Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1323157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808063

RESUMO

The genus Serratia harbors opportunistic pathogenic species, among which Serratia marcescens is pathogenic for honeybees although little studied. Recently, virulent strains of S. marcescens colonizing the Varroa destructor mite's mouth were found vectored into the honeybee body, leading to septicemia and death. Serratia also occurs as an opportunistic pathogen in the honeybee's gut with a low absolute abundance. The Serratia population seems controlled by the host immune system, but its presence may represent a hidden threat, ready to arise when honeybees are weakened by biotic and abiotic stressors. To shed light on the Serratia pathogen, this research aims at studying Serratia's development dynamics in the honeybee body and its interactions with the co-occurring fungal pathogen Vairimorpha ceranae. Firstly, the degree of pathogenicity and the ability to permeate the gut epithelial barrier of three Serratia strains, isolated from honeybees and belonging to different species (S. marcescens, Serratia liquefaciens, and Serratia nematodiphila), were assessed by artificial inoculation of newborn honeybees with different Serratia doses (104, 106, and 108 cells/mL). The absolute abundance of Serratia in the gut and in the hemocoel was assessed in qPCR with primers targeting the luxS gene. Moreover, the absolute abundance of Serratia was assessed in the gut of honeybees infected with V. ceranae at different development stages and supplied with beneficial microorganisms and fumagillin. Our results showed that all tested Serratia strains could pass through the gut epithelial barrier and proliferate in the hemocoel, with S. marcescens being the most pathogenic. Moreover, under cage conditions, Serratia better proliferates when a V. ceranae infection is co-occurring, with a positive and significant correlation. Finally, fumagillin and some of the tested beneficial microorganisms could control both Serratia and Vairimorpha development. Our findings suggest a correlation between the two pathogens under laboratory conditions, a co-occurring infection that should be taken into consideration by researches when testing antimicrobial compounds active against V. ceranae, and the related honeybees survival rate. Moreover, our findings suggest a positive control of Serratia by the environmental microorganism Apilactobacillus kunkeei in a in vivo model, confirming the potential of this specie as beneficial bacteria for honeybees.


Assuntos
Nosema , Serratia , Animais , Abelhas/microbiologia , Serratia/patogenicidade , Serratia/genética , Serratia/crescimento & desenvolvimento , Nosema/patogenicidade , Nosema/crescimento & desenvolvimento , Nosema/fisiologia , Nosema/genética , Serratia marcescens/patogenicidade , Serratia marcescens/crescimento & desenvolvimento , Serratia marcescens/genética , Trato Gastrointestinal/microbiologia , Infecções por Serratia/microbiologia , Cicloexanos/farmacologia , Serratia liquefaciens/crescimento & desenvolvimento , Serratia liquefaciens/genética , Ácidos Graxos Insaturados , Sesquiterpenos
2.
J Exp Biol ; 225(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35726829

RESUMO

Pollinators are exposed to numerous parasites and pathogens when foraging on flowers. These biological stressors may affect critical cognitive abilities required for foraging. Here, we tested whether exposure to Nosema ceranae, one of the most widespread parasites of honey bees also found in wild pollinators, impacts cognition in bumblebees. We investigated different forms of olfactory learning and memory using conditioning of the proboscis extension reflex. Seven days after being exposed to parasite spores, bumblebees showed lower performance in absolute, differential and reversal learning than controls. The consistent observations across different types of olfactory learning indicate a general negative effect of N. ceranae exposure that did not specifically target particular brain areas or neural processes. We discuss the potential mechanisms by which N. ceranae impairs bumblebee cognition and the broader consequences for populations of pollinators.


Assuntos
Nosema , Parasitos , Animais , Abelhas/parasitologia , Aprendizagem , Memória , Nosema/patogenicidade , Parasitos/patogenicidade , Olfato
3.
PLoS One ; 16(10): e0258801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34695141

RESUMO

The epidemiology of Nosema spp. in honey bees, Apis mellifera, may be affected by winter conditions as cold temperatures and differing wintering methods (indoor and outdoor) provide varying levels of temperature stress and defecation flight opportunities. Across the Canadian Prairies, including Alberta, the length and severity of winter vary among geographic locations. This study investigates the seasonal pattern of Nosema abundance in two Alberta locations using indoor and outdoor wintering methods and its impact on bee population, survival, and commercial viability. This study found that N. ceranae had a distinct seasonal pattern in Alberta, with high spore abundance in spring, declining to low levels in the summer and fall. The results showed that fall Nosema monitoring might not be the best indicator of treatment needs or future colony health outcomes. There was no clear pattern for differences in N. ceranae abundance by location or wintering method. However, wintering method affected survival with colonies wintered indoors having lower mortality and more rapid spring population build-up than outdoor-wintered colonies. The results suggest that the existing Nosema threshold should be reinvestigated with wintering method in mind to provide more favorable outcomes for beekeepers. Average Nosema abundance in the spring was a significant predictor of end-of-study winter colony mortality, highlighting the importance of spring Nosema monitoring and treatments.


Assuntos
Criação de Abelhas/métodos , Abelhas/crescimento & desenvolvimento , Micoses/epidemiologia , Nosema/patogenicidade , Estações do Ano , Temperatura , Alberta/epidemiologia , Animais , Abelhas/microbiologia , Micoses/microbiologia , Nosema/isolamento & purificação
4.
Microbiol Spectr ; 9(2): e0104821, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704799

RESUMO

The fungus Nosema bombycis causes significant economic losses via parasitism of an economically important insect. MicroRNAs (miRNAs) play important roles in regulating host and parasite gene expression via mRNA degradation or by inhibiting protein translation. To investigate whether microRNA-like RNAs (milRNAs) regulate N. bombycis pathogenesis and to better understand the regulatory mechanisms underlying infection, we constructed small RNA libraries from N. bombycis hyphae during the schizont proliferation period. Eleven novel milRNAs were determined by RNA sequencing and stem-loop reverse transcriptase PCR (RT-PCR) assays. Moreover, a virulence-associated milRNA, Nb-milR8, was identified as critical for N. bombycis proliferation by binding and downregulating expression of its target gene, BmPEX16, in the host during infection. Silencing of Nb-milR8 or overexpression of the target BmPEX16 gene resulted in increased susceptibility of Bombyx mori to N. bombycis infection. Taken together, these results suggest that Nb-milR8 is an important virulence factor that acts as an effector to suppress host peroxidase metabolism, thereby facilitating N. bombycis proliferation. These results provide important novel insights into interactions between pathogenic fungi and their hosts. IMPORTANCE A thorough understanding of fungal pathogen adaptations is essential for treating fungal infections. Recent studies have suggested that the role of small RNAs expressed in fungal microsporidia genomes are important for elucidating the mechanisms of fungal infections. Here, we report 11 novel microRNA-like RNAs (milRNAs) from the fungal microsporidium Nosema bombycis and identified NB-milRNAs that adaptively regulate N. bombycis proliferation. In addition, we demonstrate that N. bombycis modulates small RNA (sRNA)-mediated infection by encoding an Nb-miR8 that downregulates the expression of the host peroxidase metabolism protein BmPEX16, which is essential for peroxisome membrane biogenesis and peroxisome assembly. These results significantly contribute to our understanding of the pathogenic mechanisms of fungi, and especially microsporidia, while providing important targets for genetical engineering-based treatment of microsporidia.


Assuntos
Bombyx/microbiologia , Proteínas Fúngicas/biossíntese , Proteínas de Membrana/biossíntese , MicroRNAs/genética , Nosema/genética , Peroxidase/metabolismo , Animais , Bombyx/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Proteínas de Membrana/genética , Micoses/patologia , Nosema/crescimento & desenvolvimento , Nosema/patogenicidade , Peroxissomos/metabolismo , RNA Fúngico/genética
5.
Sci Rep ; 11(1): 7529, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824396

RESUMO

Reports of pollinator declines have prompted efforts to understand contributing factors and protect vulnerable species. While pathogens can be widespread in bee communities, less is known about factors shaping pathogen prevalence among species. Functional traits are often used to predict susceptibility to stressors, including pathogens, in other species-rich communities. Here, we evaluated the relationship between bee functional traits (body size, phenology, nesting location, sociality, and foraging choice) and prevalence of trypanosomes, neogregarines, and the microsporidian Nosema ceranae in wild bee communities. For the most abundant bee species in our system, Bombus impatiens, we also evaluated the relationship between intra-specific size variation and pathogen prevalence. A trait-based model fit the neogregarine prevalence data better than a taxa-based model, while the taxonomic model provided a better model fit for N. ceranae prevalence, and there was no marked difference between the models for trypanosome prevalence. We found that Augochlorella aurata was more likely to harbor trypanosomes than many other bee taxa. Similarly, we found that bigger bees and those with peak activity later in the season were less likely to harbor trypanosomes, though the effect of size was largely driven by A. aurata. We found no clear intra-specific size patterns for pathogen prevalence in B. impatiens. These results indicate that functional traits are not always better than taxonomic affinity in predicting pathogen prevalence, but can help to explain prevalence depending on the pathogen in species-rich bee communities.


Assuntos
Abelhas/anatomia & histologia , Abelhas/metabolismo , Animais , Abelhas/patogenicidade , Pesos e Medidas Corporais/veterinária , Nosema/patogenicidade , Fenótipo , Polinização , Prevalência , Estações do Ano , Trypanosoma/patogenicidade
6.
Biochem Genet ; 59(4): 997-1017, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33616803

RESUMO

In insects infections trigger hemocyte-mediated immune reactions including degranulation by exocytosis; however, involvement of mediator enzymes in degranulation process is unknown in insects. We report here that in silkworm Bombyx mori, infection by endoparasitoid Exorista bombycis and microsporidian Nosema bombycis activated granulation in granulocytes and promoted degranulation of accumulated structured granules. During degranulation the mediator lysosomal enzyme ß-hexosaminidase showed increased activity and expression of ß-hexosaminidase gene was enhanced. The events were confirmed in vitro after incubation of uninfected hemocytes with E. bombycis larval tissue protein. On infection, cytotoxicity marker enzyme lactate dehydrogenase (LDH) was released from the hemocytes illustrating cell toxicity. Strong positive correlation (R2 = 0.71) between LDH activity and ß-hexosaminidase released after the infection showed parasitic-protein-induced hemocyte damage and accompanied release of the enzymes. Expression of ß-hexosaminidase gene was enhanced in early stages after infection followed by down regulation. The expression showed positive correlation (R2 = 0.705) with hexosaminidase activity pattern. B. mori hexosaminidase showed 98% amino acid similarity with that of B. mandarina showing origin from same ancestral gene; however, 45-60% varied from other lepidopterans showing diversity. The observation signifies the less known association of hexosaminidase in degranulation of hemocytes induced by parasitic infection in B. mori and its divergence in different species.


Assuntos
Bombyx/imunologia , Hemócitos/imunologia , Microsporidiose/imunologia , beta-N-Acetil-Hexosaminidases/imunologia , Animais , Bombyx/parasitologia , Dípteros/patogenicidade , Expressão Gênica , Hemócitos/citologia , Nosema/patogenicidade
7.
Int J Biol Macromol ; 172: 223-230, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453252

RESUMO

Microsporidia are obligate single-celled eukaryote parasites. Microsporidian infection can cause large economic losses to beneficial insects such as silkworms and honey bees. Identification of resistance biomacromolecules and breeding of transgenic lines resistant to the microsporidian Nosema bombycis are important for disease management. We previously used transcriptome analysis to identify a guanylate binding protein family BmAtlastin-n gene that was significantly upregulated after Nosema bombycis infection, and we determined that the molecule was highly expressed in resistance-related tissues such as the midgut, fat body and the epidermis. The transgenic silkworm line overexpressing BmAtlastin-n biomolecules had economic characters similar to those of non-transgenic lines. The transgenic OE-BmAtlastin-n lines had significantly improved survival after microspore infection. We used RT-PCR and H&E staining to show that the number of spores in the transgenic lines was significantly lower than in the control lines. In this study, we identified a BmAtlastin-n macromolecule with resistance to N. bombycis and developed a transgenic line. The results improved understanding of the GBP protein family and provided biomacromolecule material for the treatment and prevention of microsporidia.


Assuntos
Bombyx/genética , Resistência à Doença/genética , Proteínas de Ligação ao GTP/genética , Interações Hospedeiro-Patógeno/genética , Proteínas de Insetos/genética , Nosema/patogenicidade , Animais , Animais Geneticamente Modificados , Bombyx/imunologia , Bombyx/microbiologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/imunologia , Proteínas de Ligação ao GTP/imunologia , Regulação da Expressão Gênica , Engenharia Genética/métodos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Insetos/imunologia , Longevidade/genética , Longevidade/imunologia , Nosema/crescimento & desenvolvimento , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/imunologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Transcrição Gênica
8.
Dev Comp Immunol ; 115: 103862, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32916206

RESUMO

Nosema bombycis is a unicellular spore-forming obligate parasite, related to fungi, and causes infections in economically important animals and are opportunistic human pathogens. However, the mechanisms of host response to N. bombycis remain unclear. STING (stimulator of interferon genes) is an adapter protein involved in the innate immune response to pathogens. In this study, a transgenic gRNA vector containing BmSTING was constructed and microinjected to generate the transgenic line BmSTINGΔ6bp/WT and BmSTINGΔ5bp/WT in silkworms. The expression of BmSTING was significantly reduced in BmSTINGΔ5bp/WT compared to non-transgenic silkworm. The mortality and LC3 (microtubule-associated protein 1 light chain 3) level in BmSTINGΔ6bp/WT and BmSTINGΔ5bp/WT was significantly decreased in the early infection stage of N. bombycis, but the transgenic silkworms died rapidly in the later stage. Furthermore, both BmSTING and LC3 were increased in BmE cell lines after infection with N. bombycis. This study highlights the role of STING-dependent pathways response to microsporidia in silkworm, Bombyx mori.


Assuntos
Bombyx/microbiologia , Proteínas de Insetos/metabolismo , Proteínas de Membrana/metabolismo , Microsporidiose/veterinária , Nosema/imunologia , Animais , Autofagia/imunologia , Bombyx/imunologia , Técnicas de Inativação de Genes , Imunidade Inata , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Microsporidiose/imunologia , Nosema/patogenicidade
9.
PLoS One ; 15(11): e0241666, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33147299

RESUMO

When developing new products to be used in honeybee colonies, further than acute toxicity, it is imperative to perform an assessment of risks, including various sublethal effects. The long-term sublethal effects of xenobiotics on honeybees, more specifically of acaricides used in honeybee hives, have been scarcely studied, particularly so in the case of essential oils and their components. In this work, chronic effects of the ingestion of Eupatorium buniifolium (Asteraceae) essential oil were studied on nurse honeybees using laboratory assays. Survival, food consumption, and the effect on the composition of cuticular hydrocarbons (CHC) were assessed. CHC were chosen due to their key role as pheromones involved in honeybee social recognition. While food consumption and survival were not affected by the consumption of the essential oil, CHC amounts and profiles showed dose-dependent changes. All groups of CHC (linear and branched alkanes, alkenes and alkadienes) were altered when honeybees were fed with the highest essential oil dose tested (6000 ppm). The compounds that significantly varied include n-docosane, n-tricosane, n-tetracosane, n-triacontane, n-tritriacontane, 9-tricosene, 7-pentacosene, 9-pentacosene, 9-heptacosene, tritriacontene, pentacosadiene, hentriacontadiene, tritriacontadiene and all methyl alkanes. All of them but pentacosadiene were up-regulated. On the other hand, CHC profiles were similar in healthy and Nosema-infected honeybees when diets included the essential oil at 300 and 3000 ppm. Our results show that the ingestion of an essential oil can impact CHC and that the effect is dose-dependent. Changes in CHC could affect the signaling process mediated by these pheromonal compounds. To our knowledge this is the first report of changes in honeybee cuticular hydrocarbons as a result of essential oil ingestion.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/metabolismo , Eupatorium/química , Óleos Voláteis/metabolismo , Óleos Voláteis/toxicidade , Alcanos/metabolismo , Alcenos/metabolismo , Animais , Abelhas/microbiologia , Hidrocarbonetos/metabolismo , Nosema/patogenicidade
10.
BMC Microbiol ; 20(1): 258, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807095

RESUMO

BACKGROUND: Gut microbial communities can contribute positively and negatively to host health. So far, eight core bacterial taxonomic clusters have been reported in honey bees. These bacteria are involved in host metabolism and defenses. Nosema ceranae is a gut intracellular parasite of honey bees which destroys epithelial cells and gut tissue integrity. Studies have shown protective impacts of honey bee gut microbiota towards N. ceranae infection. However, the impacts of N. ceranae on the relative abundance of honey bee gut microbiota remains unclear, and has been confounded during prior infection assays which resulted in the co-inoculation of bacteria during Nosema challenges. We used a novel method, the suppression of N. ceranae with specific siRNAs, to measure the impacts of Nosema on the gut microbiome. RESULTS: Suppressing N. ceranae led to significant positive effects on microbial abundance. Nevertheless, 15 bacterial taxa, including three core taxa, were negatively correlated with N. ceranae levels. In particular, one co-regulated group of 7 bacteria was significantly negatively correlated with N. ceranae levels. CONCLUSIONS: N. ceranae are negatively correlated with the abundance of 15 identified bacteria. Our results provide insights into interactions between gut microbes and N. ceranae during infection.


Assuntos
Bactérias/classificação , Abelhas/microbiologia , Nosema/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Análise de Sequência de DNA/métodos , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Microsporidiose/prevenção & controle , Microsporidiose/veterinária , Nosema/genética , Nosema/patogenicidade , Filogenia
11.
Parasitology ; 147(12): 1290-1304, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32616082

RESUMO

Recent declines of wild pollinators and infections in honey, bumble and other bee species have raised concerns about pathogen spillover from managed honey and bumble bees to other pollinators. Parasites of honey and bumble bees include trypanosomatids and microsporidia that often exhibit low host specificity, suggesting potential for spillover to co-occurring bees via shared floral resources. However, experimental tests of trypanosomatid and microsporidial cross-infectivity outside of managed honey and bumble bees are scarce. To characterize potential cross-infectivity of honey and bumble bee-associated parasites, we inoculated three trypanosomatids and one microsporidian into five potential hosts - including four managed species - from the apid, halictid and megachilid bee families. We found evidence of cross-infection by the trypanosomatids Crithidia bombi and C. mellificae, with evidence for replication in 3/5 and 3/4 host species, respectively. These include the first reports of experimental C. bombi infection in Megachile rotundata and Osmia lignaria, and C. mellificae infection in O. lignaria and Halictus ligatus. Although inability to control amounts inoculated in O. lignaria and H. ligatus hindered estimates of parasite replication, our findings suggest a broad host range in these trypanosomatids, and underscore the need to quantify disease-mediated threats of managed social bees to sympatric pollinators.


Assuntos
Abelhas/parasitologia , Especificidade de Hospedeiro , Nosema , Trypanosomatina , Animais , Crithidia/isolamento & purificação , Crithidia/patogenicidade , Mel/parasitologia , Interações Hospedeiro-Parasita , Microsporidiose/veterinária , Nosema/isolamento & purificação , Nosema/patogenicidade , Patologia Molecular , Reação em Cadeia da Polimerase em Tempo Real/métodos , Trypanosomatina/isolamento & purificação , Trypanosomatina/patogenicidade
13.
Probiotics Antimicrob Proteins ; 12(4): 1360-1369, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32172463

RESUMO

Lactobacillus salivarius A3iob was administered to productive colonies belonging to commercial apiaries of small beekeepers (around 30-50 hives each one), from four departments of the province of Jujuy (Argentina): Yala, Tilquiza, El Carmen, and Los Alisos. The incidence of Varroa destructor and Nosema spp., before and after winter, was monitored during 2 years of study (2014-2015). Depending on the geographical location of each apiary and the application time, a monthly dose of the bacteria (105 CFU/mL) reduced the levels of varroasis between 50 and 80%. Interestingly, L. salivarius A3iob cells remitted the percentage of the mites to undetectable values in an apiary treated with flumethrin (at Yala, Yungas region).On the other hand, the spore levels of Nosema spp. in the lactobacilli-treated colonies also depended on the apiary and the year of application, but a significant decrease was mainly observed in the post-winter period. However, at Rivera (El Carmen's department), no significant changes were detected in both parameters.These results obtained after 2 years of work suggest that delivering L. salivarius A3iob cells to the bee colonies can become a new eco-friendly tool to cooperate with the control of these bees' pests.


Assuntos
Abelhas/parasitologia , Agentes de Controle Biológico/uso terapêutico , Ligilactobacillus salivarius/fisiologia , Infestações por Ácaros/terapia , Nosema/patogenicidade , Varroidae/microbiologia , Animais , Antibiose/fisiologia , Argentina , Criação de Abelhas/métodos , Abelhas/microbiologia , Contagem de Colônia Microbiana , Humanos , Infestações por Ácaros/microbiologia , Nosema/crescimento & desenvolvimento , Varroidae/patogenicidade
14.
Acta Parasitol ; 65(1): 193-202, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31832922

RESUMO

BACKGROUND: Microsporidia Nosema bombycis is the destructive pathogen in the production of sericulture. The Tc1/mariner elements belong to important component of DNA transposon. METHODS: The genomic data of N. bombycis and related Nosema species were screened to identify the Tc1-like elements and analyzed the phylogenetic relationship, based on bioinformational analysis. High-throughput data of transcriptomes and small RNAs were used to evaluate the expressed level and potential rasiRNAs for the Tc1-like elements of N. bombycis. RESULTS: Twelve complete Tc1-like elements belonging to DD34,E clade is confirmed in the whole genome of N. bombycis, and divided into two branches. Six of them are sole in N. bombycis and thereby would be the molecular marker to differentiate this species from others Nosema spp. Most of the elements have the transcriptional active and are the source of sRNAs. CONCLUSION: Abundant Tc1-like elements in N. bombycis reflect the expansion of transposons for this genomic characters, comparing with others Nosema spp. The finding of distribution, phylogeny and potential functional activity for Tc1Nbs in N. bombycis will help understanding the role of the DNA transposon in genomic evolution of microsporidia.


Assuntos
Bombyx/microbiologia , Elementos de DNA Transponíveis , Genoma Fúngico , Nosema/genética , Animais , Genômica , Nosema/patogenicidade , Filogenia , Transcriptoma
15.
Sci Rep ; 9(1): 14376, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591451

RESUMO

Microsporidia Nosema are transferred among bees via the faecal-oral route. Nosema spp. spores have been detected on flowers and transferred to hives along with the bee pollen. The aim of the present study was to determine whether Nosema microsporidia are transferred by air in an apiary, in a control area (without the presence of bee colonies), and/or in a laboratory during cage experiments with artificially infected bees. The novel way of transmission by air was investigated by the volumetric method using a Hirst-type aerobiological sampler located on the ground in the apiary, in the Botanical Garden and on the laboratory floor. Concurrently, the mean rate of Nosema infections in the foragers in the apiary was estimated with the Bürker haemocytometer method. Spore-trapping tapes were imaged by means of light microscopy, Nomarski interference contrast microscopy and scanning electron microscopy. The highest concentration of Nosema spores per 1m3 of air (4.65) was recorded in August, while the lowest concentration (2.89) was noted in July. This was confirmed by a Real-Time PCR analysis. The presence of N. apis as well as N. ceranae was detected in each of the tested tapes from the apiary. The average copy number of N. apis was estimated at 14.4 × 104 copies per 1 cm2 of the tape; whereas the number of N. ceranae was 2.24 × 104 copies per tape per 1 cm2. The results indicate that Nosema microsporidia were transferred by the wind in the apiary, but not in the Botanical Garden and laboratory by air. This was confirmed by genetic analyses. DNA from immobilised biological material was isolated and subjected to a PCR to detect the Nosema species. A fragment of the 16S rRNA gene, characteristic of Nosema apis and N. ceranae, was detected. Our research adds knowledge about the transfer of Nosema spp. microsporidia in the natural environment and indicates the season associated with the greatest risk of a bee colony infection with Nosema spp.


Assuntos
Microbiologia do Ar , Abelhas/microbiologia , Microsporidiose/transmissão , Nosema/fisiologia , Ar/parasitologia , Animais , Abelhas/parasitologia , Microsporidiose/microbiologia , Microsporidiose/veterinária , Nosema/patogenicidade
16.
J Invertebr Pathol ; 168: 107253, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31586573

RESUMO

Lady beetles are important predators in nature. Some species, including the two-spotted lady beetle, Adalia bipunctata L., are native to North America, whereas others, such as the seven-spotted lady beetle, Coccinella septempunctata L., have been introduced in North America for pest control on agriculture crops. Microsporidia are obligate pathogens that cause chronic disease, and these pathogens are known to infect several lady beetle species. Lady beetles are cannibalistic and, because many species share a given landscape, there is potential for microsporidia to infect susceptible coccinellids when infected eggs are eaten. The objective of this study was to examine the effects of the microsporidium Nosema adaliae isolated from A. bipunctata on C. septempunctata fitness (larval development and mortality, sex ratio, adult longevity and fecundity). Mortality was higher for C. septempunctata larvae that ate four A. bipunctata eggs (≥96% mortality) than for those that ate only one (<63.8%), suggesting that the mortality observed was influenced by the number of eggs eaten. A. bipunctata eggs contain adaline and adalinine, two species-specific alkaloids that have been shown to be detrimental to C. septempunctata larvae. Development of larvae that consumed one uninfected or one N. adaliae-infected A. bipunctata egg, did not differ significantly (20.5 ±â€¯0.2 d and 21.3 ±â€¯0.4 d, respectively) and, although mortality remained high for these larvae (53.5% and 65.6% mortality, respectively), these values also did not differ significantly (p = 0.05). Over a 60-d period, mean fecundity for C. septempunctata adults that ate one uninfected A. bipunctata egg as first-instar larvae was significantly greater (776.6 ±â€¯122.0 eggs) than those that ate one N. adaliae-infected egg (335.6 ±â€¯86.6 eggs, p = 0.005). Larvae from the former group also lived significantly longer (58.2 ±â€¯1.8 d) than did those from the latter group (38.4 ±â€¯6.4 d, p = 0.010). Sex ratios of adult beetles did not differ significantly. Because A. bipunctata and C. septempunctata share similar habitats, it is reasonable to expect these two coccinellids to encounter one another in nature. Results of this study show that the consumption of only one infected A. bipunctata egg by C. septempunctata larvae can result in high larval mortality and reduced fecundity.


Assuntos
Besouros/microbiologia , Nosema/patogenicidade , Animais , Bioensaio , Fertilidade , Espécies Introduzidas , Larva/microbiologia , Longevidade , Mortalidade , Óvulo/microbiologia , Controle Biológico de Vetores/métodos
17.
Sci Rep ; 9(1): 3174, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816168

RESUMO

Microsporidia are a diverse parasite phylum infecting host from all major taxa in all global biomes. This research was conducted to conclude the prevalence of microsporidia in China. All published articles up to February 16, 2018 were considered, including descriptive, cross-sectional, case-control and epidemiology studies. A total of 1052 articles were separated after literature search. After a strict selection according to our criteria, 82 articles were included in qualitative synthesis and ultimately 52 studies were included in quantitative synthesis. Three species of microsporidia were confirmed to exist in China, including Enterocytozoon bieneusi (E. bieneusi), Nosema and Encephalitozoon cuniculi (E. cuniculi). The highest overall estimated prevalence of E. bieneusi in humans was 8.1%, which was observed in acquired immunodeficiency syndrome patients (AIDS). Moreover, the prevalence of E. bieneusi in animals including the cattle, dogs, pigs, deer, sheep and goats were analyszed in this study. The overall estimated prevalence of E. bieneusi acquired by using the random effects model in meta-analysis in cattle, dogs, pigs, sheep and goats and deer was 20.0% (95% confidence intervals: 0.133-0.266, I2 = 98.031%, p < 0.0001), 7.8% (95% CI: 0.050-0.106, I2 = 60.822%, p = 0.0537), 45.1% (95% CI: 0.227-0.674, I2 = 98.183%, p < 0.0001), 28.1% (95% CI: 0.146-0.415, I2 = 98.716%, p < 0.0001) and 19.3% (95% CI: 0.084-0.303, I2 = 96.995%, p < 0.0001) respectively. The overall detection rate of E. bieneusi in water acquired by using the random effects model in meta-analysis was 64.5% (95% CI: 0.433-0.857, I2 = 98.486%, p < 0.0001). Currently, 221 genotypes of E. bieneusi, 1 genotype of E. cuniculi and 6 Nosema were detected in China. The most prevalent genotype of E. bieneusi was genotype D, followed by BEB6 and EbpC.


Assuntos
Variação Genética/genética , Microsporídios/patogenicidade , Microsporidiose/epidemiologia , Microsporidiose/genética , Animais , Bovinos , China/epidemiologia , DNA Espaçador Ribossômico/genética , Cervos/microbiologia , Cães , Encephalitozoon cuniculi/patogenicidade , Enterocytozoon/patogenicidade , Genótipo , Cabras/microbiologia , Humanos , Microsporidiose/microbiologia , Microsporidiose/patologia , Nosema/patogenicidade , Filogenia , Ovinos/microbiologia , Suínos/microbiologia
18.
PLoS One ; 13(10): e0204612, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359366

RESUMO

Gut microbial communities are critical for the health of many insect species. However, little is known about how gut microbial communities respond to anthropogenic changes and how such changes affect host-pathogen interactions. In this study, we used deep sequencing to investigate and compare the composition of gut microbial communities within the midgut and ileum (both bacteria and fungi) in Bombus terrestris queens collected from natural (forest) and urbanized habitats. Additionally, we investigated whether the variation in gut microbial communities under each habitat affected the prevalence of two important bumblebee pathogens that have recently been associated with Bombus declines (Crithidia bombi and Nosema bombi). Microbial community composition differed strongly among habitat types, both for fungi and bacteria. Fungi were almost exclusively associated with bumblebee queens from the forest habitats, and were not commonly detected in bumblebee queens from the urban sites. Further, gut bacterial communities of urban B. terrestris specimens were strongly dominated by bee-specific core bacteria like Snodgrassella (Betaproteobacteria) and Gilliamella (Gammaproteobacteria), whereas specimens from the forest sites contained a huge fraction of environmental bacteria. Pathogen infection was very low in urban populations and infection by Nosema was only observed in specimens collected from forest habitats. No significant relationship was found between pathogen prevalence and microbial gut diversity. However, there was a significant and negative relationship between prevalence of Nosema and relative abundance of the core resident Snodgrassella, supporting its role in pathogen defense. Overall, our results indicate that land-use change may lead to different microbial gut communities in bumblebees, which may have implications for bumblebee health, survival and overall fitness.


Assuntos
Abelhas/microbiologia , Ecossistema , Animais , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Biodiversidade , Crithidia/isolamento & purificação , Crithidia/patogenicidade , Feminino , Fungos/isolamento & purificação , Microbioma Gastrointestinal , Nosema/isolamento & purificação , Nosema/patogenicidade , Prevalência
19.
BMC Genomics ; 19(1): 628, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134827

RESUMO

BACKGROUND: Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice, however, commercial substitutes, such as Bee-Pro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. RESULTS: Gene ontology enrichment revealed that, compared with poor diet (carbohydrates [C]), bees fed pollen (P > C), Bee-Pro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions, and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or Bee-Pro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to Bee-Pro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited 'adult behavior', and developmental processes suggesting transition to foraging. Finally, it altered the 'circadian rhythm', reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than Bee-Pro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess 'Macromolecular complex assembly' was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. CONCLUSIONS: These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/genética , Abelhas/genética , Abelhas/microbiologia , Microsporidiose/genética , Nosema , Transcriptoma/fisiologia , Animais , Abelhas/fisiologia , Dieta , Interações Hospedeiro-Patógeno/genética , Microsporidiose/fisiopatologia , Nosema/isolamento & purificação , Nosema/patogenicidade , Pólen
20.
J Invertebr Pathol ; 157: 1-3, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30012477

RESUMO

Galleria mellonella fed 3 million Nosema pyrausta spores per larva showed 0 and 5% infestation rate at 30 °C and 24 °C, respectively. N. pyrausta virulence did not increase after passage through G. mellonella for three generations. When larvae were pretreated with phenylthiourea, Bacillus thuringiensis or combination of both, infection rates were 11%, 15% and 22%, respectively. Injection of untreated and potassium hydroxide-primed spores resulted in approximately 10% and 50% infection, respectively. G. mellonella is resistant to high dosages of N. pyrausta spores, serving as a prospective model of insect resistance to microsporidia, while host immunosuppression and/or spore activation increases success of the pathogen.


Assuntos
Resistência à Doença/fisiologia , Modelos Animais , Mariposas/microbiologia , Micoses/veterinária , Nosema/patogenicidade , Animais , Microsporidiose/veterinária , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA