Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.117
Filtrar
1.
Nucleic Acids Res ; 52(11): 6532-6542, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38738661

RESUMO

Cancer cells produce vast quantities of reactive oxygen species, leading to the accumulation of toxic nucleotides as 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). The human MTH1 protein catalyzes the hydrolysis of 8-oxo-dGTP, and cancer cells are dependent on MTH1 for their survival. MTH1 inhibitors are possible candidates for a class of anticancer drugs; however, a reliable screening system using live cells has not been developed. Here we report a visualization method for 8-oxo-dGTP and its related nucleotides in living cells. Escherichia coli MutT, a functional homologue of MTH1, is divided into the N-terminal (1-95) and C-terminal (96-129) parts (Mu95 and 96tT, respectively). Mu95 and 96tT were fused to Ash (assembly helper tag) and hAG (Azami Green), respectively, to visualize the nucleotides as fluorescent foci formed upon the Ash-hAG association. The foci were highly increased when human cells expressing Ash-Mu95 and hAG-96tT were treated with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-dGTP. The foci formation by 8-oxo-dG(TP) was strikingly enhanced by the MTH1 knockdown. Moreover, known MTH1 inhibitors and oxidizing reagents also increased foci. This is the first system that visualizes damaged nucleotides in living cells, provides an excellent detection method for the oxidized nucleotides and oxidative stress, and enables high throughput screening for MTH1 inhibitors.


Assuntos
Nucleotídeos de Desoxiguanina , Pirofosfatases , Humanos , Nucleotídeos de Desoxiguanina/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/antagonistas & inibidores , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Nucleotídeos de Guanina/metabolismo , Oxirredução , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/antagonistas & inibidores
2.
Biol Chem ; 405(5): 297-309, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353111

RESUMO

G proteins are interacting partners of G protein-coupled receptors (GPCRs) in eukaryotic cells. Upon G protein activation, the ability of the Gα subunit to exchange GDP for GTP determines the intracellular signal transduction. Although various studies have successfully shown that both Gαs and Gαi have an opposite effect on the intracellular cAMP production, with the latter being commonly described as "more active", the functional analysis of Gαs is a comparably more complicated matter. Additionally, the thorough investigation of the ubiquitously expressed variants of Gαs, Gαs(short) and Gαs(long), is still pending. Since the previous experimental evaluation of the activity and function of the Gαs isoforms is not consistent, the focus was laid on structural investigations to understand the GTPase activity. Herein, we examined recombinant human Gαs by applying an established methodological setup developed for Gαi characterization. The ability for GTP binding was evaluated with fluorescence and fluorescence anisotropy assays, whereas the intrinsic hydrolytic activity of the isoforms was determined by a GTPase assay. Among different nucleotide probes, BODIPY FL GTPγS exhibited the highest binding affinity towards the Gαs subunit. This work provides a deeper understanding of the Gαs subunit and provides novel information concerning the differences between the two protein variants.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Nucleotídeos de Guanina/metabolismo , Nucleotídeos de Guanina/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Guanosina Trifosfato/metabolismo
3.
Biol Pharm Bull ; 47(1): 14-22, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37880111

RESUMO

Though the physiological effects of adenosine and adenine nucleotides on purinergic receptors in cancer cells have been well studied, the influence of extracellular guanosine and guanine nucleotides on breast cancer cells remains unclear. Here, we show that extracellular guanosine and guanine nucleotides decrease the viability and proliferation of human breast cancer SKBR-3 cells. Treatment with guanosine or guanine nucleotides increased mitochondrial production of reactive oxygen species (ROS), and modified the cell cycle. Guanosine-induced cell death was suppressed by treatment with adenosine or the equilibrium nucleoside transporter (ENT) 1/2 inhibitor dipyridamole, but was not affected by adenosine receptor agonists or antagonists. These results suggest that guanosine inhibits adenosine uptake through ENT1/2, but does not antagonize adenosine receptors. In contrast, guanosine triphosphate (GTP)-induced cell death was suppressed not only by adenosine and dipyridamole, but also by the A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA), suggesting that GTP-induced cell death is mediated in part by an antagonistic effect on adenosine A1 receptor. Thus, both guanosine and GTP induce apoptosis of breast cancer cells, but via at least partially different mechanisms.


Assuntos
Neoplasias da Mama , Nucleotídeos de Guanina , Humanos , Feminino , Nucleotídeos de Guanina/metabolismo , Nucleotídeos de Guanina/farmacologia , Guanosina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Guanosina Trifosfato/farmacologia , Adenosina/farmacologia , Adenosina/metabolismo , Dipiridamol
4.
Clin Interv Aging ; 18: 987-997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377627

RESUMO

Introduction: The guanine nucleotide pool (GTP, guanosine-5'-triphosphate; GDP, guanosine-5'-diphosphate, and GMP, guanosine-5'-monophosphate) is an essential energy donor in various biological processes (eg protein synthesis and gluconeogenesis) and secures several vital regulatory functions in the human body. The study aimed to predict the trends of age-related changes in erythrocyte guanine nucleotides and examine whether competitive sport and related physical training promote beneficial adaptations in erythrocyte guanylate concentrations. Methods: The study included 86 elite endurance runners (EN) aged 20-81 years, 58 sprint-trained athletes (SP) aged 21-90 years, and 62 untrained individuals (CO) aged 20-68 years. Results: The concentration of erythrocyte GTP and total guanine nucleotides (TGN) were highest in the SP group, lower in the EN group, and lowest in the CO group. Both athletic groups had higher guanylate energy charge (GEC) values than the CO group (p = 0.012). Concentrations of GTP, TGN, and GEC value significantly decreased, while GDP and GMP concentrations progressively increased with age. Conclusion: Such a profile of change suggests a deterioration of the GTP-related regulatory function in older individuals. Our study explicitly shows that lifelong sports participation, especially of sprint-oriented nature, allows for maintaining a higher erythrocyte guanylate pool concentration, supporting cells' energy metabolism, regulatory and transcription properties, and thus more efficient overall body functioning.


Assuntos
Nucleotídeos , Esportes , Masculino , Humanos , Idoso , Nucleotídeos/metabolismo , Nucleotídeos de Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Atletas , Guanosina/metabolismo , Eritrócitos/metabolismo
5.
Br J Clin Pharmacol ; 89(8): 2625-2630, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37218386

RESUMO

About 15% to 28% of patients treated with thiopurines experienced adverse drug reactions, such as haematological and hepatic toxicities. Some of these related to the polymorphic activity of the thiopurine S-methyltransferase (TPMT), the key detoxifying enzyme of thiopurine metabolism. We report here a case of thiopurine-induced ductopenia with a comprehensive pharmacological analysis on thiopurine metabolism. A 34-year-old woman, with a medical history of severe systemic lupus erythematosus with recent introduction of azathioprine therapy, presented with mild fluctuating transaminase blood levels consistent with a hepatocellular pattern, which evolved to a cholestatic pattern over the next weeks. A blood thiopurine metabolite assay revealed low 6-thioguanine nucleotides (6-TGN) level and a dramatically increased 6-methylmercaptopurine ribonucleotides (6-MMPN) level, together with an unfavourable [6-MMPN:6-TGN] metabolite ratio and a high TPMT activity. After a total of about 6 months of thiopurine therapy, a transjugular liver biopsy revealed a ductopenia, and azathioprine discontinuation led to further clinical improvement. In line with previous reports from the literature, our case supports the fact that ductopenia is a rare adverse drug reaction of azathioprine. The mechanism of reaction is unknown but may involve high 6-MMPN blood level, due to unusual thiopurine metabolism (switched metabolism). Early therapeutic drug monitoring with measurement of 6-TGN and 6-MMPN blood levels may help physicians to identify patients at risk of similar duct injury.


Assuntos
Azatioprina , Lúpus Eritematoso Sistêmico , Feminino , Humanos , Adulto , Azatioprina/efeitos adversos , Imunossupressores , Tioguanina/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Tionucleotídeos , Metiltransferases/metabolismo , Ductos Biliares/metabolismo , Mercaptopurina/uso terapêutico , Nucleotídeos de Guanina/metabolismo
6.
Hypertension ; 80(6): 1231-1244, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36999441

RESUMO

BACKGROUND: Vascular smooth muscle cell (VSMC) contractility is critical for blood pressure regulation and vascular homeostasis. Identifying the key molecule that maintains VSMC contractility may provide a novel therapeutic target for vascular remodeling. ALK3 (activin receptor-like kinase 3) is a serine/threonine kinase receptor, and deletion of ALK3 causes embryonic lethality. However, little is known about the role of ALK3 in postnatal arterial function and homeostasis. METHODS: We conducted in vivo studies in a tamoxifen-induced postnatal VSMC-specific ALK3 deletion mice suitable for analysis of blood pressure and vascular contractility. Additionally, the role of ALK3 on VSMC was determined using Western blot, collagen-based contraction assay and traction force microscopy. Furthermore, interactome analysis were performed to identify the ALK3-associated proteins and bioluminescence resonance energy transfer assay was used to characterize Gαq activation. RESULTS: ALK3 deficiency in VSMC led to spontaneous hypotension and impaired response to angiotensin II in mice. In vivo and in vitro data revealed that ALK3 deficiency impaired contraction force generation by VSMCs, repressed the expression of contractile proteins, and inhibited the phosphorylation of myosin light chain. Mechanistically, Smad1/5/8 signaling mediated the ALK3-modulated contractile protein expressions but not myosin light chain phosphorylation. Furthermore, interactome analysis revealed that ALK3 directly interacted with and activated Gαq (guanine nucleotide-binding protein subunit αq)/Gα11 (guanine nucleotide-binding protein subunit α11), thereby stimulating myosin light chain phosphorylation and VSMC contraction. CONCLUSIONS: Our study revealed that in addition to canonical Smad1/5/8 signaling, ALK3 modulates VSMC contractility through direct interaction with Gαq/Gα11, and therefore, might serve as a potential target for modulating aortic wall homeostasis.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Músculo Liso Vascular , Camundongos , Animais , Subunidades Proteicas/metabolismo , Músculo Liso Vascular/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Pressão Sanguínea/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Miócitos de Músculo Liso/metabolismo , Nucleotídeos de Guanina/metabolismo , Células Cultivadas
7.
Biochimie ; 209: 52-60, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36746255

RESUMO

We previously reported that knockout of the mazG (SA1292) gene decreases Staphylococcus aureus killing activity against silkworms. S. aureus MazG (SaMazG) has a nucleotide pyrophosphatase domain conserved among MazG family proteins, but its biochemical characteristics are unknown. In the present study, we purified recombinant N-terminal His-tagged SaMazG protein and examined its biochemical activity. SaMazG hydrolyzed GTP, UTP, dGTP, and TTP into nucleoside monophosphates. Hydrolytic activity of SaMazG against ATP, CTP, dATP, and dCTP was low or not detected. SaMazG exhibited high hydrolytic activity against 8-oxo-GTP and 8-oxo-dGTP, oxidized guanine nucleotides, with a Vmax/Km ratio more than 15-fold that of GTP. Furthermore, the S. aureus mazG knockout mutant was sensitive to hydrogen peroxide compared with the parent strain. These results suggest that SaMazG is a nucleotide pyrophosphatase hydrolyzing oxidized guanine nucleotides that contributes to the oxidative stress resistance of S. aureus.


Assuntos
Nucleotídeos de Guanina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Nucleotídeos de Guanina/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Estresse Oxidativo , Guanosina Trifosfato/metabolismo
8.
Small GTPases ; 13(1): 327-334, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328771

RESUMO

The mechanistic target of rapamycin (mTOR) complex is responsible for coordinating nutrient availability with eukaryotic cell growth. Amino acid signals are transmitted towards mTOR via the Rag/Gtr heterodimers. Due to the obligatory heterodimeric architecture of the Rag/Gtr GTPases, investigating their biochemical properties has been challenging. Here, we describe an updated assay that allows us to probe the guanine nucleotide-binding affinity and kinetics to the Gtr heterodimers in Saccharomyces cerevisiae. We first identified the structural element that Gtr2p lacks to enable crosslinking. By using a sequence conservation-based mutation, we restored the crosslinking between Gtr2p and the bound nucleotides. Using this construct, we determined the nucleotide-binding affinities of the Gtr heterodimer, and found that it operates under a different form of intersubunit communication than human Rag GTPases. Our study defines the evolutionary divergence of the Gtr/Rag-mTOR axis of nutrient sensing.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Saccharomyces cerevisiae , Humanos , Guanina/metabolismo , Nucleotídeos de Guanina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR/metabolismo , GTP Fosfo-Hidrolases/metabolismo
9.
Anal Chem ; 94(41): 14410-14418, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36206384

RESUMO

Gα proteins as part of heterotrimeric G proteins are molecular switches essential for G protein-coupled receptor- mediated intracellular signaling. The role of the Gα subunits has been examined for decades with various guanine nucleotides to elucidate the activation mechanism and Gα protein-dependent signal transduction. Several approaches describe fluorescent ligands mimicking the GTP function, yet lack the efficient estimation of the proteins' GTP binding activity and the fraction of active protein. Herein, we report the development of a reliable fluorescence anisotropy-based method to determine the affinity of ligands at the GTP-binding site and to quantify the fraction of active Gαi1 protein. An advanced bacterial expression protocol was applied to produce active human Gαi1 protein, whose GTP binding capability was determined with novel fluorescently labeled guanine nucleotides acting as high-affinity Gαi1 binders compared to the commonly used BODIPY FL GTPγS. This study thus contributes a new method for future investigations of the characterization of Gαi and other Gα protein subunits, exploring their corresponding signal transduction systems and potential for biomedical applications.


Assuntos
Nucleotídeos de Guanina , Proteínas Heterotriméricas de Ligação ao GTP , Polarização de Fluorescência , Nucleotídeos de Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Ligação Proteica , Subunidades Proteicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
10.
Biomolecules ; 12(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009035

RESUMO

The final maturation step of the 60S ribosomal subunit requires the release of eukaryotic translation initiation factor 6 (human eIF6, yeast Tif6) to enter the pool of mature ribosomes capable of engaging in translation. This process is mediated by the concerted action of the Elongation Factor-like 1 (human EFL1, yeast Efl1) GTPase and its effector, the Shwachman-Bodian-Diamond syndrome protein (human SBDS, yeast Sdo1). Mutations in these proteins prevent the release of eIF6 and cause a disease known as Shwachman-Diamond Syndrome (SDS). While some mutations in EFL1 or SBDS result in insufficient proteins to meet the cell production of mature large ribosomal subunits, others do not affect the expression levels with unclear molecular defects. We studied the functional consequences of one such mutation using Saccharomyces cerevisiae Efl1 R1086Q, equivalent to human EFL1 R1095Q described in SDS patients. We characterised the enzyme kinetics and energetic basis outlining the recognition of this mutant to guanine nucleotides and Sdo1, and their interplay in solution. From our data, we propose a model where the conformational change in Efl1 depends on a long-distance network of interactions that are disrupted in mutant R1086Q, whereby Sdo1 and the guanine nucleotides no longer elicit the conformational changes previously described in the wild-type protein. These findings point to the molecular malfunction of an EFL1 mutant and its possible impact on SDS pathology.


Assuntos
GTP Fosfo-Hidrolases , Saccharomyces cerevisiae , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Nucleotídeos de Guanina/metabolismo , Humanos , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566344

RESUMO

The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA.


Assuntos
Escherichia coli , Metaloproteínas , Coenzimas/metabolismo , Escherichia coli/metabolismo , Nucleotídeos de Guanina/metabolismo , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Nucleotídeos/metabolismo , Pterinas
12.
Ther Drug Monit ; 44(3): 391-395, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35067667

RESUMO

BACKGROUND: Although the relationship between NUDT15 and thiopurine-induced leukopenia has been proven in previous studies, no prominent factors explaining interindividual variations in its active metabolite, 6-thioguanine nucleotide (6-TGN), and clinical efficacy have been identified. In this study, the correlation between genotypes (thiopurine S-methyltransferase, NUDT15, and ITPA polymorphisms), 6-TGN concentrations, and clinical outcomes (efficacy and side effects) in patients with inflammatory bowel disease were investigated. METHODS: In total, 160 patients with inflammatory bowel disease were included, and the 3 genotyped genes and 6-TGN levels were measured by high-performance liquid chromatography. Statistical analyses and calculations were performed to determine their relationships. RESULTS: ITPA genotypes and 6-TGN concentration were both associated with the clinical effectiveness of azathioprine (P = 0.036 and P = 4.6 × 10-7), with a significant correlation also detected between them (P = 0.042). Patients with ITPA variant alleles exhibited higher 6-TGN levels than those with the wild-type allele. In addition, the relationship between NUDT15 and leukopenia and neutropenia was confirmed (P = 1.79 × 10-7 and 0.002). CONCLUSIONS: In summary, it is recommended that both ITPA and NUDT15 genotyping should be performed before azathioprine initiation. Moreover, the 6-TGN concentration should be routinely monitored during the later period of treatment.


Assuntos
Doenças Inflamatórias Intestinais , Pirofosfatases , Azatioprina/uso terapêutico , Biomarcadores/metabolismo , China , Nucleotídeos de Guanina/genética , Nucleotídeos de Guanina/metabolismo , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Leucopenia/induzido quimicamente , Leucopenia/tratamento farmacológico , Leucopenia/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Prognóstico , Pirofosfatases/genética , Pirofosfatases/metabolismo , Tionucleotídeos/genética , Tionucleotídeos/metabolismo
13.
Mol Microbiol ; 116(4): 1216-1231, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34494331

RESUMO

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs). Successful urinary tract colonization requires appropriate expression of virulence factors in response to host environmental cues, such as limited oxygen and iron availability. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Previously, we showed that hemolysin expression is enhanced under anaerobic conditions; however, the genetic basis and regulatory mechanisms involved remain undefined. Here, a transposon-based forward screen identified bis-molybdopterin guanine dinucleotide cofactor (bis-MGD) biosynthesis as an important factor for a full transcription of hemolysin under anaerobiosis but not under aerobiosis. bis-MGD positively influences hemolysin transcription via c3566-c3568, an operon immediately upstream of and cotranscribed with hlyCABD. Furthermore, suppressor mutation analysis identified the nitrogen regulator NtrC as a direct repressor of c3566-c3568-hlyCABD expression, and intact bis-MGD biosynthesis downregulated ntrC expression, thus at least partially explaining the positive role of bis-MGD in modulating hemolysin expression. Finally, bis-MGD is involved in hemolysin-mediated uroepithelial cell death and contributes to the competitive fitness of UPEC in a murine model of UTI. Collectively, our data establish that bis-MGD biosynthesis plays a crucial role in UPEC fitness in vivo, thus providing a potential target for combatting UTIs.


Assuntos
Infecções por Escherichia coli/microbiologia , Nucleotídeos de Guanina/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Pterinas/metabolismo , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , Anaerobiose , Animais , Morte Celular , Linhagem Celular , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos CBA , Mutagênese Insercional , Óperon , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
14.
Anal Biochem ; 631: 114338, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433016

RESUMO

The Ras superfamily of small G proteins play central roles in diverse signaling pathways. Superfamily members act as molecular on-off switches defined by their occupancy with GTP or GDP, respectively. In vitro functional studies require loading with a hydrolysis-resistant GTP analogue to increase the on-state lifetime, as well as knowledge of fractional loading with activating and inactivating nucleotides. The present study describes a method combining elements of previous approaches with new, optimized features to analyze the bound nucleotide composition of a G protein loaded with activating (GMPPNP) or inactivating (GDP) nucleotide. After nucleotide loading, the complex is washed to remove unbound nucleotides then bound nucleotides are heat-extracted and subjected to ion-paired, reverse-phase HPLC-UV to resolve, identify and quantify the individual nucleotide components. These data enable back-calculation to the nucleotide composition and fractional activation of the original, washed G protein population prior to heat extraction. The method is highly reproducible. Application to multiple HRas preparations and mutants confirms its ability to fully extract and analyze bound nucleotides, and to resolve the fractional on- and off-state populations. Furthermore, the findings yield a novel hypothesis for the molecular disease mechanism of Ras mutations at the E63 and Y64 positions.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Nucleotídeos de Guanina/análise , Nucleotídeos de Guanina/metabolismo , Proteínas ras/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Temperatura Alta , Hidrólise , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Raios Ultravioleta , Proteínas ras/genética
15.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400692

RESUMO

2'3'-cGAMP is known as a nonclassical second messenger and small immune modulator that possesses potent antitumor and antiviral activities via inducing the stimulator of IFN genes-mediated (STING-mediated) signaling pathway. However, its function in regulating type 2 immune responses remains unknown. Therefore, we sought to determine a role of STING activation by 2'3'-cGAMP in type 2 inflammatory reactions in multiple mouse models of eosinophilic asthma. We discovered that 2'3'-cGAMP administration strongly attenuated type 2 lung immunopathology and airway hyperreactivity induced by IL-33 and a fungal allergen, Aspergillus flavus. Mechanistically, upon the respiratory delivery, 2'3'-cGAMP was mainly internalized by alveolar macrophages, in which it activated the STING/IFN regulatory factor 3/type I IFN signaling axis to induce the production of inhibitory factors containing IFN-α, which blocked the IL-33-mediated activation of group 2 innate lymphoid (ILC2) cells in vivo. We further demonstrated that 2'3'-cGAMP directly suppressed the proliferation and function of both human and mouse ILC2 cells in vitro. Taken together, our findings suggest that STING activation by 2'3'-cGAMP in alveolar macrophages and ILC2 cells can negatively regulate type 2 immune responses, implying that the respiratory delivery of 2'3'-cGAMP might be further developed as an alternative strategy for treating type 2 immunopathologic diseases such as eosinophilic asthma.


Assuntos
Asma/imunologia , Interleucina-33/metabolismo , Linfócitos/imunologia , Macrófagos Alveolares/imunologia , Proteínas de Membrana/metabolismo , Alérgenos/administração & dosagem , Animais , Aspergillus flavus/imunologia , Asma/metabolismo , Asma/patologia , Modelos Animais de Doenças , Eosinofilia/imunologia , Eosinofilia/metabolismo , Eosinofilia/patologia , Feminino , Nucleotídeos de Guanina/administração & dosagem , Nucleotídeos de Guanina/imunologia , Nucleotídeos de Guanina/metabolismo , Humanos , Imunidade Inata , Técnicas In Vitro , Interleucina-33/administração & dosagem , Interleucina-33/genética , Linfócitos/patologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais
16.
Brain Res ; 1754: 147247, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33412149

RESUMO

OBJECTIVE: To investigate the function of Ras-guanine nucleotide release factor 1 (Ras-GRF1) in glioma through mediating H-Ras/ERK signaling pathway. METHODS: Ras-GRF1, H-Ras, K-Ras and N-Ras expressions in glioma and normal brain tissues were detected via Immunohistochemistry. Glioma cells (U87 cells, U251 cells and primary human glioma cells) were transfected with Ras-GRF1 siRNA, H-Ras siRNA and/or Ras-GRF1 lentivirus activation particles. Then, the following aspects were evaluated: cell proliferation by MTT assay, clonogenic ability by the plate clone formation experiment, cell migration and invasion by Wound-healing and Transwell assays, and cell apoptosis by Annexin-V-FITC/PI staining. The protein expressions were measured by Western blotting. Subcutaneous and orthotopic mouse models of glioma were conducted to determine the role of Ras-GRF1 in glioma tumorigenesis. RESULTS: Ras-GRF1, H-Ras, K-Ras and N-Ras expressions were upregulated in the glioma tissues, which were correlated with the WHO grade of glioma. Besides, Ras-GRF1 expression was positively related to H-Ras expression. Ras-GRF1 siRNA could reduce the expression of H-Ras and p-ERK/ERK in glioma cell. H-Ras siRNA inhibited the proliferation, clone formation, migration and invasion, and enhance the apoptosis of glioma cells, which, however, were reversed by Ras-GRF1 lentivirus activation particles. In vivo experiments also revealed that Ras-GRF1 shRNA reduced the volume and weight of the tumors in the nude mice, with down-regulations of H-Ras and p-ERK/ERK. CONCLUSION: Ras-GRF1 was upregulated in glioma tissues and correlated with its malignancy and prognosis. Silencing Ras-GRF1, through mediating H-Ras/ERK pathway, may suppress the growth and metastasis of glioma.


Assuntos
Glioma/metabolismo , Nucleotídeos de Guanina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Camundongos Nus , Transdução de Sinais/fisiologia
17.
Nat Rev Microbiol ; 19(4): 256-271, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149273

RESUMO

The stringent response is a stress signalling system mediated by the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) in response to nutrient deprivation. Recent research highlights the complexity and broad range of functions that these alarmones control. This Review provides an update on our current understanding of the enzymes involved in ppGpp, pppGpp and guanosine 5'-monophosphate 3'-diphosphate (pGpp) (collectively (pp)pGpp) turnover, including those shown to produce pGpp and its analogue (pp)pApp. We describe the well-known interactions with RNA polymerase as well as a broader range of cellular target pathways controlled by (pp)pGpp, including DNA replication, transcription, nucleotide synthesis, ribosome biogenesis and function, as well as lipid metabolism. Finally, we review the role of ppGpp and pppGpp in bacterial pathogenesis, providing examples of how these nucleotides are involved in regulating many aspects of virulence and chronic infection.


Assuntos
Bactérias/metabolismo , Nucleotídeos de Guanina/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Estresse Fisiológico/fisiologia , Bactérias/patogenicidade , Replicação do DNA/fisiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Transcrição Gênica/fisiologia , Virulência/fisiologia
18.
Nat Commun ; 11(1): 5388, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097692

RESUMO

The alarmone nucleotides guanosine tetraphosphate and pentaphosphate, commonly referred to as (p)ppGpp, regulate bacterial responses to nutritional and other stresses. There is evidence for potential existence of a third alarmone, guanosine-5'-monophosphate-3'-diphosphate (pGpp), with less-clear functions. Here, we demonstrate the presence of pGpp in bacterial cells, and perform a comprehensive screening to identify proteins that interact respectively with pGpp, ppGpp and pppGpp in Bacillus species. Both ppGpp and pppGpp interact with proteins involved in inhibition of purine nucleotide biosynthesis and with GTPases that control ribosome assembly or activity. By contrast, pGpp interacts with purine biosynthesis proteins but not with the GTPases. In addition, we show that hydrolase NahA (also known as YvcI) efficiently produces pGpp by hydrolyzing (p)ppGpp, thus modulating alarmone composition and function. Deletion of nahA leads to reduction of pGpp levels, increased (p)ppGpp levels, slower growth recovery from nutrient downshift, and loss of competitive fitness. Our results support the existence and physiological relevance of pGpp as a third alarmone, with functions that can be distinct from those of (p)ppGpp.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Nucleotídeos de Guanina/metabolismo , Nucleotídeos/metabolismo , Bacillus/genética , Bacillus anthracis/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Biossíntese de Proteínas
19.
Protein Expr Purif ; 176: 105693, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32681954

RESUMO

FGD2, a member of FGD family, contains a Dbl homology domain (DH) and two pleckstrin homology domains segregated by a FYVE domain. The DH domain has been deduced to be responsible for guanine nucleotide exchange of CDC42 to activate downstream factors. Our aim was to build a prokaryotic expression system for the DH domain and to examine its guanine nucleotide exchange activity toward CDC42 in vitro. A recombinant vector, which was successfully constructed based on pGEX-6P-1, was employed to express the DH domain of human FGD2 (FGD2-DH) in E. coli BL21 (DE3). Purified FGD2-DH behaved as a homogeneous monomer with an estimated molecular weight that corresponded to the theoretical molecular weight and was predicted to be an α-helix protein by circular dichroism spectroscopy. FGD2-DH displayed weak guanine nucleotide exchange activity in vitro and very weak interactions with CDC42 following glutaraldehyde cross-linking.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Nucleotídeos de Guanina/química , Proteína cdc42 de Ligação ao GTP/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Nucleotídeos de Guanina/metabolismo , Humanos , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
20.
Cell Rep ; 31(7): 107667, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433976

RESUMO

Human guanylate binding protein 1 (hGBP1) belongs to the dynamin superfamily of GTPases and conveys host defense against intracellular bacteria and parasites. During infection, hGBP1 is recruited to pathogen-containing vacuoles, such as Chlamydia trachomatis inclusions, restricts pathogenic growth, and induces the activation of the inflammasome pathway. hGBP1 has a unique catalytic activity to hydrolyze guanosine triphosphate (GTP) to guanosine monophosphate (GMP) in two consecutive cleavage steps. However, the functional significance of this activity in host defense remains elusive. Here, we generate a structure-guided mutant that specifically abrogates GMP production, while maintaining fast cooperative GTP hydrolysis. Complementation experiments in human monocytes/macrophages show that hGBP1-mediated GMP production is dispensable for restricting Chlamydia trachomatis growth but is necessary for inflammasome activation. Mechanistically, GMP is catabolized to uric acid, which in turn activates the NLRP3 inflammasome. Our study demonstrates that the unique enzymology of hGBP1 coordinates bacterial growth restriction and inflammasome signaling.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia trachomatis/crescimento & desenvolvimento , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Inflamassomos/metabolismo , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/microbiologia , GMP Cíclico , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Nucleotídeos de Guanina/metabolismo , Humanos , Hidrólise , Inflamassomos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Células THP-1 , Ácido Úrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA