Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.780
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38747848

RESUMO

Despite good hepatitis B virus (HBV) inhibition by nucleoside analogs (NAs), cases of hepatocellular carcinoma (HCC) still occur. This study proposed a non-invasive predictive model to assess HCC risk in patients with chronic hepatitis B (CHB) receiving NAs treatment. Data were obtained from a hospital-based retrospective cohort registered on the Platform of Medical Data Science Academy of Chongqing Medical University, from 2013 to 2019. A total of 501 patients under NAs treatment had their FIB-4 index updated semiannually by recalculation based on laboratory values. Patients were divided into three groups based on FIB-4 index values: < 1.45, 1.45-3.25, and ≥ 3.25. Subsequently, HCC incidence was reassessed every six months using Kaplan-Meier curves based on the updated FIB-4 index. The median follow-up time of CHB patients after receiving NAs treatment was 2.5 years. HCC incidences with FIB-4 index < 1.45, 1.45-3.25, and ≥ 3.25 were 1.18%, 1.32%, and 9.09%, respectively. Dynamic assessment showed that the percentage of patients with FIB-4 index < 1.45 significantly increased semiannually (P < 0.001), and of patients with FIB-4 index ≥ 3.25 significantly decreased (P < 0.001). HCC incidence was the highest among patients with FIB-4 index ≥ 3.25. The FIB-4 index effectively predicted HCC incidence, and its dynamic assessment could be used for regular surveillance to implement early intervention and reduce HCC risk.


Assuntos
Antivirais , Carcinoma Hepatocelular , Hepatite B Crônica , Cirrose Hepática , Neoplasias Hepáticas , Humanos , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Masculino , Feminino , Estudos Retrospectivos , Antivirais/uso terapêutico , Pessoa de Meia-Idade , Adulto , Fatores de Risco , Nucleosídeos/uso terapêutico , Incidência , Medição de Risco
2.
J Coll Physicians Surg Pak ; 34(5): 545-550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720214

RESUMO

OBJECTIVE: To compare the predictive value of hepatitis B virus (HBV) RNA and HBsAg quantification upon discontinuation of nucleos(t)ide analogues (NAs) therapy for clinical and virological relapse in chronic hepatitis B (CHB). STUDY DESIGN: Observational study. Place and Duration of the Study: Department of Infectious Diseases and Hepatology, The Second Hospital of Shandong University, Jinan, China, from July 2014 to December 2020. METHODOLOGY: CHB patients received single NAs and discontinued treatment following appropriate standards. HBsAg quantification was conducted using the i2000 Chemiluminescent Immunoassay (CLIA) Analyser, while serum HBV RNA quantification was performed using specific RNA target capture and simultaneous amplification and testing. The main observational endpoints included virological relapse and clinical relapse. RESULTS: Eighty-one patients were recruited, with 15 patients achieving HBsAg loss at cessation. Twenty-nine individuals encountered virological relapse, while 13 patients experienced clinical relapse. Thirty-one patients achieved HBsAg <100 IU/ml at NAs cessation, among whom 26 achieved undetectable HBV RNA, while four patients suffered virological relapse (15.4%). Serum HBV RNA emerged as an independent determinant of virological relapse (HR 1.850), clinical relapse (HR 2.020), and HBsAg loss after NAs cessation (HR 0.138). The presence of HBsAg <100 IU/ml at cessation did not serve as a predictor for virological relapse and clinical relapse. CONCLUSION: Lower HBV RNA levels predict a better off-treatment response. Discontinuation of prolonged NAs therapy appears as a viable and safe choice for patients with undetectable HBV RNA. In comparison to HBV RNA, HBsAg <100 IU/ml at cessation did not show sufficient predictive value for virological relapse and clinical relapse. KEY WORDS: HBV RNA, Hepatitis B surface antigen, Chronic hepatitis B, Relapse.


Assuntos
Antivirais , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Hepatite B Crônica , RNA Viral , Recidiva , Humanos , Antígenos de Superfície da Hepatite B/sangue , Feminino , Masculino , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/sangue , Antivirais/uso terapêutico , RNA Viral/sangue , Vírus da Hepatite B/genética , Adulto , Pessoa de Meia-Idade , Valor Preditivo dos Testes , China , Nucleosídeos/uso terapêutico
3.
J Transl Med ; 22(1): 449, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741129

RESUMO

Inherited deficiency of thymidine phosphorylase (TP), encoded by TYMP, leads to a rare disease with multiple mitochondrial DNA (mtDNA) abnormalities, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the impact of TP deficiency on lysosomes remains unclear, which are important for mitochondrial quality control and nucleic acid metabolism. Muscle biopsy tissue and skin fibroblasts from MNGIE patients, patients with m.3243 A > G mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and healthy controls (HC) were collected to perform mitochondrial and lysosomal functional analyses. In addition to mtDNA abnormalities, compared to controls distinctively reduced expression of LAMP1 and increased mitochondrial content were detected in the muscle tissue of MNGIE patients. Skin fibroblasts from MNGIE patients showed decreased expression of LAMP2, lowered lysosomal acidity, reduced enzyme activity and impaired protein degradation ability. TYMP knockout or TP inhibition in cells can also induce the similar lysosomal dysfunction. Using lysosome immunoprecipitation (Lyso- IP), increased mitochondrial proteins, decreased vesicular proteins and V-ATPase enzymes, and accumulation of various nucleosides were detected in lysosomes with TP deficiency. Treatment of cells with high concentrations of dThd and dUrd also triggers lysosomal dysfunction and disruption of mitochondrial homeostasis. Therefore, the results provided evidence that TP deficiency leads to nucleoside accumulation in lysosomes and lysosomal dysfunction, revealing the widespread disruption of organelles underlying MNGIE.


Assuntos
DNA Mitocondrial , Fibroblastos , Lisossomos , Mitocôndrias , Encefalomiopatias Mitocondriais , Nucleosídeos , Timidina Fosforilase , Humanos , Lisossomos/metabolismo , Timidina Fosforilase/metabolismo , Timidina Fosforilase/deficiência , Timidina Fosforilase/genética , Encefalomiopatias Mitocondriais/metabolismo , Encefalomiopatias Mitocondriais/patologia , Encefalomiopatias Mitocondriais/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Nucleosídeos/metabolismo , Pseudo-Obstrução Intestinal/metabolismo , Pseudo-Obstrução Intestinal/patologia , Pseudo-Obstrução Intestinal/enzimologia , Pseudo-Obstrução Intestinal/genética , Oftalmoplegia/metabolismo , Oftalmoplegia/patologia , Oftalmoplegia/congênito , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patologia , Masculino , Feminino , Pele/patologia , Pele/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo
4.
Mitochondrion ; 76: 101879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599303

RESUMO

OBJECTIVES: Thymidine kinase 2 deficiency (TK2d) is a rare autosomal recessive mitochondrial disorder. It manifests as a continuous clinical spectrum, from fatal infantile mitochondrial DNA depletion syndromes to adult-onset mitochondrial myopathies characterized by ophthalmoplegia-plus phenotypes with early respiratory involvement. Treatment with pyrimidine nucleosides has recently shown striking effects on survival and motor outcomes in the more severe infantile-onset clinical forms. We present the response to treatment in a patient with adult-onset TK2d. METHODS: An adult with ptosis, ophthalmoplegia, facial, neck, and proximal muscle weakness, non-invasive nocturnal mechanical ventilation, and dysphagia due to biallelic pathogenic variants in TK2 received treatment with 260 mg/kg/day of deoxycytidine (dC) and deoxythymidine (dT) under a Compassionate Use Program. Prospective motor and respiratory assessments are presented. RESULTS: After 27 months of follow-up, the North Star Ambulatory Assessment improved by 11 points, he walked 195 m more in the 6 Minute-Walking-Test, ran 10 s faster in the 100-meter time velocity test, and the Forced Vital Capacity stabilized. Growth Differentiation Factor-15 (GDF15) levels, a biomarker of respiratory chain dysfunction, normalized. The only reported side effect was dose-dependent diarrhea. DISCUSSION: Treatment with dC and dT can significantly improve motor performance and stabilize respiratory function safely in patients with adult-onset TK2d.


Assuntos
Timidina Quinase , Humanos , Masculino , Timidina Quinase/genética , Timidina Quinase/deficiência , Administração Oral , Adulto , Resultado do Tratamento , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Nucleosídeos/uso terapêutico , Nucleosídeos/administração & dosagem
5.
Org Biomol Chem ; 22(18): 3544-3558, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624091

RESUMO

Chemical tools and principles have become central to biological and medical research/applications by leveraging a range of classical organic chemistry reactions. Friedel-Crafts alkylation and acylation are arguably some of the most well-known and used synthetic methods for the preparation of small molecules but their use in biological and medical fields is relatively less frequent than the other reactions, possibly owing to the notion of their plausible incompatibility with biological systems. This review demonstrates advances in Friedel-Crafts alkylation and acylation reactions in a variety of biomolecular chemistry fields. With the discoveries and applications of numerous biomolecule-catalyzed or -assisted processes, these reactions have garnered considerable interest in biochemistry, enzymology, and biocatalysis. Despite the challenges of reactivity and selectivity of biomolecular reactions, the alkylation and acylation reactions demonstrated their utility for the construction and functionalization of all the four major biomolecules (i.e., nucleosides, carbohydrates/saccharides, lipids/fatty acids, and amino acids/peptides/proteins), and their diverse applications in biological, medical, and material fields are discussed. As the alkylation and acylation reactions are often fundamental educational components of organic chemistry courses, this review is intended for both experts and nonexperts by discussing their basic reaction patterns (with the depiction of each reaction mechanism in the ESI) and relevant real-world impacts in order to enrich chemical research and education. The significant growth of biomolecular Friedel-Crafts reactions described here is a testament to their broad importance and utility, and further development and investigations of the reactions will surely be the focus in the organic biomolecular chemistry fields.


Assuntos
Proteínas , Alquilação , Acilação , Proteínas/química , Aminoácidos/química , Aminoácidos/síntese química , Carboidratos/química , Carboidratos/síntese química , Ácidos Graxos/química , Lipídeos/química , Nucleosídeos/química , Nucleosídeos/síntese química , Peptídeos/química , Peptídeos/síntese química
6.
Anal Methods ; 16(16): 2505-2512, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38584507

RESUMO

Solid phase extraction (SPE) and liquid chromatographic (LC) separation of nucleobases and nucleosides are challenging due to the high hydrophilicity of these compounds. Herein we report a novel on-line SPE-LC-MS/MS method for their quantification after pre-column derivatization with chloroacetaldehyde (CAA). The method proposed is selective and sensitive with limits of detection at the nano-molar level. Analysis of urine and saliva samples by using this method is demonstrated. Adenine, guanine, cytosine, adenosine, guanosine, and cytidine were found in the range from 0.19 (guanosine) to 1.83 µM (cytidine) in urine and from 0.015 (guanosine) to 0.79 µM (adenine) in saliva. Interestingly, methylation of cytidine was found to be significantly different in urine from that in saliva. While 5-hydroxymethylcytidine was detected at a very low level (<0.05 µM) in saliva, it was found to be the most prominent methylated cytidine in urine at a high level of 3.33 µM. Since on-line SPE is deployed, the proposed LC-MS/MS quantitative assay is convenient to carry out and offers good assay accuracy and repeatability.


Assuntos
Nucleosídeos , Saliva , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Humanos , Extração em Fase Sólida/métodos , Saliva/química , Cromatografia Líquida/métodos , Nucleosídeos/urina , Nucleosídeos/análise , Limite de Detecção , Espectrometria de Massa com Cromatografia Líquida
7.
Sci Adv ; 10(15): eadl4393, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598625

RESUMO

In response to the urgent need for potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) therapeutics, this study introduces an innovative nucleoside tailoring strategy leveraging ribonuclease targeting chimeras. By seamlessly integrating ribonuclease L recruiters into nucleosides, we address RNA recognition challenges and effectively inhibit severe acute respiratory syndrome coronavirus 2 replication in human cells. Notably, nucleosides tailored at the ribose 2'-position outperform those modified at the nucleobase. Our in vivo validation using hamster models further bolsters the promise of this nucleoside tailoring approach, positioning it as a valuable asset in the development of innovative antiviral drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Nucleosídeos/farmacologia , Ribonucleases/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico
8.
Bioorg Med Chem Lett ; 104: 129742, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604299

RESUMO

P300 and CBP are two closely related histone acetyltransferases that are important transcriptional coactivators of many cellular processes. Inhibition of the transcriptional regulator p300/CBP is a promising therapeutic approach in oncology. However, there are no reported single selective p300 or CBP inhibitors to date. In this study, we designed and optimized a series of lysine acetyltransferase p300 selective inhibitors bearing a nucleoside scaffold. Most compounds showed excellent inhibitory activity against p300 with IC50 ranging from 0.18 to 9.90 µM, except for J16, J29, J40, and J48. None of the compounds showed inhibitory activity against CBP (inhibition rate < 50 % at 10 µM). Then the cytotoxicity of the compounds against a series of cancer cells were evaluated. Compounds J31 and J32 showed excellent proliferation inhibitory activity on cancer cells T47D and H520 with desirable selectivity profile of p300 over CBP. These compounds could be promising lead compounds for the development of novel epigenetic inhibitors as antitumor agents.


Assuntos
Antineoplásicos , Lisina Acetiltransferases , Neoplasias , Fatores de Transcrição de p300-CBP , Nucleosídeos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fatores de Transcrição , Histona Acetiltransferases/uso terapêutico , Neoplasias/tratamento farmacológico
9.
ACS Infect Dis ; 10(5): 1780-1792, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38651692

RESUMO

The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Nucleosídeos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , Humanos , Nucleosídeos/farmacologia , Nucleosídeos/química , Animais , Descoberta de Drogas , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Chlorocebus aethiops , Células Vero , COVID-19/virologia , RNA-Polimerase RNA-Dependente de Coronavírus
10.
Org Lett ; 26(18): 3997-4001, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38687048

RESUMO

The radical decarboxylative azidation of structurally diverse uronic acids has been established as an efficient approach to reverse glycosyl azides and rare sugar-derived glycosyl azides under the action of Ag2CO3, 3-pyridinesulfonyl azide, and K2S2O8. The power of this method has been highlighted by the divergent synthesis of 4'-C-azidonucleosides using Vorbrüggen glycosylation of nucleobases with 4-C-azidofuranosyl acetates. The antiviral assessment of the resulting nucleosides revealed one compound as a potential inhibitor of covalently closed circular DNA.


Assuntos
Antivirais , Azidas , Nucleosídeos , Azidas/química , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Estrutura Molecular , Nucleosídeos/química , Nucleosídeos/síntese química , Nucleosídeos/farmacologia , Glicosilação
11.
Acc Chem Res ; 57(9): 1325-1335, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38613490

RESUMO

ConspectusIn 1960, Weber prophesied that "There are many ways in which the properties of the excited state can be utilized to study points of ignorance of the structure and function of proteins". This has been realized, illustrating that an intrinsic and highly responsive fluorophore such as tryptophan can alter the course of an entire scientific discipline. But what about RNA and DNA? Adapting Weber's protein photophysics prophecy to nucleic acids requires the development of intrinsically emissive nucleoside surrogates as, unlike Trp, the canonical nucleobases display unusually low emission quantum yields, which render nucleosides, nucleotides, and oligonucleotides practically dark for most fluorescence-based applications.Over the past decades, we have developed emissive nucleoside surrogates that facilitate the monitoring of nucleoside-, nucleotide-, and nucleic acid-based transformations at a nucleobase resolution in real time. The premise underlying our approach is the identification of minimal atomic/structural perturbations that endow the synthetic analogs with favorable photophysical features while maintaining native conformations and pairing. As illuminating probes, the photophysical parameters of such isomorphic nucleosides display sensitivity to microenvironmental factors. Responsive isomorphic analogs that function similarly to their native counterparts in biochemical contexts are defined as isofunctional.Early analogs included pyrimidines substituted with five-membered aromatic heterocycles at their 5 position and have been used to assess the polarity of the major groove in duplexes. Polarized quinazolines have proven useful in assembling FRET pairs with established fluorophores and have been used to study RNA-protein and RNA-small-molecule binding. Completing a fluorescent ribonucleoside alphabet, composed of visibly emissive purine (thA, thG) and pyrimidine (thU, thC) analogs, all derived from thieno[3,4-d]pyrimidine as the heterocyclic nucleus, was a major breakthrough. To further augment functionality, a second-generation emissive RNA alphabet based on an isothiazolo[4,3-d]pyrimidine core (thA, tzG, tzU, and tzC) was fabricated. This single-atom "mutagenesis" restored the basic/coordinating nitrogen corresponding to N7 in the purine skeleton and elevated biological recognition.The isomorphic emissive nucleosides and nucleotides, particularly the purine analogs, serve as substrates for diverse enzymes. Beyond polymerases, we have challenged the emissive analogs with metabolic and catabolic enzymes, opening optical windows into the biochemistry of nucleosides and nucleotides as metabolites as well as coenzymes and second messengers. Real-time fluorescence-based assays for adenosine deaminase, guanine deaminase, and cytidine deaminase have been fabricated and used for inhibitor discovery. Emissive cofactors (e.g., SthAM), coenzymes (e.g., NtzAD+), and second messengers (e.g., c-di-tzGMP) have been enzymatically synthesized, using xyNTPs and native enzymes. Both their biosynthesis and their transformations can be fluorescently monitored in real time.Highly isomorphic and isofunctional emissive surrogates can therefore be fabricated and judiciously implemented. Beyond their utility, side-by-side comparison to established analogs, particularly to 2-aminopurine, the workhorse of nucleic acid biophysics over 5 decades, has proven prudent as they refined the scope and limitations of both the new analogs and their predecessors. Challenges, however, remain. Associated with such small heterocycles are relatively short emission wavelengths and limited brightness. Recent advances in multiphoton spectroscopy and further structural modifications have shown promise for overcoming such barriers.


Assuntos
Corantes Fluorescentes , Nucleosídeos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Nucleosídeos/química , RNA/química , RNA/metabolismo , DNA/química , DNA/metabolismo
12.
Nat Commun ; 15(1): 2603, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521777

RESUMO

Supramolecular hydrogels derived from nucleosides have been gaining significant attention in the biomedical field due to their unique properties and excellent biocompatibility. However, a major challenge in this field is that there is no model for predicting whether nucleoside derivative will form a hydrogel. Here, we successfully develop a machine learning model to predict the hydrogel-forming ability of nucleoside derivatives. The optimal model with a 71% (95% Confidence Interval, 0.69-0.73) accuracy is established based on a dataset of 71 reported nucleoside derivatives. 24 molecules are selected via the optimal model external application and the hydrogel-forming ability is experimentally verified. Among these, two rarely reported cation-independent nucleoside hydrogels are found. Based on their self-assemble mechanisms, the cation-independent hydrogel is found to have potential applications in rapid visual detection of Ag+ and cysteine. Here, we show the machine learning model may provide a tool to predict nucleoside derivatives with hydrogel-forming ability.


Assuntos
Hidrogéis , Nucleosídeos , Aprendizado de Máquina , Cátions
13.
NPJ Biofilms Microbiomes ; 10(1): 25, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509085

RESUMO

Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.


Assuntos
Hiperuricemia , Lacticaseibacillus rhamnosus , Humanos , Hiperuricemia/terapia , Nucleosídeos , Lactobacillus , Prolina , Purinas
14.
Nat Commun ; 15(1): 2549, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514662

RESUMO

Chemically modified nucleosi(ti)des and functional oligonucleotides (ONs, including therapeutic oligonucleotides, aptamer, nuclease, etc.) have been identified playing an essential role in the areas of medicinal chemistry, chemical biology, biotechnology, and nanotechnology. Introduction of functional groups into the nucleobases of ONs mostly relies on the laborious de novo chemical synthesis. Due to the importance of nucleosides modification and aforementioned limitations of functionalizing ONs, herein, we describe a highly efficient site-selective alkylation at the C8-position of guanines in guanosine (together with its analogues), GMP, GDP, and GTP, as well as late-stage functionalization of dinucleotides and single-strand ONs (including ssDNA and RNA) through photo-mediated Minisci reaction. Addition of catechol to assist the formation of alkyl radicals via in situ generated boronic acid catechol ester derivatives (BACED) markedly enhances the yields especially for the reaction of less stable primary alkyl radicals, and is the key to success for the post-synthetic alkylation of ONs. This method features excellent chemoselectivity, no necessity for pre-protection, wide range of substrate scope, various free radical precursors, and little strand lesion. Downstream applications in disease treatment and diagnosis, or as biochemical probes to study biological processes after linking with suitable fluorescent compounds are expected.


Assuntos
Nucleotídeos , Oligonucleotídeos , Oligonucleotídeos/química , Nucleosídeos , Guanina , Alquilação , Catecóis
15.
Elife ; 122024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517938

RESUMO

Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.


Assuntos
AMP Cíclico , Nucleosídeos de Purina , AMP Cíclico/metabolismo , Nucleosídeos/farmacologia , Regulação Alostérica , Nucleotídeos Cíclicos , Guanosina , Adenosina
16.
Science ; 383(6688): eadk6176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484056

RESUMO

Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.


Assuntos
Alanina , Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Nucleosídeos , Pró-Fármacos , Animais , Administração Oral , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Macaca fascicularis , Nucleosídeos/administração & dosagem , Nucleosídeos/farmacologia , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/farmacologia , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Antivirais/administração & dosagem , Antivirais/farmacologia
17.
Org Biomol Chem ; 22(14): 2851-2862, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516867

RESUMO

Hypochlorous acid (HOCl) released from activated leukocytes plays a significant role in the human immune system, but is also implicated in numerous diseases due to its inappropriate production. Chlorinated nucleobases induce genetic changes that potentially enable and stimulate carcinogenesis, and thus have attracted considerable attention. However, their multiple halogenation sites pose challenges to identify them. As a good complement to experiments, quantum chemical computation was used to uncover chlorination sites and chlorinated products in this study. The results indicate that anion salt forms of all purine compounds play significant roles in chlorination except for adenosine. The kinetic reactivity order of all reaction sites in terms of the estimated apparent rate constant kobs-est (in M-1 s-1) is heterocyclic NH/N (102-107) > exocyclic NH2 (10-2-10) > heterocyclic C8 (10-5-10-1), but the order is reversed for thermodynamics. Combining kinetics and thermodynamics, the numerical simulation results show that N9 is the most reactive site for purine bases to form the main initial chlorinated product, while for purine nucleosides N1 and exocyclic N2/N6 are the most reactive sites to produce the main products controlled by kinetics and thermodynamics, respectively, and C8 is a possible site to generate the minor product. The formation mechanisms of biomarker 8-Cl- and 8-oxo-purine derivatives were also investigated. Additionally, the structure-kinetic reactivity relationship study reveals a good correlation between lg kobs-est and APT charge in all purine compounds compared to FED2 (HOMO), which proves again that the electrostatic interaction plays a key role. The results are helpful to further understand the reactivity of various reaction sites in aromatic compounds during chlorination.


Assuntos
Nucleosídeos , Poluentes Químicos da Água , Humanos , Nucleosídeos/química , Halogenação , Domínio Catalítico , Nucleosídeos de Purina , Ácido Hipocloroso/química , Cinética , Cloro/química , Poluentes Químicos da Água/química
18.
Bioorg Med Chem ; 103: 117696, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547648

RESUMO

Aryloxy phosphoroamidate triesters, known as ProTides, are a class of prodrugs developed to enhance the physicochemical and pharmacological properties of therapeutic nucleosides. This approach has been extensively investigated in the antiviral and anticancer areas leading to three prodrugs on the market and several others in clinical stage. In this article we have prepared the PS analogues of three ProTides that have reached the clinic as anticancer agents. These novel PS ProTides were tested for their capacity in enzymatic activation and for their cytotoxic properties against a panel of solid and liquid tumor cell lines. As expected, the replacement of the PO with a PS bond led to increased metabolic stability albeit concomitant to a decrease in potency. Surprisingly, the intermediate formed after the first activation step of a thiophosphoramidate with carboxypeptidase Y is not the expected PS aminoacyl product but the corresponding PO aminoacyl compound.


Assuntos
Antineoplásicos , Pró-Fármacos , Nucleosídeos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Pró-Fármacos/química , Antivirais/farmacologia
19.
Curr Protoc ; 4(3): e999, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439607

RESUMO

The synthesis of natural and chemically modified nucleosides and oligonucleotides is in great demand due to its increasing number of applications in diverse areas of research. These include tools for diagnostics and proteomics, research reagents for molecular biology, probes for functional genomics, and the design, discovery, development, and manufacture of new therapeutics. The likelihood of success in synthesizing these molecules is often dependent on the correct choice of a protection strategy to block the 5'-hydroxyl group of a carbohydrate moiety, nucleoside, or oligonucleotide. This topic was reviewed extensively in the year 2000. The purpose of this article is to complement and update the original review with recently published methodologies recommended for the protection and deprotection of the 5'-hydroxyl group. © 2024 Wiley Periodicals LLC.


Assuntos
Nucleosídeos , Oligonucleotídeos , Comércio , Genômica , Radical Hidroxila
20.
J Med Virol ; 96(3): e29502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450817

RESUMO

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important component of anti-acquired immunodeficiency syndrome treatment regimen. In the present work, with the previously reported compound K-16c as lead, a series of novel 2,4,5-trisubstituted pyrimidine derivatives were designed based on the cocrystal structure of K-16c/RT, with the aim to improve the anti-human immunodeficiency virus type-1 (HIV-1) activities and metabolic stability properties. Compound 11b1 exhibited the most potent antiviral activity against wild-type (WT) and a panel of single mutant HIV-1 strains (EC50 = 2.4-12.4 nM), being superior to or comparable to those of the approved drug etravirine. Meanwhile, 11b1 exhibited moderate cytotoxicity (CC50 = 4.96 µM) and high selectivity index (SI = 1189) toward HIV-1 WT strain. As for HIV-1 RT inhibition test, 11b1 possessed excellent inhibitory potency (IC50 = 0.04 µM) and confirmed its target was RT. Moreover, the molecular dynamics simulation was performed to elucidate the improved drug resistance profiles. Moreover, 11b1 was demonstrated with favorable safety profiles and pharmacokinetic properties in vivo, indicating that 11b1 is a potential anti-HIV-1 drug candidate worthy of further development.


Assuntos
Síndrome da Imunodeficiência Adquirida , HIV-1 , Humanos , Anti-Hipertensivos , Simulação de Dinâmica Molecular , Nucleosídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA