Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Am Chem Soc ; 144(4): 1493-1497, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35073490

RESUMO

Owing to the specific and high binding affinity of aptamers to their targets, aptamer-drug conjugates (ApDCs) have emerged as a promising drug delivery system for targeted cancer therapy. However, in a conventional ApDC, the aptamer segment usually just serves as a targeting moiety, and only a limited number of drug molecules are sequentially conjugated to the oligonucleotide, giving a relatively low drug loading capacity. To address this challenge, herein we employ four clinically approved nucleoside analogues, including clofarabine (Clo), ara-guanosine (AraG), gemcitabine (Ge), and floxuridine (FdU), to replace all natural nucleosides in aptamer sequences, generating a series of whole drug-constituted DNA-like oligomers that are termed drugtamers. Similar to their parent aptamers, the obtained drugtamers maintain the targeting capability and can specifically bind to the target receptors overexpressed on the cancer cell surface. With 100% drug loading ratio, active targeting capability, and enzyme-mediated release of active therapeutics, our drugtamers can strongly induce the apoptosis of cancer cells and inhibit the tumor progression, which enables a new potential for a better targeted cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Aptâmeros de Nucleotídeos/química , Neoplasias/tratamento farmacológico , Nucleosídeos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Clofarabina/química , Clofarabina/farmacocinética , Clofarabina/farmacologia , Clofarabina/uso terapêutico , Portadores de Fármacos/química , Floxuridina/química , Floxuridina/farmacocinética , Floxuridina/farmacologia , Floxuridina/uso terapêutico , Humanos , Camundongos , Mucina-1/genética , Neoplasias/patologia , Nucleosídeos/análogos & derivados , Nucleosídeos/farmacocinética , Nucleosídeos/farmacologia , Distribuição Tecidual , Transplante Heterólogo
2.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008944

RESUMO

(1R,5S)-1-Hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one, available by an efficient catalytic pyrolysis of cellulose, has been applied as a chiral building block in the synthesis of seven new nucleoside analogues, with structural modifications on the nucleobase moiety and on the carboxyl- derived unit. The inverted configuration by Mitsunobu reaction used in their synthesis was verified by 2D-NOESY correlations, supported by the optimized structure employing the DFT methods. An in silico screening of these compounds as inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase has been carried out in comparison with both remdesivir, a mono-phosphoramidate prodrug recently approved for COVID-19 treatment, and its ribonucleoside metabolite GS-441524. Drug-likeness prediction and data by docking calculation indicated compound 6 [=(3S,5S)-methyl 5-(hydroxymethyl)-3-(6-(4-methylpiperazin-1-yl)-9H-purin-9-yl)tetrahydrofuran-3-carboxylate] as the best candidate. Furthermore, molecular dynamics simulation showed a stable interaction of structure 6 in RNA-dependent RNA polymerase (RdRp) complex and a lower average atomic fluctuation than GS-441524, suggesting a well accommodation in the RdRp binding pocket.


Assuntos
Antivirais/síntese química , Celulose/química , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , Nucleosídeos/síntese química , SARS-CoV-2/enzimologia , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacocinética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacocinética , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Antivirais/química , Antivirais/farmacocinética , Biologia Computacional , RNA-Polimerase RNA-Dependente de Coronavírus/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nucleosídeos/química , Nucleosídeos/farmacocinética , Pirólise , SARS-CoV-2/efeitos dos fármacos
3.
Drug Metab Dispos ; 49(7): 479-489, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33980604

RESUMO

Equilibrativenucleoside transporters (ENTs) participate in the pharmacokinetics and disposition of nucleoside analog drugs. Understanding drug interactions with the ENTs may inform and facilitate the development of new drugs, including chemotherapeutics and antivirals that require access to sanctuary sites such as the male genital tract. This study created three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors using Kt and IC50 data curated from the literature. Substrate pharmacophores for ENT1 and ENT2 are distinct, with partial overlap of hydrogen bond donors, whereas the inhibitor pharmacophores predominantly feature hydrogen bond acceptors. Mizoribine and ribavirin mapped to the ENT1 substrate pharmacophore and proved to be substrates of the ENTs. The presence of the ENT-specific inhibitor 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) decreased mizoribine accumulation in ENT1 and ENT2 cells (ENT1, ∼70% decrease, P = 0.0046; ENT2, ∼50% decrease, P = 0.0012). NBMPR also decreased ribavirin accumulation in ENT1 and ENT2 cells (ENT1: ∼50% decrease, P = 0.0498; ENT2: ∼30% decrease, P = 0.0125). Darunavir mapped to the ENT1 inhibitor pharmacophore and NBMPR did not significantly influence darunavir accumulation in either ENT1 or ENT2 cells (ENT1: P = 0.28; ENT2: P = 0.53), indicating that darunavir's interaction with the ENTs is limited to inhibition. These computational and in vitro models can inform compound selection in the drug discovery and development process, thereby reducing time and expense of identification and optimization of ENT-interacting compounds. SIGNIFICANCE STATEMENT: This study developed computational models of human equilibrative nucleoside transporters (ENTs) to predict drug interactions and validated these models with two compounds in vitro. Identification and prediction of ENT1 and ENT2 substrates allows for the determination of drugs that can penetrate tissues expressing these transporters.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Nucleosídeos/farmacocinética , Darunavir/farmacocinética , Interações Medicamentosas , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Células HeLa , Humanos , Nucleosídeos/análogos & derivados , Ribavirina/farmacocinética , Ribonucleosídeos/farmacocinética , Tioinosina/análogos & derivados , Tioinosina/farmacocinética
4.
J Med Chem ; 63(18): 10433-10459, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32865411

RESUMO

The adenosinergic pathway represents an attractive new therapeutic approach in cancer immunotherapy. In this pathway, ecto-5-nucleotidase CD73 has the unique function of regulating production of immunosuppressive adenosine (ADO) through the hydrolysis of AMP. CD73 is overexpressed in many cancers, resulting in elevated levels of ADO that correspond to poor patient prognosis. Therefore, reducing the level of ADO via inhibition of CD73 is a potential strategy for treating cancers. Based on the binding mode of adenosine 5'-(α,ß-methylene)diphosphate (AOPCP) with human CD73, we designed a series of novel monophosphonate small-molecule CD73 inhibitors. Among them, OP-5244 (35) proved to be a highly potent and orally bioavailable CD73 inhibitor. In preclinical studies, 35 completely inhibited ADO production in both human cancer cells and CD8+ T cells. Furthermore, 35 lowered the ratio of ADO/AMP significantly and reversed immunosuppression in mouse models, indicating its potential as an in vivo tool compound for further development.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Adenosina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fatores Imunológicos/farmacologia , Nucleosídeos/farmacologia , Organofosfonatos/farmacologia , Administração Oral , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Cães , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/síntese química , Fatores Imunológicos/farmacocinética , Macaca fascicularis , Camundongos Endogâmicos BALB C , Estrutura Molecular , Nucleosídeos/administração & dosagem , Nucleosídeos/síntese química , Nucleosídeos/farmacocinética , Organofosfonatos/administração & dosagem , Organofosfonatos/síntese química , Organofosfonatos/farmacocinética , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
5.
Drug Metab Dispos ; 48(7): 603-612, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32393653

RESUMO

Equilibrative nucleoside transporters (ENTs) transport nucleosides across the blood-testis barrier (BTB). ENTs are of interest to study the disposition of nucleoside reverse-transcriptase inhibitors (NRTIs) in the human male genital tract because of their similarity in structure to nucleosides. HeLa S3 cells express ENT1 and ENT2 and were used to compare relative interactions of these transporters with selected NRTIs. Inhibition of [3H]uridine uptake by NBMPR was biphasic, with IC50 values of 11.3 nM for ENT1 and 9.6 µM for ENT2. Uptake measured with 100 nM NBMPR represented ENT2-mediated transport; subtracting that from total uptake represented ENT1-mediated transport. The kinetics of ENT1- and ENT2-mediated [3H]uridine uptake revealed no difference in Jmax (16.53 and 30.40 pmol cm-2 min-1) and an eightfold difference in Kt (13.6 and 108.9 µM). The resulting fivefold difference in intrinsic clearance (Jmax/Kt) for ENT1- and ENT2 transport accounted for observed inhibition of [3H]uridine uptake by 100 nM NBMPR. Millimolar concentrations of the NRTIs emtricitabine, didanosine, lamivudine, stavudine, tenofovir disoproxil, and zalcitabine had no effect on ENT transport activity, whereas abacavir, entecavir, and zidovudine inhibited both transporters with IC50 values of ∼200 µM, 2.5 mM, and 2 mM, respectively. Using liquid chromatography-tandem mass spectrometry and [3H] compounds, the data suggest that entecavir is an ENT substrate, abacavir is an ENT inhibitor, and zidovudine uptake is carrier-mediated, although not an ENT substrate. These data show that HeLa S3 cells can be used to explore complex transporter selectivity and are an adequate model for studying ENTs present at the BTB. SIGNIFICANCE STATEMENT: This study characterizes an in vitro model using S-[(4-nitrophenyl)methyl]-6-thioinosine to differentiate between equilibrative nucleoside transporter (ENT) 1- and ENT2-mediated uridine transport in HeLa cells. This provides a method to assess the influence of nucleoside reverse-transcriptase inhibitors on natively expressed transporter function. Determining substrate selectivity of the ENTs in HeLa cells can be effectively translated into the activity of these transporters in Sertoli cells that comprise the blood-testis barrier, thereby assisting targeted drug development of compounds capable of circumventing the blood-testis barrier.


Assuntos
Barreira Hematotesticular/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Nucleosídeos/farmacocinética , Inibidores da Transcriptase Reversa/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Células HeLa , Humanos , Concentração Inibidora 50 , Zidovudina/farmacocinética
6.
Saudi J Gastroenterol ; 24(1): 30-36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29451182

RESUMO

Background/Aims: The optimal duration of nucleos(t)ide analogs (NAs) therapy in chronic hepatitis B (CHB) patients remains unsatisfactory. Previous studies have confirmed the important role of host genetic factors in determining the outcome of HBV infection. This study tries to determine the role of host genetic factors in predicting response status in CHB patients discontinuing NAs according to stringent cessation criteria. Patients and Methods: Participating patients came from a prospective NAs- discontinuation cohort since June 1999. Six single-nucleotide polymorphisms (SNPs) were selected according to previous report. SNaPshot assay was used for DNA SNPs analyses. Results: Seventy-six CHB patients were enrolled in our study, of which 61 patients were HBeAg-positive and 15 patients were HBeAg-negative. rs1883832 in the Kozak sequence of CD40 displayed an AUROC of 0.778 in predicting response status in CHB patients with HBeAg seroconversion and a genotype of CT was associated with sustained response in this subpopulation. The diagnostic performance of combinative index (rs1883832, age, and HBsAg at discontinuation) seemed to be better than that of rs1883832, but no statistical difference was observed. rs1883832 was also evaluated as an independent factor for response status by multivariate logistic regression. For HBeAg-negative CHB patients, rs9277535 at HLA-DP presents a Spearman correlation coefficient of 0.582 (P = 0.023) with virological relapse after discontinuation of NAs. Conclusions: rs1883832 serves as a valuable predictive factor for CHB patients with HBeAg seroconversion. rs9277535 at HLA-DP might also be a valuable predictive factor for CHB patients with HBeAg-negative, however, further verifications are recommended due to study limitations.


Assuntos
Antivirais/uso terapêutico , Antígenos CD40/genética , Hepatite B Crônica/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Antivirais/farmacocinética , Feminino , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/imunologia , Hepatite B Crônica/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Nucleosídeos/farmacocinética , Nucleosídeos/uso terapêutico , Nucleotídeos/farmacocinética , Nucleotídeos/uso terapêutico , Variantes Farmacogenômicos , Estudos Prospectivos , Resultado do Tratamento , Adulto Jovem
7.
Biochem Pharmacol ; 136: 51-61, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28390939

RESUMO

α-Carboxy nucleoside phosphonates (α-CNPs) are modified nucleotides that represent a novel class of nucleotide-competing reverse transcriptase (RT) inhibitors (NcRTIs). They were designed to act directly against HIV-1 RT without the need for prior activation (phosphorylation). In this respect, they differ from the nucleoside or nucleotide RTIs [N(t)RTIs] that require conversion to their triphosphate forms before being inhibitory to HIV-1 RT. The guanine derivative (G-α-CNP) has now been synthesized and investigated for the first time. The (L)-(+)-enantiomer of G-α-CNP directly and competitively inhibits HIV-1 RT by interacting with the substrate active site of the enzyme. The (D)-(-)-enantiomer proved inactive against HIV-1 RT. In contrast, the (+)- and (-)-enantiomers of G-α-CNP inhibited herpes (i.e. HSV-1, HCMV) DNA polymerases in a non- or uncompetitive manner, strongly indicating interaction of the (L)-(+)- and the (D)-(-)-G-α-CNPs at a location different from the polymerase substrate active site of the herpes enzymes. Such entirely different inhibition profile of viral polymerases is unprecedented for a single antiviral drug molecule. Moreover, within the class of α-CNPs, subtle differences in their sensitivity to mutant HIV-1 RT enzymes were observed depending on the nature of the nucleobase in the α-CNP molecules. The unique properties of the α-CNPs make this class of compounds, including G-α-CNP, direct acting inhibitors of multiple viral DNA polymerases.


Assuntos
Fármacos Anti-HIV/farmacocinética , Antivirais/farmacocinética , DNA Polimerase Dirigida por DNA/metabolismo , HIV-1/enzimologia , Herpesvirus Humano 1/enzimologia , Fármacos Anti-HIV/química , Antivirais/química , DNA Polimerase Dirigida por DNA/química , Guanina/química , Guanina/farmacocinética , HIV-1/química , HIV-1/efeitos dos fármacos , Herpesvirus Humano 1/química , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Cinética , Nucleosídeos/química , Nucleosídeos/farmacocinética , Organofosfonatos/química , Organofosfonatos/farmacocinética , Estrutura Secundária de Proteína
8.
Bioorg Med Chem Lett ; 27(8): 1840-1847, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274633

RESUMO

A series of 2'-fluorinated C-nucleosides were prepared and tested for anti-HCV activity. Among them, the triphosphate of 2'-fluoro-2'-C-methyl adenosine C-nucleoside (15) was a potent and selective inhibitor of the NS5B polymerase and maintained activity against the S282T resistance mutant. A number of phosphoramidate prodrugs were then prepared and evaluated leading to the identification of the 1-aminocyclobutane-1-carboxylic acid isopropyl ester variant (53) with favorable pharmacokinetic properties including efficient liver delivery in animals.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Nucleosídeos/química , Nucleosídeos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Amidas/química , Amidas/farmacocinética , Amidas/farmacologia , Animais , Antivirais/farmacocinética , Células CACO-2 , Linhagem Celular , Cricetinae , Descoberta de Drogas , Farmacorresistência Viral , Halogenação , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Humanos , Metilação , Simulação de Acoplamento Molecular , Nucleosídeos/farmacocinética , Ácidos Fosfóricos/química , Ácidos Fosfóricos/farmacocinética , Ácidos Fosfóricos/farmacologia , Mutação Puntual , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
9.
J Biochem Mol Toxicol ; 31(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28322028

RESUMO

The epididymis relies on transporters for the secretion of nucleosides and influence the disposition of nucleoside analogs (NSA). Since these compounds can cross the blood-testis barrier (BTB), it is important to understand if the epididymis reabsorbs NSA drugs. The purpose of this study is to determine the localization of nucleoside transporters expressed within rat epididymis to demonstrate the potential of epididymal reabsorption. Using immunohistochemistry, we determined that equilibrative nucleoside transporter 1 (ENT1) is localized to the basolateral membrane of epithelial cells, ENT2 is expressed in the nucleus of the epithelium and CNT2 is expressed by basal cells. The expression pattern for these transporters suggests that nucleosides are able to access the epithelial cells of the epididymal duct via the blood, but not from the lumen. We did not find any evidence for a transepithelial reabsorption pathway indicating the NSA drugs that cross the BTB remain within the epididymis.


Assuntos
Barreira Hematotesticular/enzimologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Epididimo/citologia , Epididimo/enzimologia , Transportador Equilibrativo 1 de Nucleosídeo , Imuno-Histoquímica , Masculino , Nucleosídeos/farmacocinética , Nucleosídeos/farmacologia , Ratos , Ratos Sprague-Dawley
10.
Nucl Med Biol ; 43(12): 759-769, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27693670

RESUMO

INTRODUCTION: Radiolabeled 2-nitroimidazoles (azomycins) are a prominent class of biomarkers for PET imaging of hypoxia. [18F]Fluoro-azomycin-α-arabinoside ([18F]FAZA) - already in clinical use - may be seen as α-configuration nucleoside, but enters cells only via diffusion and is not transported by cellular nucleoside transporters. To enhance image contrast in comparison to [18F]FAZA our objective was to 18F-radiolabel an azomycin-2´-deoxyriboside with ß-configuration ([18F]FAZDR, [18F]-ß-8) to mimic nucleosides more closely and comparatively evaluate it versus [18F]FAZA. METHODS: Precursor and cold standards for [18F]FAZDR were synthesized from methyl 2-deoxy-d-ribofuranosides α- and ß-1 in 6 steps yielding precursors α- and ß-5. ß-5 was radiolabeled in a GE TRACERlab FXF-N synthesizer in DMSO and deprotected with NH4OH to give [18F]FAZDR ([18F]-ß-8). [18F]FAZA or [18F]FAZDR was injected in BALB/c mice bearing CT26 colon carcinoma xenografts, PET scans (10min) were performed after 1, 2 and 3h post injection (p.i.). On a subset of mice injected with [18F]FAZDR, we analyzed biodistribution. RESULTS: [18F]FAZDR was obtained in non-corrected yields of 10.9±2.4% (9.1±2.2GBq, n=4) 60min EOB, with radiochemical purity >98% and specific activity >50GBq/µmol. Small animal PET imaging showed a decrease in uptake over time for both [18F]FAZDR (1h p.i.: 0.56±0.22% ID/cc, 3h: 0.17±0.08% ID/cc, n=9) and [18F]FAZA (1h: 1.95±0.59% ID/cc, 3h: 0.87±0.55% ID/cc), whereas T/M ratios were significantly higher for [18F]FAZDR at 1h (2.76) compared to [18F]FAZA (1.69, P<0.001), 3h p.i. ratios showed no significant difference. Moreover, [18F]FAZDR showed an inverse correlation between tracer uptake in carcinomas and oxygen breathing, while muscle tissue uptake was not affected by switching from air to oxygen. CONCLUSIONS: First PET imaging results with [18F]FAZDR showed advantages over [18F]FAZA regarding higher tumor contrast at earlier time points p.i. Availability of precursor and cold fluoro standard together with high output radiosynthesis will allow for a more detailed quantitative evaluation of [18F]FAZDR, especially with regard to mechanistic studies whether active transport processes are involved, compared to passive diffusion as observed for [18F]FAZA.


Assuntos
Nitroimidazóis , Nucleosídeos , Tomografia por Emissão de Pósitrons/métodos , Hipóxia Tumoral , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Nitroimidazóis/química , Nitroimidazóis/farmacocinética , Nucleosídeos/química , Nucleosídeos/farmacocinética , Radioquímica , Distribuição Tecidual
11.
Antimicrob Agents Chemother ; 60(12): 7077-7085, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27645237

RESUMO

Nucleoside or nucleotide inhibitors are a highly successful class of antivirals due to selectivity, potency, broad coverage, and high barrier to resistance. Nucleosides are the backbone of combination treatments for HIV, hepatitis B virus, and, since the FDA approval of sofosbuvir in 2013, also for hepatitis C virus (HCV). However, many promising nucleotide inhibitors have advanced to clinical trials only to be terminated due to unexpected toxicity. Here we describe the in vitro pharmacology of compound 1, a monophosphate prodrug of a 2'-ethynyluridine developed for the treatment of HCV. Compound 1 inhibits multiple HCV genotypes in vitro (50% effective concentration [EC50], 0.05 to 0.1 µM) with a selectivity index of >300 (50% cytotoxic concentration [CC50], 30 µM in MT-4 cells). The active triphosphate metabolite of compound 1, compound 2, does not inhibit human α, ß, or γ DNA polymerases but was a substrate for incorporation by the human mitochondrial RNA polymerase (POLRMT). In dog, the oral administration of compound 1 resulted in elevated serum liver enzymes and microscopic changes in the liver. Transmission electron microscopy showed significant mitochondrial swelling and lipid accumulation in hepatocytes. Gene expression analysis revealed dose-proportional gene signature changes linked to loss of hepatic function and increased mitochondrial dysfunction. The potential of in vivo toxicity through mitochondrial polymerase incorporation by nucleoside analogs has been previously shown. This study shows that even moderate levels of nucleotide analog incorporation by POLRMT increase the risk of in vivo mitochondrial dysfunction. Based on these results, further development of compound 1 as an anti-HCV compound was terminated.


Assuntos
Antivirais/farmacocinética , Antivirais/toxicidade , RNA Polimerases Dirigidas por DNA/metabolismo , Hepacivirus/efeitos dos fármacos , Nucleosídeos/farmacocinética , Animais , Antivirais/administração & dosagem , Linhagem Celular , RNA Polimerases Dirigidas por DNA/genética , Cães , Hepacivirus/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Polifosfatos/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/toxicidade , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Testes de Toxicidade/métodos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
12.
Expert Opin Drug Metab Toxicol ; 12(8): 865-77, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27218825

RESUMO

INTRODUCTION: The term 'precision medicine' has garnered significant attention in the oncological setting in relation to attempts to optimize anticancer treatment. Precision medicine is mostly associated with oral targeted therapies and biotherapies, however, to date classic cytotoxics still remain the backbone of most regimens for treating solid tumors or in hematology, both in children and in adults. Among the existing cytotoxic therapies, nucleosides are widely used for treating a variety of cancerous diseases, alone or as part of combination therapies. AREAS COVERED: Several markers at the tumor or the germinal levels have been identified as being associated with clinical outcome (e.g. CDA, DPD, EONFS1, hENT1, TYMS, MTHFR), however little effort has been made to implement bioguided therapy with nucleoside analogs. Still, growing clinical evidence has demonstrated how the efficacy-toxicity balance of these drugs could be improved by developing bioguided strategies at the bedside. This review covers the current knowledge regarding putative markers to be used with nucleoside analogs, what is known on their pharmacokinetic/pharmacodynamic relationships, and provides clues for implementing precision medicine with those old, yet pivotal drugs. EXPERT OPINION: Through a variety of strategies ranging from pharmacogenetics, tumor genomics and pharmacokinetically-driven adaptive dosing procedures, nucleoside analogs could enter the era of precision medicine in oncology.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos , Adulto , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Biomarcadores Tumorais/metabolismo , Criança , Genômica/métodos , Humanos , Neoplasias/patologia , Nucleosídeos/efeitos adversos , Nucleosídeos/farmacocinética , Nucleosídeos/uso terapêutico , Farmacogenética/métodos
13.
J Med Chem ; 59(8): 3719-31, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27007871

RESUMO

To test the hypothesis that inhibitors of human concentrative nucleoside transporter 2 (hCNT2) suppress increases in serum urate levels derived from dietary purines, we previously identified adenosine derivative 1 as a potent hCNT2 inhibitor (IC50 = 0.64 µM), but further study was hampered due to its poor solubility. Here we describe the results of subsequent research to identify more soluble and more potent hCNT2 inhibitors, leading to the discovery of the benzimidazole nucleoside 22, which is the most potent hCNT2 inhibitor (IC50 = 0.062 µM) reported to date. Compound 22 significantly suppressed the increase in plasma uric acid levels after oral administration of purine nucleosides in rats. Because compound 22 was poorly absorbed orally in rats (F = 0.51%), its pharmacologic action was mostly limited to the gastrointestinal tract. These findings suggest that inhibition of hCNT2 in the gastrointestinal tract can be a promising approach for the treatment of hyperuricemia.


Assuntos
Adenina/química , Benzimidazóis/química , Gota/tratamento farmacológico , Hiperuricemia/tratamento farmacológico , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Nucleosídeos/farmacologia , Animais , Humanos , Masculino , Nucleosídeos/química , Nucleosídeos/farmacocinética , Nucleosídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley
14.
Angew Chem Int Ed Engl ; 55(17): 5255-8, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27008042

RESUMO

The metabolic conversion of nucleoside analogues into their triphosphates often proceeds insufficiently. Rate-limitations can be at the mono-, but also at the di- and triphosphorylation steps. We developed a nucleoside triphosphate (NTP) delivery system (TriPPPro-approach). In this approach, NTPs are masked by two bioreversible units at the γ-phosphate. Using a procedure involving H-phosphonate chemistry, a series of derivatives bearing approved, as well as potentially antivirally active, nucleoside analogues was synthesized. The enzyme-triggered delivery of NTPs was demonstrated by pig liver esterase, in human T-lymphocyte cell extracts and by a polymerase chain reaction using a prodrug of thymidine triphosphate. The TriPPPro-compounds of some HIV-inactive nucleoside analogues showed marked anti-HIV activity. For cellular uptake studies, a fluorescent TriPPPro-compound was prepared that delivered the triphosphorylated metabolite to intact CEM cells.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV/efeitos dos fármacos , Nucleosídeos/farmacologia , Polifosfatos/farmacologia , Pró-Fármacos/farmacologia , Nucleotídeos de Timina/farmacologia , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacocinética , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Permeabilidade da Membrana Celular , Esterases/metabolismo , Infecções por HIV/tratamento farmacológico , Humanos , Nucleosídeos/química , Nucleosídeos/metabolismo , Nucleosídeos/farmacocinética , Polifosfatos/química , Polifosfatos/metabolismo , Polifosfatos/farmacocinética , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , Suínos , Nucleotídeos de Timina/síntese química , Nucleotídeos de Timina/química , Nucleotídeos de Timina/metabolismo
15.
Curr Opin Infect Dis ; 28(6): 596-602, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26524332

RESUMO

PURPOSE OF REVIEW: Potent antivirals are successfully used for the treatment of infections with herpesviruses, hepatitis B and C viruses, HIV, and with some success for influenza viruses. However, no selective inhibitors are available for a multitude of medically important viruses, most of which are (re-)emerging RNA viruses. As it is impossible to develop drugs against each of these viruses, broad-spectrum antiviral agents (BSAA) are a prime strategy to cope with this challenge. RECENT FINDINGS: We propose four categories of antiviral molecules that hold promise as BSAA. Several nucleoside analogues with broad antiviral activity have been described and given the relatively conserved nature of viral polymerases, it may be possible to develop more broad-spectrum nucleoside analogues. A number of viral proteins are relatively conserved between families and may also be interesting targets. Host-targeting antiviral drugs such as modulators of lipid metabolism and cyclophilin inhibitors can be explored as well. Finally, the potent and broad antiviral function of the immune system can be exploited by the development of immune-modulating BSAA. SUMMARY: Despite the recent advances, the BSAA field is still in its infancy. Nevertheless, the discovery and development of such molecules will be a key aim of antiviral research in the coming decades.


Assuntos
Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Nucleosídeos/farmacologia , Vírus de RNA/efeitos dos fármacos , Proteínas Virais/efeitos dos fármacos , Viroses/tratamento farmacológico , Antivirais/farmacocinética , Doenças Transmissíveis Emergentes/tratamento farmacológico , Doenças Transmissíveis Emergentes/virologia , Descoberta de Drogas/métodos , Humanos , Nucleosídeos/farmacocinética , Viroses/imunologia , Viroses/prevenção & controle , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
16.
Expert Opin Drug Metab Toxicol ; 11(5): 665-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25495470

RESUMO

INTRODUCTION: Nucleosidic analogs such as pyrimidine and purine derivatives are mainstay in the field of treating cancers, both in adults and in children. All these drugs act as antimetabolite compounds, that is, they interfere with the ability of cancer cells to synthesize the nucleosides or the nucleotides necessary for proliferation and progression. As with most cytotoxics, maintaining patients in their therapeutic window is challenging, and predicting changes in drug exposure is critical to ensure an optimal efficacy/toxicity balance. AREAS COVERED: Among the antimetabolites, a small but widely prescribed number of drugs (i.e., gemcitabine, capecitabine, cytarabine, azacytidine) share a same metabolic pattern driven by a liver enzyme, cytidine deaminase (CDA), coded by a gene displaying several genetic and epigenetic polymorphisms. Consequently, CDA activity is erratic, ranging from deficient to ultra-rapid deaminator patients, with subsequent impact on drug pharmacokinetics and pharmacodynamics eventually. This review provides an update on the variety of clinical studies and case-reports investigating on CDA status as a marker for clinical outcome in cancer patients treated with nucleosidic analogs. EXPERT OPINION: Whereas sorting patients on the basis of their CDA genotype remains tricky because of unclear genotype-to-phenotype relationships, developing functional strategies (i.e., phenotype-based status determination) could help to use CDA status as a biomarker for developing adaptive dosing strategies with nucleosidic analogs.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Citidina Desaminase/metabolismo , Neoplasias/tratamento farmacológico , Adulto , Animais , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/farmacologia , Criança , Citidina Desaminase/genética , Genótipo , Humanos , Nucleosídeos/efeitos adversos , Nucleosídeos/farmacocinética , Nucleosídeos/farmacologia , Polimorfismo Genético
17.
Drug Dev Res ; 75(2): 107-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24648253

RESUMO

Mericitabine is the prodrug of RO4995855, a selective inhibitor of the hepatitis C virus (HCV) NS5B polymerase. This study assessed the effect of renal impairment on RO4995855 pharmacokinetics. In this open-label study, HCV-negative volunteers (18-75 years) with normal renal function (NRF: creatinine clearance [CLCR ] >80 mL/min, n = 10) or stable renal impairment (mild: CLCR 50-80 mL/min, n = 10; moderate: CLCR 30-49 mL/min, n = 10) received oral mericitabine 1000 mg twice daily (BID) (500 mg BID for moderate renal impairment) for 5 days. Primary outcome measures were renal clearance, maximum plasma concentration (Cmax), and area under the concentration-time curve (0-12 h) (AUC0-12) for RO4995855. Renal clearance decreased as renal function decreased. Relative to subjects with NRF, the geometric mean ratios (GMR) for AUC0-12 and Cmax in mild renal impairment subjects were 1.45 (90% confidence interval [CI], 1.26-1.66) and 1.14 (1.02-1.28), respectively. For moderate renal impairment subjects, the dose-normalized GMR for AUC0-12 and Cmax relative to NRF subjects were 2.51 (90% CI, 2.19-2.88) and 1.76 (1.56-1.97), respectively. Renal clearance of RO4995855 declined in subjects with mild/moderate renal impairment following mericitabine. Dose adjustment of mericitabine may be required in patients with moderate renal impairment.


Assuntos
Antivirais/farmacocinética , Desoxicitidina/análogos & derivados , Nefropatias/metabolismo , Nucleosídeos/farmacocinética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Administração Oral , Adolescente , Adulto , Idoso , Antivirais/administração & dosagem , Antivirais/urina , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacocinética , Desoxicitidina/urina , Feminino , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Humanos , Nefropatias/urina , Testes de Função Renal , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Nucleosídeos/urina , Índice de Gravidade de Doença , Adulto Jovem
18.
Curr Opin HIV AIDS ; 8(6): 556-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24100876

RESUMO

PURPOSE OF REVIEW: This review focuses on the chemical and pharmacological rationale behind the development of nucleoside antiviral prodrugs (NAPs). RECENT FINDINGS: Highly efficacious NAPs have been developed that extend and improve the quality of lives of individuals infected with HIV and hepatitis B virus (HBV), herpes viruses, and adenovirus infection in immunocompromised individuals. A very high rate of hepatitis C virus (HCV) cure is now possible using NAPs combined with other direct acting antiviral agents (DAAs). SUMMARY: Prodrug strategies can address the issues of poor oral bioavailability and delivery of active metabolites to the targeted cells. Additionally, NAPs demonstrate potential for improving deficiencies in oral absorption, metabolism, tissue distribution, cellular accumulation, phosphorylation, and overall potency, in addition to diminishing potential for in-vivo selection of resistant viruses. NAPs continue to be the backbone for the treatment of HIV and HBV, herpesviruses, and adenovirus infections because their active forms are potent, have long intracellular half-lives and are relatively safe with high barrier to resistance.


Assuntos
Antivirais/administração & dosagem , Antivirais/farmacologia , Nucleosídeos/administração & dosagem , Nucleosídeos/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Viroses/tratamento farmacológico , Antivirais/farmacocinética , Humanos , Nucleosídeos/farmacocinética , Pró-Fármacos/farmacocinética
19.
Biomaterials ; 34(20): 4831-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23562054

RESUMO

Due to their hydrophilic nature, most nucleoside reverse transcriptase inhibitors (NRTIs) display a variable bioavailability after oral administration and a poor control over their biodistribution, thus hampering their access to HIV sanctuaries. The limited cellular uptake and activation in the triphosphate form of NRTIs further restrict their efficacy and favour the emergence of viral resistance. We have shown that the conjugation of squalene (sq) to the nucleoside analogues dideoxycytidine (ddC) and didanosine (ddI) leads to amphiphilic prodrugs (ddC-sq and ddI-sq) that spontaneously self-organize in water as stable nanoassemblies of 100-300 nm. These nanoassemblies can also be formulated with polyethylene glycol coupled to either cholesterol (Chol-PEG) or squalene (sq-PEG). When incubated with peripheral blood mononuclear cells (PBMCs) in vitro infected with HIV, the NRTI-sq prodrugs enhanced the antiviral efficacy of the parent NRTIs, with a 2- to 3-fold decrease of the 50% effective doses and a nearly 2-fold increase of the selectivity index. This was also the case with HIV-1 strains resistant to ddC and/or ddI. The enhanced antiviral activity of ddI-sq was correlated with an up to 5-fold increase in the intracellular concentration of the corresponding pharmacologically active metabolite ddA-TP. The ddI-sq prodrug was further investigated in vivo by the oral route, the preferred route of administration of NRTIs. Pharmacokinetics studies performed on rats showed that the prodrug maintained low amounts of free ddI in the plasma. Administration of (3)H-ddI-sq led to radioactivity levels higher in the plasma and relevant organs in HIV infection as compared to administration of free (3)H-ddI. Taken together, these results show the potential of the squalenoylated prodrugs of NRTIs to enhance their absorption and improve their biodistribution, but also to enhance their intracellular delivery and antiviral efficacy towards HIV-infected cells.


Assuntos
Fármacos Anti-HIV/farmacologia , Nanopartículas/química , Nucleosídeos/farmacologia , Pró-Fármacos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Esqualeno/química , Trifosfato de Adenosina/farmacologia , Animais , Fármacos Anti-HIV/farmacocinética , Didanosina/química , Didanosina/farmacocinética , Didanosina/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Luz , Nanopartículas/ultraestrutura , Nucleosídeos/química , Nucleosídeos/farmacocinética , Tamanho da Partícula , Ratos , Ratos Wistar , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacocinética , Espalhamento de Radiação , Distribuição Tecidual/efeitos dos fármacos , Resultado do Tratamento , Trítio , Zalcitabina/química , Zalcitabina/farmacologia
20.
AIDS Res Hum Retroviruses ; 29(2): 250-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22738014

RESUMO

Treatment of HIV infection with conventional antiretroviral therapy (ART) is a lifelong challenge with significant long-term risks of adverse events and treatment failure-induced HIV resistance being major concerns. One potential alternative to standard treatment is the use of viral decay accelerators, antiviral agents that theoretically can drive the rate of viral mutation beyond the compensatory capacity of the virus, thereby inducing viral extinction. One such drug, KP-1461, was tested in a population of HIV-infected persons not receiving ART to assess the safety, tolerability, and efficacy of the strategy in vivo. Of 24 highly treatment-experienced HIV-infected patients who received at least one dose of KP-1461, 13 completed the planned 4 months of monotherapy. The drug was generally well tolerated; it did not significantly affect either HIV viral load or CD4 lymphocyte count over the period of dosing. Pharmacokinetic sampling suggested adequate drug exposure was achieved. There were no new mutations induced by KP-1461 that changed viral susceptibility to standard antiretroviral agents. After the study was completed, analysis of more than 7 million base pairs of HIV samples from study patients and controls demonstrated changes in the pattern of viral mutations that differed significantly from what would be encountered naturally. The identified alterations were consistent with an effect resulting from KP-1461's proposed mechanism of action. These findings suggest that the novel antiretroviral approach illustrated by this study should be further investigated, particularly given the relatively good tolerability and the demonstrated excellent safety in this limited cohort study.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/efeitos adversos , Infecções por HIV/tratamento farmacológico , Nucleosídeos/administração & dosagem , Nucleosídeos/efeitos adversos , Adulto , Contagem de Linfócito CD4 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Nucleosídeos/farmacocinética , RNA Viral/genética , Análise de Sequência de DNA , Resultado do Tratamento , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA