have not surveyed the underlying molecular functions in detail, and their biological roles remain enigmatic. In the present study, we found that a chromosomally-encoded MazF family member, predicted at the locus NE1181, is a functional toxin endoribonuclease, and constitutes a toxin-antitoxin system, together with its cognate antitoxin, MazE. Massive parallel sequencing provided strong evidence that this toxin endoribonuclease exhibits RNA cleavage activity, primarily against the AAU triplet. This sequence-specificity was supported by the results of fluorometric assays. Our results indicate that N. europaea alters the translation profile and regulates its growth using the MazF family of endoribonuclease under certain stressful conditions.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Endorribonucleases/genética , Nitrosomonas europaea/genética , Clivagem do RNA , Antitoxinas/genética
10.
Appl Environ Microbiol ; 82(11): 3310-3318, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016565

RESUMO

UNLABELLED: Nitrosomonas europaea is a chemolithoautotrophic bacterium that oxidizes ammonia (NH3) to obtain energy for growth on carbon dioxide (CO2) and can also produce nitrous oxide (N2O), a greenhouse gas. We interrogated the growth, physiological, and transcriptome responses of N. europaea to conditions of replete (>5.2 mM) and limited inorganic carbon (IC) provided by either 1.0 mM or 0.2 mM sodium carbonate (Na2CO3) supplemented with atmospheric CO2 IC-limited cultures oxidized 25 to 58% of available NH3 to nitrite, depending on the dilution rate and Na2CO3 concentration. IC limitation resulted in a 2.3-fold increase in cellular maintenance energy requirements compared to those for NH3-limited cultures. Rates of N2O production increased 2.5- and 6.3-fold under the two IC-limited conditions, increasing the percentage of oxidized NH3-N that was transformed to N2O-N from 0.5% (replete) up to 4.4% (0.2 mM Na2CO3). Transcriptome analysis showed differential expression (P ≤ 0.05) of 488 genes (20% of inventory) between replete and IC-limited conditions, but few differences were detected between the two IC-limiting treatments. IC-limited conditions resulted in a decreased expression of ammonium/ammonia transporter and ammonia monooxygenase subunits and increased the expression of genes involved in C1 metabolism, including the genes for RuBisCO (cbb gene cluster), carbonic anhydrase, folate-linked metabolism of C1 moieties, and putative C salvage due to oxygenase activity of RuBisCO. Increased expression of nitrite reductase (gene cluster NE0924 to NE0927) correlated with increased production of N2O. Together, these data suggest that N. europaea adapts physiologically during IC-limited steady-state growth, which leads to the uncoupling of NH3 oxidation from growth and increased N2O production. IMPORTANCE: Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is an important process in the global nitrogen cycle. This process is generally dependent on ammonia-oxidizing microorganisms and nitrite-oxidizing bacteria. Most nitrifiers are chemolithoautotrophs that fix inorganic carbon (CO2) for growth. Here, we investigate how inorganic carbon limitation modifies the physiology and transcriptome of Nitrosomonas europaea, a model ammonia-oxidizing bacterium, and report on increased production of N2O, a potent greenhouse gas. This study, along with previous work, suggests that inorganic carbon limitation may be an important factor in controlling N2O emissions from nitrification in soils and wastewater treatment.


Assuntos
Amônia/metabolismo , Dióxido de Carbono/metabolismo , Carbonatos/metabolismo , Metabolismo Energético , Nitrosomonas europaea/metabolismo , Óxido Nitroso/metabolismo , Adaptação Fisiológica , Aerobiose , Perfilação da Expressão Gênica , Nitrosomonas europaea/genética , Nitrosomonas europaea/crescimento & desenvolvimento
11.
Environ Sci Pollut Res Int ; 23(13): 13023-34, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26996914

RESUMO

The short-term combined effects of two most extensively used nanoparticles (NPs) TiO2 NPs (n-TiO2) and ZnO NPs (n-ZnO) versus their individual cytotoxicities on a model ammonia-oxidizing bacterium, Nitrosomonas europaea, were investigated at both physiological and transcriptional levels. n-ZnO exerted more serious impairment effects on cell morphology, cell density, membrane integrity, and ammonia monooxygenase activity than n-TiO2. However, the co-existing n-TiO2 displayed a dose-dependent mitigation effect on n-ZnO cytotoxicity. Consistently, the n-TiO2 and n-ZnO mixture-impacted global transcriptional expression profile, obtained with the whole-genome microarray technique, was more comparable to the n-TiO2-impacted one than that impacted by n-ZnO. The expressions of numerous genes associated with heavy metal scavenging, DNA repair, and oxidative stress response were less up-regulated under the binary impacts of NP mixture than n-ZnO. Moreover, only n-ZnO alone stimulated the up-regulations of heavy metal resistance genes, which further implied the capacity of co-existing n-TiO2 to alleviate n-ZnO cytotoxicity. In addition, the damage of cell membrane structures and the suppression of cell membrane biogenesis-related gene expressions under the influence of either individual NPs or their combinations strongly suggested that the interruption of cell membranes and the associated metabolic activities would probably be one of NPs' critical cytotoxicity mechanisms.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Nitrosomonas europaea/efeitos dos fármacos , Titânio/farmacologia , Transcrição Gênica/efeitos dos fármacos , Óxido de Zinco/farmacologia , Nitrosomonas europaea/genética , Oxirredução
12.
Protein Expr Purif ; 118: 49-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26494603

RESUMO

Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Expressão Gênica , Nitrosomonas europaea/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Escherichia coli/química , Escherichia coli/metabolismo , Metais/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
13.
J Bacteriol ; 197(17): 2734-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26013491

RESUMO

UNLABELLED: In this paper we report the first crystal structure of a prokaryotic sucrose synthase from the nonphotosynthetic bacterium Nitrosomonas europaea. The obtained structure was in an open form, whereas the only other available structure, from the plant Arabidopsis thaliana, was in a closed conformation. Comparative structural analysis revealed a "hinge-latch" combination, which is critical to transition between the open and closed forms of the enzyme. The N. europaea sucrose synthase shares the same fold as the GT-B family of the retaining glycosyltransferases. In addition, a triad of conserved homologous catalytic residues in the family was shown to be functionally critical in the N. europaea sucrose synthase (Arg567, Lys572, and Glu663). This implies that sucrose synthase shares not only a common origin with the GT-B family but also a similar catalytic mechanism. The enzyme preferred transferring glucose from ADP-glucose rather than UDP-glucose like the eukaryotic counterparts. This predicts that these prokaryotic organisms have a different sucrose metabolic scenario from plants. Nucleotide preference determines where the glucose moiety is targeted after sucrose is degraded. IMPORTANCE: We obtained biochemical and structural evidence of sucrose metabolism in nonphotosynthetic bacteria. Until now, only sucrose synthases from photosynthetic organisms have been characterized. Here, we provide the crystal structure of the sucrose synthase from the chemolithoautotroph N. europaea. The structure supported that the enzyme functions with an open/close induced fit mechanism. The enzyme prefers as the substrate adenine-based nucleotides rather than uridine-based like the eukaryotic counterparts, implying a strong connection between sucrose and glycogen metabolism in these bacteria. Mutagenesis data showed that the catalytic mechanism must be conserved not only in sucrose synthases but also in all other retaining GT-B glycosyltransferases.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucosiltransferases/química , Nitrosomonas europaea/enzimologia , Sacarose/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalização , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Modelos Moleculares , Nitrosomonas europaea/genética , Nitrosomonas europaea/metabolismo , Filogenia , Conformação Proteica , Especificidade por Substrato , Difração de Raios X
14.
Arch Microbiol ; 197(1): 79-89, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25362506

RESUMO

Nitrosomonas europaea and Nitrobacter winogradskyi were grown singly and in co-culture in chemostats to probe for physiological differences between the two growth conditions. Co-culture growth medium containing 60 mM NH4 (+) resulted in a cell density (0.20-0.29 OD600) greater than the sum of the densities in single chemostat cultures, i.e., 0.09-0.14 OD600 for N. europaea with 60 mM NH4 (+)and 0.04-0.06 OD600 for N. winogradskyi with 60 mM NO2 (-). The NO2 (-)- and NH4 (+)-dependent O2 uptake rates, qRT-PCR, and microscopic observations indicated that in co-culture, N. europaea contributed ~0.20 OD600 (~80 %) and N. winogradskyi ~0.05 OD600 (~20 %). In co-culture, the transcriptomes showed that the mRNA levels of 773 genes in N. europaea (30.2 % of the genes) and of 372 genes in N. winogradskyi (11.8 % of the genes) changed significantly. Total cell growth and the analysis of the transcriptome revealed that in co-culture, N. europaea benefits more than N. winogradskyi.


Assuntos
Interações Microbianas , Nitrobacter/crescimento & desenvolvimento , Nitrobacter/metabolismo , Nitrosomonas europaea/crescimento & desenvolvimento , Nitrosomonas europaea/metabolismo , Amônia/metabolismo , Carga Bacteriana , Dióxido de Carbono/metabolismo , Técnicas de Cocultura , Meios de Cultura , Metabolismo Energético , Expressão Gênica , Genes Bacterianos , Movimento , Nitritos/metabolismo , Nitrobacter/genética , Nitrosomonas europaea/genética , Consumo de Oxigênio , Transcrição Gênica , Transcriptoma
15.
Appl Environ Microbiol ; 80(16): 4930-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907318

RESUMO

Nitrite reductase (NirK) and nitric oxide reductase (NorB) have long been thought to play an essential role in nitrous oxide (N2O) production by ammonia-oxidizing bacteria. However, essential gaps remain in our understanding of how and when NirK and NorB are active and functional, putting into question their precise roles in N2O production by ammonia oxidizers. The growth phenotypes of the Nitrosomonas europaea ATCC 19718 wild-type and mutant strains deficient in expression of NirK, NorB, and both gene products were compared under atmospheric and reduced O2 tensions. Anoxic resting-cell assays and instantaneous nitrite (NO2 (-)) reduction experiments were done to assess the ability of the wild-type and mutant N. europaea strains to produce N2O through the nitrifier denitrification pathway. Results confirmed the role of NirK for efficient substrate oxidation of N. europaea and showed that NorB is involved in N2O production during growth at both atmospheric and reduced O2 tensions. Anoxic resting-cell assays and measurements of instantaneous NO2 (-) reduction using hydrazine as an electron donor revealed that an alternate nitrite reductase to NirK is present and active. These experiments also clearly demonstrated that NorB was the sole nitric oxide reductase for nitrifier denitrification. The results of this study expand the enzymology for nitrogen metabolism and N2O production by N. europaea and will be useful to interpret pathways in other ammonia oxidizers that lack NirK and/or NorB genes.


Assuntos
Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Nitrito Redutases/metabolismo , Nitrosomonas europaea/enzimologia , Óxido Nitroso/metabolismo , Oxirredutases/metabolismo , Amônia/metabolismo , Proteínas de Bactérias/genética , Nitrito Redutases/genética , Nitrosomonas europaea/genética , Nitrosomonas europaea/metabolismo , Oxirredução , Oxirredutases/genética
16.
J Biosci Bioeng ; 117(2): 178-183, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23972426

RESUMO

Folate is an essential cofactor in all living cells for one-carbon transfer reactions. para-Aminobenzoate (pABA), a building block of folate, is usually derived from chorismate in the shikimate pathway by reactions of aminodeoxychorismate synthase (PabA and -B) and 4-amino-4-deoxychorismate lyase (PabC). We previously suggested that an alternative pathway for pABA biosynthesis would operate in some microorganisms such as Lactobacillus fermentum and Nitrosomonas europaea since these bacteria showed a prototrophic phenotype to pABA despite the fact that there are no orthologs of pabA, -B, and -C in their genome databases. In this study, a gene of unknown function, NE1434, was obtained from N. europaea by shotgun cloning using a pABA-auxotrophic Escherichia coli mutant (ΔpabABC) as a host. A tracer experiment using [U-(13)C6]glucose suggested that pABA was de novo synthesized in the transformant. An E. coli ΔpabABCΔaroB mutant carrying the NE1434 gene exhibited a prototrophic phenotype to pABA, suggesting that compounds in the shikimate pathway including chorismate were not utilized as substrates by NE1434. Moreover, the CT610 gene, an ortholog of NE1434 located in the folate biosynthetic gene cluster in Chlamydia trachomatis, also complemented pABA-auxotrophic E. coli mutants. Taken together, these results suggest that NE1434 and CT610 participate in pABA biosynthesis.


Assuntos
Chlamydia trachomatis/genética , Genes Bacterianos/genética , Nitrosomonas europaea/genética , para-Aminobenzoatos/metabolismo , Carbono-Carbono Liases/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Evolução Molecular , Ácido Fólico/biossíntese , Ácido Fólico/metabolismo , Deleção de Genes , Teste de Complementação Genética , Ácido Chiquímico/metabolismo , Especificidade por Substrato , Transaminases/genética , Transaminases/metabolismo , Transformação Bacteriana
17.
PLoS One ; 7(9): e44846, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028643

RESUMO

The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC) that fixes CO2 into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.


Assuntos
Amônia/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Biomassa , Eletricidade , Reatores Biológicos/microbiologia , Meios de Cultura/metabolismo , Eletroquímica , Transporte de Elétrons , Metabolismo Energético , Engenharia Genética , Nitritos/metabolismo , Nitrosomonas europaea/genética , Nitrosomonas europaea/metabolismo , Fatores de Tempo
18.
J Bacteriol ; 194(13): 3448-56, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544266

RESUMO

The ammonia monooxygenase of chemolithotrophic ammonia-oxidizing bacteria (AOB) catalyzes the first step in ammonia oxidation by converting ammonia to hydroxylamine. The monooxygenase of Nitrosomonas europaea is encoded by two nearly identical operon copies (amoCAB(1,2)). Several AOB, including N. europaea, also possess a divergent monocistronic copy of amoC (amoC(3)) of unknown function. Previous work suggested a possible functional role for amoC(3) as part of the σ(E) stress response regulon during the recovery of N. europaea from extended ammonia starvation, thus indicating its importance during the exit of cells from starvation. We here used global transcription analysis to show that expression of amoC(3) is part of a general poststarvation cellular response system in N. europaea. We also found that amoC(3) is required for an efficient response to some stress conditions, as deleting this gene impaired growth at elevated temperatures and recovery following starvation under high oxygen tensions. Deletion of the σ(32) global stress response regulator demonstrated that the heat shock regulon plays a significant role in mediating the recovery of N. europaea from starvation. These findings provide the first described phenotype associated with the divergent AmoC(3) subunit which appears to function as a stress-responsive subunit capable of maintaining ammonia oxidation activity under stress conditions. While this study was limited to starvation and heat shock, it is possible that the AmoC(3) subunit may be responsive to other membrane stressors (e.g., solvent or osmotic shocks) that are prevalent in the environments of AOB.


Assuntos
Amônia/metabolismo , Resposta ao Choque Térmico , Nitrosomonas europaea/fisiologia , Oxirredutases/metabolismo , Subunidades Proteicas/metabolismo , Mutação , Nitrosomonas europaea/genética , Nitrosomonas europaea/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Óperon , Oxirredução , Oxirredutases/genética , Oxigênio/metabolismo , Subunidades Proteicas/genética , Transcrição Gênica , Transcriptoma
19.
Environ Sci Technol ; 46(10): 5387-95, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22533675

RESUMO

Silver nanoparticles (AgNPs) are increasingly used as bacteriostatic agents to prevent microbial growth. AgNPs are manufactured with a variety of coatings, and their potential impacts on wastewater treatment in general are poorly understood. In the present study, Nitrosomonas europaea, a model ammonia oxidizing bacterium, was exposed to AgNPs with citrate, gum arabic (GA), and polyvinylpyrrolidone (PVP). GA and citrate AgNPs inhibited nitrification most strongly (67.9 ± 3.6% and 91.4 ± 0.2%, respectively at 2 ppm). Our data indicate that Ag(+) dissolution and colloid stability of AgNPs were the main factors in AgNP toxicity. In general, low amounts of dissolved Ag initially caused a post-transcriptional interruption of membrane-bound nitrifying enzyme function, reducing nitrification by 10% or more. A further increase in dissolved Ag resulted in heavy metal stress response (e.g., merA up-regulation) and ultimately led to membrane disruption. The highest effect on membrane disruption was observed for citrate AgNPs (64 ± 11% membranes compromised at 2 ppm), which had high colloidal stability. This study demonstrates that coating plays a very important role in determining Ag dissolution and ultimately toxicity to nitrifiers. More research is needed to characterize these parameters in complex growth media such as wastewater.


Assuntos
Ácido Cítrico/química , Goma Arábica/química , Nanopartículas Metálicas/química , Nitrificação/efeitos dos fármacos , Nitrosomonas europaea/efeitos dos fármacos , Povidona/química , Prata/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Cisteína/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Nanopartículas Metálicas/ultraestrutura , Viabilidade Microbiana/efeitos dos fármacos , Nitritos/análise , Nitrosomonas europaea/citologia , Nitrosomonas europaea/genética , Nitrosomonas europaea/ultraestrutura , RNA Ribossômico 16S/genética , Solubilidade/efeitos dos fármacos
20.
Arch Microbiol ; 194(4): 305-13, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22173827

RESUMO

The importance of iron to the metabolism of the ammonia-oxidizing bacterium Nitrosomonas europaea is well known. However, the mechanisms by which N. europaea acquires iron under iron limitation are less well known. To obtain insight into these mechanisms, transcriptional profiling of N. europaea was performed during growth under different iron availabilities. Of 2,355 N. europaea genes on DNA microarrays, transcripts for 247 genes were identified as differentially expressed when cells were grown under iron limitation compared to cells grown under iron-replete conditions. Genes with higher transcript levels in response to iron limitation included those with confirmed or assigned roles in iron acquisition. Genes with lower transcript levels included those encoding iron-containing proteins. Our analysis identified several potentially novel iron acquisition systems in N. europaea and provided support for the primary involvement of a TonB-dependent heme receptor gene in N. europaea iron homeostasis. We demonstrated that hemoglobin can act as an iron source under iron-depleted conditions for N. europaea. In addition, we identified a hypothetical protein carrying a lipocalin-like domain that may have the ability to chelate iron for growth in iron-limited media.


Assuntos
Genes Bacterianos , Ferro/metabolismo , Nitrosomonas europaea/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Hemoglobinas/metabolismo , Nitrosomonas europaea/genética , Nitrosomonas europaea/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sideróforos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA