Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932173

RESUMO

Alphabaculoviruses are lethal dsDNA viruses of Lepidoptera that have high genetic diversity and are transmitted in aggregates within proteinaceous occlusion bodies. This mode of transmission has implications for their efficacy as biological insecticides. A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV-NIC) comprising nine genotypic variants has been the subject of considerable study due to the influence of variant interactions on the insecticidal properties of mixed-variant occlusion bodies. As part of a systematic study on the replication and transmission of variant mixtures, a tool for the accurate quantification of a selection of genotypic variants was developed based on the quantitative PCR technique (qPCR). First, primer pairs were designed around a region of high variability in four variants named SfNic-A, SfNic-B, SfNic-C and SfNic-E to produce amplicons of 103-150 bp. Then, using cloned purified amplicons as standards, amplification was demonstrated over a dynamic range of 108-101 copies of each target. The assay was efficient (mean ± SD: 98.5 ± 0.8%), reproducible, as shown by low inter- and intra-assay coefficients of variation (<5%), and specific to the target variants (99.7-100% specificity across variants). The quantification method was validated on mixtures of genotype-specific amplicons and demonstrated accurate quantification. Finally, mixtures of the four variants were quantified based on mixtures of budded virions and mixtures of DNA extracted from occlusion-derived virions. In both cases, mixed-variant preparations compared favorably to total viral genome numbers by quantification of the polyhedrin (polh) gene that is present in all variants. This technique should prove invaluable in elucidating the influence of variant diversity on the transmission and insecticidal characteristics of this pathogen.


Assuntos
Variação Genética , Genótipo , Nucleopoliedrovírus , Reação em Cadeia da Polimerase em Tempo Real , Spodoptera , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Animais , Spodoptera/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA Viral/genética
2.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767624

RESUMO

Naturally occurring isolates of baculoviruses, such as the Bombyx mori nucleopolyhedrovirus (BmNPV), usually consist of numerous genetically different haplotypes. Deciphering the different haplotypes of such isolates is hampered by the large size of the dsDNA genome, as well as the short read length of next generation sequencing (NGS) techniques that are widely applied for baculovirus isolate characterization. In this study, we addressed this challenge by combining the accuracy of NGS to determine single nucleotide variants (SNVs) as genetic markers with the long read length of Nanopore sequencing technique. This hybrid approach allowed the comprehensive analysis of genetically homogeneous and heterogeneous isolates of BmNPV. Specifically, this allowed the identification of two putative major haplotypes in the heterogeneous isolate BmNPV-Ja by SNV position linkage. SNV positions, which were determined based on NGS data, were linked by the long Nanopore reads in a Position Weight Matrix. Using a modified Expectation-Maximization algorithm, the Nanopore reads were assigned according to the occurrence of variable SNV positions by machine learning. The cohorts of reads were de novo assembled, which led to the identification of BmNPV haplotypes. The method demonstrated the strength of the combined approach of short- and long-read sequencing techniques to decipher the genetic diversity of baculovirus isolates.


Assuntos
Bombyx , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Nucleopoliedrovírus , Polimorfismo de Nucleotídeo Único , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Animais , Sequenciamento por Nanoporos/métodos , Bombyx/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Viral
3.
J Invertebr Pathol ; 204: 108127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729296

RESUMO

We report the genomic analysis of a novel alphabaculovirus, Mythimna sequax nucleopolyhedrovirus isolate CNPSo-98 (MyseNPV-CNPSo-98), obtained from cadavers of the winter crop pest, Mythimna sequax Franclemont (Lepidoptera: Noctuidae). The insects were collected from rice fields in Southern Brazil in the 1980's and belongs to the 'EMBRAPA-Soja' Virus Collection. High-throughput sequencing reads of DNA from MyseNPV occlusion bodies and assembly of the data yielded an AT-rich circular genome contig of 148,403 bp in length with 163 annotated opening reading frames (ORFs) and four homologous regions (hrs). Phylogenetic inference based on baculovirus core protein sequence alignments indicated that MyseNPV-CNPSo-98 is a member of Alphabaculovirus genus that clustered with other group II noctuid-infecting baculoviruses, including viruses isolated from Helicoverpa armigera and Mamestra spp. The genomes of the clade share strict collinearity and high pairwise nucleotide identity, with a common set of 149 genes, evolving under negative selection, except a bro gene. Branch lengths and Kimura-2-parameter pairwise nucleotide distances indicated that MyseNPV-CNPSo-98 represents a distinct lineage that may not be classified in any of the currently listed species in the genus.


Assuntos
Genoma Viral , Mariposas , Filogenia , Animais , Mariposas/virologia , Baculoviridae/genética , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/isolamento & purificação , Nucleopoliedrovírus/classificação , Genômica
4.
Virus Genes ; 60(3): 275-286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594489

RESUMO

LesaNPV (Leucoma salicis nucleopolyhedrovirus) is an alphabaculovirus group Ib. Potentially, it can be an eco-friendly agent to control the white satin moth Leucoma salicis population. In this study, we have established the relationship between LesaNPV and other closely related alphabaculoviruses. Environmental samples of late instar of white satin moth collected in Poland infected with baculovirus have been homogenized, polyhedra were purified and subjected to scanning and transmission electron microscopy. Viral DNA was sequenced using the Illumina platform and the whole-genome sequence was established by de novo assembly of paired reads. Genome annotation and phylogenetic analyses were performed with the use of bioinformatics tools. The genome of LesaNPV is 132 549 bp long with 154 ORFs and 54.9% GC content. Whole-genome sequencing revealed deletion of dUTPase as well as ribonucleoside reductases small and large subunits region in LesaNPV genome compared to Dasychira pudibunda nucleopolyhedrovirus (DapuNPV) and Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) where this region is complete. Phylogenetic analysis of Baculoviridae family members showed that LesaNPV is less divergent from a common ancestor than closely related species DapuNPV and OpMNPV. This is interesting because their hosts do not occur in the same area. The baculoviruses described in this manuscript are probably isolates of one species and could be assigned to recently denominated species Alphabaculovirus orpseudotsugatae, historically originating from OpMNPV. This finding could have significant implications for the classification and understanding of the phylogeographical spread of baculoviruses.


Assuntos
Genoma Viral , Mariposas , Nucleopoliedrovírus , Filogenia , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Genoma Viral/genética , Animais , Mariposas/virologia , Fases de Leitura Aberta , Sequenciamento Completo do Genoma , DNA Viral/genética , Composição de Bases
5.
Viruses ; 13(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34696324

RESUMO

The mechanisms generating variability in viruses are diverse. Variability allows baculoviruses to evolve with their host and with changes in their environment. We examined the role of one genetic variant of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) and its contribution to the variability of the virus under laboratory conditions. A mixture of natural isolates (ChinNPV-Mex1) contained two genetic variants that dominated over other variants in individual larvae that consumed high (ChinNPV-K) and low (ChinNPV-E) concentrations of inoculum. Studies on the ChinNPV-K variant indicated that it was capable of generating novel variation in a concentration-dependent manner. In cell culture, cells inoculated with high concentrations of ChinNPV-K produced OBs with the ChinNPV-K REN profile, whereas a high diversity of ChinNPV variants was recovered following plaque purification of low concentrations of ChinNPV-K virion inoculum. Interestingly, the ChinNPV-K variant could not be recovered from plaques derived from low concentration inocula originating from budded virions or occlusion-derived virions of ChinNPV-K. Genome sequencing revealed marked differences between ChinNPV-K and ChinNPV-E, with high variation in the ChinNPV-K genome, mostly due to single nucleotide polymorphisms. We conclude that ChinNPV-K is an unstable genetic variant that is responsible for generating much of the detected variability in the natural ChinNPV isolates used in this study.


Assuntos
Variação Genética , Nucleopoliedrovírus/genética , Animais , Larva/virologia , Mariposas/virologia , Nucleopoliedrovírus/classificação , Controle Biológico de Vetores , Filogenia , Polimorfismo de Nucleotídeo Único , Vírion
6.
Viruses ; 13(5)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068017

RESUMO

The mulberry silkworm, Bombyx mori (L.), is a model organism of lepidopteran insects with high economic importance. The viral diseases of the silkworm caused by Bombyx mori nucleopolyhedrovirus (BmNPV) and Bombyx mori bidensovirus (BmBDV) inflict huge economic losses and significantly impact the sericulture industry of India and other countries. To understand the distribution of Indian isolates of the BmNPV and to investigate their genetic composition, an in-depth population structure analysis was conducted using comprehensive and newly developed genomic analysis methods. The seven new Indian BmNPV isolates from Anantapur, Dehradun, Ghumarwin, Jammu, Kashmir, Mysore and Salem grouped in the BmNPV clade, and are most closely related to Autographa californica multiple nucleopolyhedrovirus and Rachiplusia ou multiple nucleopolyhedrovirus on the basis of gene sequencing and phylogenetic analyses of the partial polh, lef-8 and lef-9 gene fragments. The whole genome sequencing of three Indian BmNPV isolates from Mysore (-My), Jammu (-Ja) and Dehradun (-De) was conducted, and intra-isolate genetic variability was analyzed on the basis of variable SNP positions and the frequencies of alternative nucleotides. The results revealed that the BmNPV-De and BmNPV-Ja isolates are highly similar in their genotypic composition, whereas the population structure of BmNPV-My appeared rather pure and homogenous, with almost no or few genetic variations. The BmNPV-De and BmNPV-Ja samples further contained a significant amount of BmBDV belonging to the Bidnaviridae family. We elucidated the genotype composition within Indian BmNPV and BmBDV isolates, and the results presented have broad implications for our understanding of the genetic diversity and evolution of BmNPV and co-occurring BmBDV isolates.


Assuntos
Bombyx/virologia , Genótipo , Vírus de Insetos/genética , Nucleopoliedrovírus/genética , Animais , DNA Viral , Genes Virais , Genoma Viral , Índia , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
7.
Infect Genet Evol ; 90: 104749, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33540087

RESUMO

Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) represents a strong candidate to develop environmental-friendly pesticides against the fall armyworm (Spodoptera frugiperda), a widespread pest that poses a severe threat to different crops around the world. To date, SfMNPV genomic diversity of different isolates has been mainly studied by means of restriction pattern analyses and by sequencing of the egt region. Here, the genomic diversity present inside an isolate of SfMNPV was explored using high-throughput sequencing for the first time. We identified 704 intrahost single nucleotide variants, from which 184 are nonsynonymous mutations distributed among 82 different coding sequences. We detected several structural variants affecting SfMNPV genome, including two previously reported deletions inside the egt region. A comparative analysis between polymorphisms present in different SfMNPV isolates and our intraisolate diversity data suggests that coding regions with higher genetic diversity are associated with oral infectivity or unknown functions. In this context, through molecular evolution studies we provide evidence of diversifying selection acting on sf29, a putative collagenase which could contribute to the oral infectivity of SfMNPV. Overall, our results contribute to deepen our understanding of the coevolution between SfMNPV and the fall armyworm and will be useful to improve the applicability of this virus as a biological control agent.


Assuntos
Genoma Viral , Nucleopoliedrovírus/genética , Spodoptera/virologia , Animais , Argentina , Larva/genética , Larva/virologia , Nucleopoliedrovírus/classificação , Spodoptera/crescimento & desenvolvimento
8.
Braz J Microbiol ; 52(1): 219-227, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33410101

RESUMO

We described the complete genome sequence of a novel baculovirus isolate of species Buzura suppressaria nucleopolyhedrovirus, called by isolate CNPSo-25. The occlusion bodies were found to be polyhedral in shape and to contain virions with singly embedded nucleocapsids. The size of the genome is 121,377 bp with a G+C content of 36.7%. We annotated 131 ORFs that cover 90.42% of the genome. Moreover, phylogenetic inference indicated that CNPSo-25 is a member of genus Alphabaculovirus that clustered together with two other Chinese isolates of the same species. We called the virus by Biston suppressaria nucleopolyhedrovirus isolate CNPSo-25 (BisuNPV-CNPSo-25), as Buzura was placed inside the lepidopteran genus Biston. As expected, we detected intra-population variability in the virus sample when the novel isolate was compared to the Chinese isolates: 292 single nucleotide variants were found in the genome, with 181 affecting the protein product. The closest representatives of other species to BisuNPV-CNPSo-25 was found to be Sucra jujuba nucleopolyhedrovirus and Hyposidra talaca nucleopolyhedrovirus, two other virus isolates of geometrid caterpillars. The study of baculovirus genomes is of importance for the development of tools for insect pest biological control and biotechnology.


Assuntos
Genoma Viral , Genômica , Mariposas/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/genética , Animais , Composição de Bases , Genes Virais/genética , Nucleopoliedrovírus/isolamento & purificação , Filogenia , Análise de Sequência de DNA , Chá , Vírion , Sequenciamento Completo do Genoma
9.
Viruses ; 14(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35062240

RESUMO

The larch looper, Erannis ankeraria Staudinger (Lepidoptera: Geometridae), is one of the major insect pests of larch forests, widely distributed from southeastern Europe to East Asia. A naturally occurring baculovirus, Erannis ankeraria nucleopolyhedrovirus (EranNPV), was isolated from E. ankeraria larvae. This virus was characterized by electron microscopy and by sequencing the whole viral genome. The occlusion bodies (OBs) of EranNPV exhibited irregular polyhedral shapes containing multiple enveloped rod-shaped virions with a single nucleocapsid per virion. The EranNPV genome was 125,247 bp in length with a nucleotide distribution of 34.9% G+C. A total of 131 hypothetical open reading frames (ORFs) were identified, including the 38 baculovirus core genes and five multi-copy genes. Five homologous regions (hrs) were found in the EranNPV genome. Phylogeny and pairwise kimura 2-parameter analysis indicated that EranNPV was a novel group II alphabaculovirus and was most closely related to Apocheima cinerarium NPV (ApciNPV). Field trials showed that EranNPV was effective in controlling E. ankeraria in larch forests. The above results will be relevant to the functional research on EranNPV and promote the use of this virus as a biocontrol agent.


Assuntos
Genes Virais , Genoma Viral , Larix/parasitologia , Mariposas/virologia , Nucleopoliedrovírus/genética , Animais , Baculoviridae/genética , Europa (Continente) , Larva/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Vírion , Sequenciamento Completo do Genoma
10.
Virus Res ; 291: 198195, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33080245

RESUMO

The Bombyx mori nucleopolyhedrovirus (BmNPV)-based baculoviral expression vector system is among the most efficient expression vector systems for eukaryotic proteins especially when used in combination with silkworms as a host. We newly isolated a novel BmNPV strain (BmNPV H4) in Hokkaido, Japan that outperforms the type strain T3 in terms of both proliferation and expression of polyhedrin protein in silkworm larvae; however, it proliferates poorly in the BmN cell line. We inferred the gene responsible for the differences in proliferation between viral strains by quantifying amino acid similarity distances in protein functional domains and identifying highly divergent alleles between the H4 and T3 strains. Among proteins that differ markedly in functional domain sequence between H4 and T3, we identified the F gene, which encodes the F protein, as a putative cause of proliferative differences between the two strains. Using recombinant viruses with the F protein-coding sequence exchanged between H4 and T3, we determined that the T3 F protein increases H4 proliferation in BmN while the H4 F protein does not improve T3 proliferation in silkworm larvae. Our results suggest that the BmNPV F protein can strongly affect viral proliferation in a genetic background-specific manner and may be an important target for manipulating the proliferation characteristics of BmNPV-based expression vectors.


Assuntos
Bombyx/virologia , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/fisiologia , Proteínas Virais/genética , Animais , Sequência de Bases/genética , Linhagem Celular , Japão , Larva/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Fases de Leitura Aberta
11.
Virology ; 550: 37-50, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32877775

RESUMO

Nuclear actin polymerization plays an indispensable role in the nuclear assembly of baculovirus nucleocapsid, but the underlying viral infection-mediated mechanism remains unclear. VP39 is the major protein in baculovirus capsid, which builds the skeleton of the capsid tubular structure. VP39 is suggested in previous studies to interact with cellular actin and mediate actin polymerization. However, it is unclear about the role of VP39 in mediating nuclear actin polymerization. Results in this study indicated that vp39 deletion abolished nuclear actin polymerization, which was recovered after vp39 repair, revealing the essential part of VP39 in nuclear actin polymerization. Furthermore, a series of mutants with vp39 deletions were constructed to analyze the important region responsible for nuclear actin polymerization. In addition, intracellular localization analysis demonstrated that the amino acids 192-286 in VP39 C-terminal are responsible for nuclear actin polymerization.


Assuntos
Actinas/química , Núcleo Celular/metabolismo , Interações Hospedeiro-Patógeno/genética , Nucleopoliedrovírus/química , Nucleopoliedrovírus/classificação , Actinas/genética , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Bombyx/virologia , Linhagem Celular , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Biologia Computacional/métodos , Deleção de Genes , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Nucleocapsídeo/metabolismo , Nucleocapsídeo/ultraestrutura , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/metabolismo , Filogenia , Plasmídeos/química , Plasmídeos/metabolismo , Polimerização , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Proteína Vermelha Fluorescente
12.
Acta Virol ; 64(3): 344-351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32985213

RESUMO

This study was focused on the detection, characterization and virulence of a new baculovirus isolate from the larvae of cabbage looper, Trichoplusia ni (Hubner) (Lepidoptera: Noctuidae). T. ni is a polyphagous pest, and it has cosmopolitan distribution. An infected T. ni larvae was collected from a cabbage field in Turkey. Scanning electron microscopy studies showed the presence of typical occlusion bodies (OBs) with average size of 0.76 to 1.46 µm in the collected larvae. Since the virions have single nucleocapsid within the envelopes, the isolate was named as Trichoplusia ni single nucleopolyhedrovirus Turkey isolate (TrniSNPV- TR). The total genome of the TrniSNPV-TR was determined as 122.9 kb in size. Sequence analysis of the amplified late expression factor 8 (lef8), late expression factor 9 (lef9) and polyhedrin (polh) genes showed that the virus is a new isolate of nucleopolyhedroviruses and close to Trichoplusia ni SNPV isolates mentioned in the literature. However, this is the first study for the detection and characterization of a baculovirus from T. ni in Eurasian region. Insecticidal activities of the TrniSNPV-TR isolate (106 OBs/ml-1) against neonate, 3rd and 5th instar larvae of T. ni and Helicoverpa armigera showed 98%-91%, 91%-87% and 65%-60% mortalities, respectively, within 14 days. LC50 of TrniSNPV-TR was determined as 2×103-9×103, 3×104-7×104 and 1×105-2×105 OBs/ml on neonate, 3rd and 5th instar larvae, respectively. All these results showed that, TrniSNPV-TR has good potential to be utilized as a bio-pesticide against T. ni larvae in the future. Keywords: baculovirus; nucleopolyhedrovirus; Trichoplusia ni; TrniSNPV-TR; biological control.


Assuntos
Mariposas , Nucleopoliedrovírus , Animais , Brassica , Larva , Mariposas/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Turquia , Virulência
13.
Virus Genes ; 56(3): 401-405, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32030574

RESUMO

The fall armyworm, Spodoptera frugiperda (JE Smith) is a key pest in the Americas. Control strategies are mainly carried out by use of chemical insecticides and transgenic crops expressing Bacillus thuringiensis toxins. In the last years, resistance of S. frugiperda populations to transgenic corn was reported in different Latin American countries. The baculovirus Spodoptera frugiperda Multiple Nucleopolyhedrovirus (SfMNPV) is a pathogenic agent for the fall armyworm and a potential alternative for its control in integrated pest management strategies. In this work, we analyze some characteristics of two baculovirus isolates collected from maize (SfMNPV-M) and cotton (SfMNPV-C) fields from Argentina. The isolates were compared by restriction enzymes patterns and the analysis reveals the presence of genotypic variants in the SfMNPV-M isolate. We confirmed a deletion by sequencing fragments encompassing egt gene and most part of its contiguous gene (orf A) in a SfMNVP-M genotypic variant. Additionally, we estimated the 50% lethal dose and median survival time of each isolate in bioassays with S. frugiperda larvae.


Assuntos
Infecções por Vírus de DNA/virologia , Variação Genética , Nucleopoliedrovírus/genética , Argentina , Genoma Viral , Genótipo , Haplótipos , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Filogenia , Análise de Sequência de DNA
14.
Viruses ; 11(10)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31601038

RESUMO

Artaxa digramma is a lepidopteran pest distributed throughout southern China, Myanmar, Indonesia, and India. Artaxa digramma nucleopolyhedrovirus (ArdiNPV) is a specific viral pathogen of A. digramma and deemed as a promising biocontrol agent against the pest. In this study, the complete genome sequence of ArdiNPV was determined by deep sequencing. The genome of ArdiNPV contains a double-stranded DNA (dsDNA) of 161,734 bp in length and 39.1% G+C content. Further, 149 hypothetical open reading frames (ORFs) were predicted to encode proteins >50 amino acids in length, covering 83% of the whole genome. Among these ORFs, 38 were baculovirus core genes, 22 were lepidopteran baculovirus conserved genes, and seven were unique to ArdiNPV, respectively. No typical baculoviral homologous regions (hrs) were identified in the genome. ArdiNPV had five multi-copy genes including baculovirus repeated ORFs (bros), calcium/sodium antiporter B (chaB), DNA binding protein (dbp), inhibitor of apoptosis protein (iap), and p26. Interestingly, phylogenetic analyses showed that ArdiNPV belonged to Clade II.b of Group II Alphabaculoviruses, which all contain a second copy of dbp. The genome of ArdiNPV was the closest to Euproctis pseudoconspersa nucleopolyhedrovirus, with 57.4% whole-genome similarity. Therefore, these results suggest that ArdiNPV is a novel baculovirus belonging to a newly identified cluster of Clade II.b Alphabaculoviruses.


Assuntos
Mariposas/virologia , Nucleopoliedrovírus , Animais , Genoma Viral , Anotação de Sequência Molecular , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/isolamento & purificação , Filogenia , Sequenciamento Completo do Genoma
15.
Viruses ; 11(7)2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323893

RESUMO

Phylogenetic analyses suggest that Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) and Helicoverpa armigera multiple nucleopolyhedrovirus (HearMNPV) may be strains of the same virus species. Most of the studies comparing their biological activities have been performed in their homologous hosts. A comparison of host range and stability in alternative hosts was performed. The host range of these viruses was compared using high concentrations of inoculum to inoculate second instars of six species of Lepidoptera. One semi-permissive host (Spodopteralittoralis) and one permissive host (S.exigua) were then selected and used to perform six serial passages involving a concentration corresponding to the ~25% lethal concentration for both viruses. Restriction endonuclease analysis showed fragment length polymorphisms in every host-virus system studied. In S.littoralis, serial passage of MbMNPV resulted in decreased pathogenicity and an increase in speed-of-kill, whereas no significant changes were detected for HearMNPV with respect to the initial inoculum. In contrast, both viruses showed a similar trend in S.exigua. These results highlight the low genetic diversity and a high phenotypic stability of HearMNPV with respect to the original inoculum after six successive passages in both insect hosts. This study concludes that host-baculovirus interactions during serial passage are complex and the process of adaptation to a novel semi-permissive host is far from predictable.


Assuntos
Variação Genética , Especificidade de Hospedeiro , Nucleopoliedrovírus/fisiologia , Tropismo Viral , Replicação Viral , Animais , Células Cultivadas , DNA Viral , Suscetibilidade a Doenças , Insetos/virologia , Nucleopoliedrovírus/classificação , Inoculações Seriadas
16.
Viruses ; 11(7)2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277203

RESUMO

Baculoviruses are capable of infecting a wide diversity of insect pests. In the 1990s, the Dione juno nucleopolyhedrovirus (DijuNPV) was isolated from larvae of the major passionfruit defoliator pest Dione juno juno (Nymphalidae) and described at ultrastructural and pathological levels. In this study, the complete genome sequence of DijuNPV was determined and analyzed. The circular genome presents 122,075 bp with a G + C content of 50.9%. DijuNPV is the first alphabaculovirus completely sequenced that was isolated from a nymphalid host and may represent a divergent species. It appeared closely related to Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) and other Choristoneura-isolated group I alphabaculoviruses. We annotated 153 open reading frames (ORFs), including a set of 38 core genes, 26 ORFs identified as present in lepidopteran baculoviruses, 17 ORFs unique in baculovirus, and several auxiliary genes (e.g., bro, cathepsin, chitinase, iap-1, iap-2, and thymidylate kinase). The thymidylate kinase (tmk) gene was present fused to a dUTPase (dut) gene in other baculovirus genomes. DijuNPV likely lost the dut portion together with the iap-3 homolog. Overall, the genome sequencing of novel alphabaculoviruses enables a wide understanding of baculovirus evolution.


Assuntos
Borboletas/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Passiflora , Filogenia , Animais , Baculoviridae/classificação , Baculoviridae/genética , Composição de Bases , Sequência de Bases , Evolução Biológica , Mapeamento Cromossômico , Genoma Viral , Larva/virologia , Mariposas/virologia , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/ultraestrutura , Fases de Leitura Aberta , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
17.
Viruses ; 11(7)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247912

RESUMO

Isolates of the alphabaculovirus species, Chrysodeixis includens nucleopolyhedrovirus, have been identified that produce polyhedral occlusion bodies and infect larvae of the soybean looper, Chrysodeixis includens. In this study, we report the discovery and characterization of a novel C. includens-infecting alphabaculovirus, Chrysodeixis includens nucleopolyhedrovirus #1 (ChinNPV#1), that produces tetrahedral occlusion bodies. In bioassays against C. includens larvae, ChinNPV #1 exhibited a degree of pathogenicity that was similar to that of other ChinNPV isolates, but killed larvae more slowly. The host range of ChinNPV#1 was found to be very narrow, with no indication of infection occurring in larvae of Trichoplusia ni and six other noctuid species. The ChinNPV#1 genome sequence was determined to be 130,540 bp, with 126 open reading frames (ORFs) annotated but containing no homologous repeat (hr) regions. Phylogenetic analysis placed ChinNPV#1 in a clade with other Group II alphabaculoviruses from hosts of lepidopteran subfamily Plusiinae, including Chrysodeixis chalcites nucleopolyhedrovirus and Trichoplusia ni single nucleopolyhedrovirus. A unique feature of the ChinNPV#1 genome was the presence of two full-length copies of the he65 ORF. The results indicate that ChinNPV#1 is related to, but distinct from, other ChinNPV isolates.


Assuntos
Mariposas/virologia , Nucleopoliedrovírus/isolamento & purificação , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Dosagem de Genes , Genoma Viral , Larva/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/ultraestrutura , Corpos de Oclusão Virais/genética , Corpos de Oclusão Virais/metabolismo , Corpos de Oclusão Virais/ultraestrutura , Filogenia , Alinhamento de Sequência , Glycine max/parasitologia , Proteínas Virais/metabolismo
18.
Viruses ; 11(7)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247955

RESUMO

Genetic variation in baculoviruses is recognized as a key factor, not only due to the influence of such variation on pathogen transmission and virulence traits, but also because genetic variants can form the basis for novel biological insecticides. In this study, we examined the genetic variability of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) present in field isolates obtained from virus-killed larvae. Different ChinNPV strains were identified by restriction endonuclease analysis, from which genetic variants were isolated by plaque assay. Biological characterization studies were based on pathogenicity, median time to death (MTD), and viral occlusion body (OB) production (OBs/larva). Nine different isolates were obtained from eleven virus-killed larvae collected from fields of soybean in Mexico. An equimolar mixture of these isolates, named ChinNPV-Mex1, showed good insecticidal properties and yielded 23 genetic variants by plaque assay, one of which (ChinNPV-R) caused the highest mortality in second instars of C. includens. Five of these variants were selected: ChinNPV-F, ChinNPV-J, ChinNPV-K, ChinNPV-R, and ChinNPV-V. No differences in median time to death were found between them, while ChinNPV-F, ChinNPV-K, ChinNPV-R and ChinNPV-V were more productive than ChinNPV-J and the original mixture of field isolates ChinNPV-Mex1. These results demonstrate the high variability present in natural populations of this virus and support the use of these new genetic variants as promising active substances for baculovirus-based bioinsecticides.


Assuntos
Mariposas/virologia , Nucleopoliedrovírus/genética , Animais , Variação Genética , Genótipo , Larva/crescimento & desenvolvimento , Larva/virologia , Mariposas/crescimento & desenvolvimento , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Nucleopoliedrovírus/fisiologia , Controle Biológico de Vetores
19.
Virology ; 534: 64-71, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31200103

RESUMO

We described a novel baculovirus isolated from the polyphagous insect pest Rachiplusia nu. The virus presented pyramidal-shaped occlusion bodies (OBs) with singly-embed nucleocapsids and a dose mortality response of 6.9 × 103 OBs/ml to third-instar larvae of R. nu. The virus genome is 128,587 bp long with a G + C content of 37.9% and 134 predicted ORFs. The virus is an alphabaculovirus closely related to Trichoplusia ni single nucleopolyhedrovirus, Chrysodeixis chalcites nucleopolyhedrovirus, and Chrysodeixis includens single nucleopolyhedrovirus and may constitute a new species. Surprisingly, we found co-evolution among the related viruses and their hosts at species level. Besides, auxiliary genes with homologs in other baculoviruses were found, e.g. a CPD-photolyase. The gene seemed to be result of a single event of horizontal transfer from lepidopterans to alphabaculovirus, followed by a transference from alpha to betabaculovirus. The predicted protein appears to be an active enzyme that ensures likely DNA protection from sunlight.


Assuntos
Desoxirribodipirimidina Fotoliase/genética , Genoma Viral , Mariposas/virologia , Nucleopoliedrovírus/genética , Proteínas Virais/genética , Animais , Baculoviridae/classificação , Baculoviridae/enzimologia , Baculoviridae/genética , Composição de Bases , Sequência de Bases , Desoxirribodipirimidina Fotoliase/metabolismo , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/enzimologia , Nucleopoliedrovírus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Proteínas Virais/metabolismo , Vírion/classificação , Vírion/genética , Vírion/isolamento & purificação
20.
J Invertebr Pathol ; 160: 8-17, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496755

RESUMO

A new beet armyworm (Spodoptera exigua) multiple nucleopolyhedrovirus SeMNPV-QD was isolated from dead larvae in the field in Qingdao, Shandong, China. The virus has a polyhedron size of 1.39 ±â€¯0.28 µm, and typical virions contain one to seven nucleocapsids per envelope. SeMNPV-QD only infects the larvae of S. exigua; it does not infect larvae of S. litura, Agrotis ipsilon, A. segetum, Bombyx mori, Hyphantria cunea, or Stilpnotia salicis, and thus, has higher host specificity. SeMNPV-QD has a circular double-stranded DNA genome of 128,525 bp with a GC content of 37.41% and 127 putative open reading frames (ORF), each of which encodes more than 50 amino acids. These were identified and annotated in the SeMNPV-QD genome, accounting for 87.53% of the whole genome. Phylogenetic analysis of 38 core genes of the baculovirus confirmed that SeMNPV-QD is a Group II Alphabaculovirus and is most closely related to SeMNPV American isolate (SeMNPV-US1), S. litura nucleopolyhedrovirus II (SpliNPV-II), S. frugiperda multiple nucleopolyhedrovirus (SfMNPV), A. segetum nucleopolyhedrovirus (AgseNPV), A. segetum nucleopolyhedrovirus B (AgseNPV-B) and A. ipsilon multiple nucleopolyhedrovirus (AgipNPV). The pairwise distance of the nucleotide sequences of lef-8, lef-9, polh and concatenated lef-8/lef-9/polh fragments between SeMNPV-QD and several sister viruses mentioned above were all above 0.05 substitutions/site. SeMNPV-QD has 123 ORFs similar to those of SeMNPV-US1, and the genomic similarity was 45.8%. Compared to SeMNPV-US1, SeMNPV-QD has four additional ORFs such as two baculovirus repeat ORF (bro) genes, bro-1, bro-2, orf39 and orf95, but lacks 17 ORFs that have no effect on viral transcription and replication. The above results indicate that SeMNPV-QD is a new species of S. exigua multiple nucleopolyhedrovirus.


Assuntos
Nucleopoliedrovírus/isolamento & purificação , Spodoptera/virologia , Animais , Agentes de Controle Biológico , China , Genoma Viral , Larva/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA