Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 446: 130708, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608577

RESUMO

Demethylthio is one of the most important ways for microorganisms to metabolize triazine herbicides. Previous studies have found that the initial reaction of prometryn catabolism in Leucobacter triazinivorans JW-1 was the hydroxylation of its methylthio group, however, the corresponding functional enzyme was not yet clear. In this study, the gene proA was responsible for the initial step of prometryn catabolism from the strain JW-1 was cloned and expressed, and the purified amidohydrolases ProA have the ability to transform prometryn to 2-hydroxypropazine and methanethiol. The optimized reaction temperature and pH of ProA were 45 °C and 7.0, respectively, and the kinetic constants Km and Vmax of ProA for the catalysis of prometryn were 32.6 µM and 0.09 µmol/min/mg, respectively. Molecular docking analyses revealed that different catalysis efficiency of ProA and TrzN (Nocardioides sp. C190) for prometryn and atrazine was due to non-covalent changes in amino acid residues. Our findings provide new insights into the understanding of s-triazine catabolism at the molecular level.


Assuntos
Herbicidas , Prometrina , Prometrina/metabolismo , Triazinas/metabolismo , Simulação de Acoplamento Molecular , Herbicidas/metabolismo , Amidoidrolases , Catálise , Nocardioides/metabolismo
2.
Sci Rep ; 12(1): 2874, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190591

RESUMO

Lignin is a heterogeneous aromatic polymer and major component of plant cell walls. The ß-O-4 alkyl aryl ether is the most abundant linkage within lignin. Given that lignin is effectively degraded on earth, as yet unknown ether bond-cleaving microorganisms could still exist in nature. In this study, we searched for microorganisms that transform 2-phenoxyacetophenone (2-PAP), a model compound for the ß-O-4 linkage in lignin, by monitoring ether bond cleavage. We first isolated microorganisms that grew on medium including humic acid (soil-derived organic compound) as a carbon source. The isolated microorganisms were subsequently subjected to colorimetric assay for 2-PAP ether bond-cleaving activity; cells of the isolated strains were incubated with 2-PAP, and strains producing phenol via ether bond cleavage were selected using phenol-sensitive Gibbs reagent. This screening procedure enabled the isolation of various 2-PAP-transforming microorganisms, including 7 bacteria (genera: Acinetobacter, Cupriavidus, Nocardioides, or Streptomyces) and 1 fungus (genus: Penicillium). To our knowledge, these are the first microorganisms demonstrated to cleave the ether bond of 2-PAP. One Gram-negative bacterium, Acinetobacter sp. TUS-SO1, was characterized in detail. HPLC and GC-MS analyses revealed that strain TUS-SO1 oxidatively and selectively cleaves the ether bond of 2-PAP to produce phenol and benzoate. These results indicate that the transformation mechanism differs from that involved in reductive ß-etherase, which has been well studied. Furthermore, strain TUS-SO1 efficiently transformed 2-PAP; glucose-grown TUS-SO1 cells converted 1 mM 2-PAP within only 12 h. These microorganisms might play important roles in the degradation of lignin-related compounds in nature.


Assuntos
Acetofenonas/metabolismo , Acinetobacter/metabolismo , Cupriavidus/metabolismo , Éter/metabolismo , Lignina/metabolismo , Nocardioides/metabolismo , Penicillium/metabolismo , Streptomyces/metabolismo
3.
Microbiol Spectr ; 9(3): e0133321, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817221

RESUMO

A novel putative trehalose synthase gene (treM) was identified from an extreme temperature thermal spring. The gene was expressed in Escherichia coli followed by purification of the protein (TreM). TreM exhibited the pH optima of 7.0 for trehalose and trehalulose production, although it was functional and stable in the pH range of 5.0 to 8.0. Temperature activity profiling revealed that TreM can catalyze trehalose biosynthesis in a wide range of temperatures, from 5°C to 80°C. The optimum activity for trehalose and trehalulose biosynthesis was observed at 45°C and 50°C, respectively. A catalytic reaction performed at the low temperature of 5°C yielded trehalose with significantly reduced by-product (glucose) production in the reaction. TreM displayed remarkable thermal stability at optimum temperatures, with only about 20% loss in the activity after heat (50°C) exposure for 24 h. The maximum bioconversion yield of 74% trehalose (at 5°C) and 90% trehalulose (at 50°C) was obtained from 100 mM maltose and 70 mM sucrose, respectively. TreM was demonstrated to catalyze trehalulose biosynthesis utilizing the low-cost feedstock jaggery, cane molasses, muscovado, and table sugar. IMPORTANCE Trehalose is a rare sugar of high importance in biological research, with its property to stabilize cell membrane and proteins and protect the organism from drought. It is instrumental in the cryopreservation of human cells, e.g., sperm and blood stem cells. It is also very useful in the food industry, especially in the preparation of frozen food products. Trehalose synthase is a glycosyl hydrolase 13 (GH13) family enzyme that has been reported from about 22 bacterial species so far. Of these enzymes, to date, only two have been demonstrated to catalyze the biosynthesis of both trehalose and trehalulose. We have investigated the metagenomic data of an extreme temperature thermal spring to discover a novel gene that encodes a trehalose synthase (TreM) with higher stability and dual transglycosylation activities of trehalose and trehalulose biosynthesis. This enzyme is capable of catalyzing the transformation of maltose to trehalose and sucrose to trehalulose in a wide pH and temperature range. The present investigation endorses the thermal aquatic habitat as a promising genetic resource for the biocatalysts with high potential in producing high-value rare sugars.


Assuntos
Dissacarídeos/biossíntese , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Nocardioides/metabolismo , Thermus/metabolismo , Trealose/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Fontes Termais/microbiologia , Humanos , Metagenoma/genética , Nocardioides/enzimologia , Nocardioides/genética , Thermomonospora/enzimologia , Thermomonospora/genética , Thermomonospora/metabolismo , Thermus/enzimologia , Thermus/genética
4.
Appl Environ Microbiol ; 87(18): e0092321, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34232707

RESUMO

Cotinine is a stable toxic contaminant, produced as a by-product of smoking. It is of emerging concern due to its global distribution in aquatic environments. Microorganisms have the potential to degrade cotinine; however, the genetic mechanisms of this process are unknown. Nocardioides sp. strain JQ2195 is a pure-culture strain that has been reported to degrade cotinine at micropollutant concentrations. This strain utilizes cotinine as its sole carbon and nitrogen source. In this study, a 50-kb gene cluster (designated cot), involved in cotinine degradation, was predicted based on genomic and transcriptomic analyses. A novel three-component cotinine hydroxylase gene (designated cotA1A2A3), which initiated cotinine catabolism, was identified and characterized. CotA from Shinella sp. strain HZN7 was heterologously expressed and purified and was shown to convert cotinine into 6-hydroxycotinine. H218O-labeling and electrospray ionization-mass spectrometry (ESI-MS) analysis confirmed that the hydroxyl group incorporated into 6-hydroxycotinine was derived from water. This study provides new molecular insights into the microbial metabolism of heterocyclic chemical pollutants. IMPORTANCE In the human body, cotinine is the major metabolite of nicotine, and 10 to 15% of generated cotinine is excreted in urine. Cotinine is a structural analogue of nicotine and is much more stable than nicotine. Increased tobacco consumption has led to high environmental concentrations of cotinine, which may have detrimental effects on aquatic ecosystems and human health. Nocardioides sp. strain JQ2195 is a unique cotinine-degrading bacterium. However, the underlying genetic and biochemical foundations of cotinine degradation are still unknown. In this study, a 50-kb gene cluster (designated cot) was identified by genomic and transcriptomic analyses as being involved in the degradation of cotinine. A novel three-component cotinine hydroxylase gene (designated cotA1A2A3) catalyzed cotinine to 6-hydroxy-cotinine. This study provides new molecular insights into the microbial degradation and enzymatic transformation of cotinine.


Assuntos
Proteínas de Bactérias/metabolismo , Cotinina/metabolismo , Oxigenases de Função Mista/metabolismo , Nocardioides/metabolismo , Poluentes Químicos da Água/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Biotransformação , Cotinina/análogos & derivados , Genoma Bacteriano , Oxigenases de Função Mista/genética , Nocardioides/genética , Transcriptoma , Águas Residuárias/microbiologia
5.
J Microbiol ; 59(6): 552-562, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33877575

RESUMO

A polyphasic taxonomic approach was used to characterize three novel bacterial strains, designated as HDW12AT, HDW-15BT, and HDW15CT, isolated from the intestine of fish species Odontobutis interrupta or Siniperca scherzeri. All isolates were obligate aerobic, non-motile bacteria, and grew optimally at 30°C. Phylogenetic analysis based on 16S rRNA sequences revealed that strain HDW12AT was a member of the genus Nocardioides, and closely related to Nocardioides allogilvus CFH 30205T (98.9% sequence identities). Furthermore, strains HDW15BT and HDW15CT were members of the genus Sphingomonas, and closely related to Sphingomonas lutea JS5T and Sphingomonas sediminicola Dae 20T (97.1% and 97.9% sequence identities), respectively. Strain HDW12AT contained MK-8 (H4), and strains HDW15BT and HDW15CT contained Q-10 as the respiratory quinone. Major polar lipid components of strain HDW12AT were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol, and those of strains HDW15BT and HDW15CT were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. The G + C content of strains HDW12AT, HDW15BT, and HDW15CT were 69.7, 63.3, and 65.5%, respectively. The results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses suggest that strain HDW12AT represents a novel species within the genus Nocardioides, and strains HDW15BT and HDW15CT represent two novel species within the genus Sphingomonas. We propose the names Nocardioides piscis for strain HDW12AT (= KACC 21336T = KCTC 49321T = JCM 33670T), Sphingomonas piscis for strain HDW15BT (= KACC 21341T = KCTC 72588T = JCM 33738T), and Sphingomonas sinipercae for strain HDW15CT (= KACC 21342T = KCTC 72589T = JCM 33739T).


Assuntos
Nocardioides/classificação , Nocardioides/isolamento & purificação , Sphingomonas/classificação , Sphingomonas/isolamento & purificação , Animais , Composição de Bases , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Peixes/microbiologia , Intestinos/microbiologia , Nocardioides/genética , Nocardioides/metabolismo , Fosfolipídeos/metabolismo , Filogenia , República da Coreia , Sphingomonas/genética , Sphingomonas/metabolismo
6.
BMC Biotechnol ; 21(1): 7, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441120

RESUMO

BACKGROUND: Bacterial degradation/transformation of steroids is widely investigated to create biotechnologically relevant strains for industrial application. The strain of Nocardioides simplex VKM Ac-2033D is well known mainly for its superior 3-ketosteroid Δ1-dehydrogenase activity towards various 3-oxosteroids and other important reactions of sterol degradation. However, its biocatalytic capacities and the molecular fundamentals of its activity towards natural sterols and synthetic steroids were not fully understood. In this study, a comparative investigation of the genome-wide transcriptome profiling of the N. simplex VKM Ac-2033D grown on phytosterol, or in the presence of cortisone 21-acetate was performed with RNA-seq. RESULTS: Although the gene patterns induced by phytosterol generally resemble the gene sets involved in phytosterol degradation pathways in mycolic acid rich actinobacteria such as Mycolicibacterium, Mycobacterium and Rhodococcus species, the differences in gene organization and previously unreported genes with high expression level were revealed. Transcription of the genes related to KstR- and KstR2-regulons was mainly enhanced in response to phytosterol, and the role in steroid catabolism is predicted for some dozens of the genes in N. simplex. New transcription factors binding motifs and new candidate transcription regulators of steroid catabolism were predicted in N. simplex. Unlike phytosterol, cortisone 21-acetate does not provide induction of the genes with predicted KstR and KstR2 sites. Superior 3-ketosteroid-Δ1-dehydrogenase activity of N. simplex VKM Ac-2033D is due to the kstDs redundancy in the genome, with the highest expression level of the gene KR76_27125 orthologous to kstD2, in response to cortisone 21-acetate. The substrate spectrum of N. simplex 3-ketosteroid-Δ1-dehydrogenase was expanded in this study with progesterone and its 17α-hydroxylated and 11α,17α-dihydroxylated derivatives, that effectively were 1(2)-dehydrogenated in vivo by the whole cells of the N. simplex VKM Ac-2033D. CONCLUSION: The results contribute to the knowledge of biocatalytic features and diversity of steroid modification capabilities of actinobacteria, defining targets for further bioengineering manipulations with the purpose of expansion of their biotechnological applications.


Assuntos
Cortisona/genética , Cortisona/metabolismo , Nocardioides/genética , Nocardioides/metabolismo , Fitosteróis/genética , Fitosteróis/metabolismo , Transcriptoma , Actinobacteria/genética , Actinobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica , Metabolismo/genética , Mycobacterium/genética , Mycobacterium/metabolismo , Oxirredutases , Fitosteróis/química , Progesterona/química , Progesterona/genética , Progesterona/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Esteroides/química , Esteroides/metabolismo , Fatores de Transcrição
7.
Toxins (Basel) ; 12(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560237

RESUMO

Fusarium head blight (FHB) of cereals is a severe disease caused by the Fusarium graminearum species complex. It leads to the accumulation of the mycotoxin deoxynivalenol (DON) in grains and other plant tissues and causes substantial economic losses throughout the world. DON is one of the most troublesome mycotoxins because it is a virulence factor to host plants, including wheat, and exhibits toxicity to plants and animals. To control both FHB and DON accumulation, a biological control approach using DON-degrading bacteria (DDBs) is promising. Here, we performed a disease control assay using an in vitro petri dish test composed of germinated wheat seeds inoculated with F. graminearum (Fg) and DDBs. Determination of both grown leaf lengths and hyphal lesion lengths as a measure of disease severity showed that the inoculation of seeds with the DDBs Devosia sp. strain NKJ1 and Nocardioides spp. strains SS3 or SS4 were protective against the leaf growth inhibition caused by Fg. Furthermore, it was as effective against DON accumulation. The inoculation with strains SS3 or SS4 also reduced the inhibitory effect on leaves treated with 10 µg mL-1 DON solution (without Fg). These results indicate that the DDBs partially suppress the disease by degrading DON.


Assuntos
Grão Comestível/microbiologia , Fusarium/metabolismo , Nocardioides/metabolismo , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Tricotecenos/metabolismo , Triticum/microbiologia , Germinação , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Sementes/microbiologia
8.
Biosci Biotechnol Biochem ; 84(5): 1056-1061, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31959067

RESUMO

Unlike its biosynthetic mechanisms and physiological function, current understanding of riboflavin degradation in soil is limited to a few bacteria that decompose it to lumichrome. Here, we isolated six Microbacterium and three Nocardioides strains. These strains utilized riboflavin and lumichrome, respectively, as carbon sources. Among these strains, we identified Microbacterium paraoxydans R16 (R16) and Nocardioides nitrophenolicus L16 (L16), which were isolated form the same enrichment culture. Co-cultured R16 and L16 reconstituted a riboflavin-degrading interspecies consortium, in which the R16 strain degraded riboflavin to lumichrome and ᴅ-ribose. The L16 strain utilized the lumichrome as a carbon source, indicating that R16 is required for L16 to grow in the consortium. Notably, rates of riboflavin degradation and growth were increased in co-cultured, compared with monocultured R16 cells. These results indicated that a beneficial symbiotic interaction between M. paraoxydans R16 and N. nitrophenolicus L16 results in the ability to degrade riboflavin.


Assuntos
Simbiose/fisiologia , Sequência de Bases , Biodegradação Ambiental , Técnicas de Cocultura , DNA Bacteriano/genética , Flavinas/metabolismo , Homeostase , Microbacterium/genética , Microbacterium/metabolismo , Nocardioides/genética , Nocardioides/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Riboflavina/metabolismo , Ribose/metabolismo , Microbiologia do Solo
9.
Sci Rep ; 10(1): 1116, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980664

RESUMO

A desert soil sample was saturated with crude oil (17.3%, w/w) and aliquots were diluted to different extents with either pristine desert or garden soils. Heaps of all samples were exposed to outdoor conditions through six months, and were repeatedly irrigated with water and mixed thoroughly. Quantitative determination of the residual oil in the samples revealed that oil-bioremediation in the undiluted heaps was nearly as equally effective as in the diluted ones. One month after starting the experiment. 53 to 63% of oil was removed. During the subsequent five months, 14 to 24% of the oil continued to be consumed. The dynamics of the hydrocarbonoclastic bacterial communities in the heaps was monitored. The highest numbers of those organisms coordinated chronologically with the maximum oil-removal. Out of the identified bacterial species, those affiliated with the genera Nocardioides (especially N. deserti), Dietzia (especially D. papillomatosis), Microbacterium, Micrococcus, Arthrobacter, Pseudomonas, Cellulomonas, Gordonia and others were main contributors to the oil-consumption. Some species, e.g. D. papillomatosis were minor community constituents at time zero but they prevailed at later phases. Most isolates tolerated up to 20% oil, and D. papillomatosis showed the maximum tolerance compared with all the other studied isolates. It was concluded that even in oil-saturated soil, self-cleaning proceeds at a normal rate. When pristine soil receives spilled oil, indigenous microorganisms suitable for dealing with the prevailing oil-concentrations become enriched and involved in oil-biodegradation.


Assuntos
Actinobacteria/metabolismo , Arthrobacter/metabolismo , Biodegradação Ambiental , Poluição Ambiental/prevenção & controle , Micrococcus/metabolismo , Petróleo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Nocardioides/metabolismo
10.
J Hazard Mater ; 385: 121554, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31753665

RESUMO

The consumption of methylphenidate, a nootropic drug used to improve mental performance, is becoming increasingly serious. Methylphenidate is metabolized in human liver to ritalinic acid, which has been commonly detected in sewage and surface waters. Additionally, ritalinic acid serves as a biomarker in sewage epidemiology studies. Thus knowledge of the stability and microbial degradation pathways of ritalinic acid is essential for proper estimation of methylphenidate consumption. In the study reported here, we describe the fast formation of a previously unknown, dead-end metabolite of ritalinic acid by Nocardioides sp. strain MW5. HRMS and 2D NMR analyses allowed precisely identification of the compound as an imidazole-based alkaloid cation with chemical formula 11-[3-(formylamino)propyl]-1,2,3,4,6,7,8,9-octahydrodipyrido[1,2-a:1',2'-c]imidazole-5-ium. In experiments, Nocardioides sp. strain MW5 transformed 34% of ritalinic acid into this metabolite, while 52% was mineralized into CO2. Alkaloid was not biodegraded during the OECD 301 F test. This study provides new insight into the environmental fate of methylphenidate and its metabolites. The data collected are essential for assessing nootropic drug consumption by sewage epidemiology and should lead to a better understanding of microbial degradation of ritalinic acid.


Assuntos
Biomarcadores/análise , Imidazóis/análise , Metilfenidato/análogos & derivados , Nocardioides/metabolismo , Biodegradação Ambiental , Biomarcadores/química , Imidazóis/química , Metilfenidato/metabolismo , Vigilância Epidemiológica Baseada em Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA