Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.369
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125763

RESUMO

In clinics, chemotherapy is often combined with surgery and radiation to increase the chances of curing cancers. In the case of glioblastoma (GBM), patients are treated with a combination of radiotherapy and TMZ over several weeks. Despite its common use, the mechanism of action of the alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor cells that are mostly non-dividing. The cellular response to alkylating DNA damage is operated by an intricate protein network involving multiple DNA repair pathways and numerous checkpoint proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation state. Among the various alkylating damages, researchers have placed a special on O6-methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode of action. Initially, the mode of action of TMZ was proposed as follows: when left on the genome, O6-mG lesions form O6-mG: T mispairs during replication as T is preferentially mis-inserted across O6-mG. These O6-mG: T mispairs are recognized and tentatively repaired by a post-replicative mismatched DNA correction system (i.e., the MMR system). There are two models (futile cycle and direct signaling models) to account for the cytotoxic effects of the O6-mG lesions, both depending upon the functional MMR system in replicating cells. Alternatively, to explain the cytotoxic effects of alkylating agents in non-replicating cells, we have proposed a "repair accident model" whose molecular mechanism is dependent upon crosstalk between the MMR and the base excision repair (BER) systems. The accidental encounter between these two repair systems will cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize these non-exclusive models to explain the cytotoxic effects of alkylating agents and discuss potential strategies to improve the clinical use of alkylating agents.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Reparo do DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Alquilação , Temozolomida/farmacologia , DNA/metabolismo , Antineoplásicos Alquilantes/farmacologia , Animais , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética
2.
Biotechniques ; 76(7): 343-351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39185783

RESUMO

O6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that is overexpressed in certain tumors and is associated with resistance to the DNA alkylating agent temozolomide. MGMT inhibitors show potential in combating temozolomide resistance, but current assays for MGMT enzyme activity and inhibition, primarily oligonucleotide-based and fluorescent probe-based, are laborious and costly. The clinical relevance of temozolomide therapy calls for more convenient methodologies to study MGMT inhibition. Here, we extended the application of SNAP-Capture magnetic beads to develop a novel MGMT inhibition assay that demonstrated efficacy not only with known MGMT inhibitors, but also with the aldehyde dehydrogenase inhibitor, disulfiram. The assay uses standard fluorescence microscopy as a simple and reliable detection method, and is translationally applicable in drug discovery programs.


A cell line expressing MGMT-GFP fusion protein was generated. After harvesting the cells, the cell lysate was prepared and combined with SNAP-Capture magnetic beads and incubated at room temperature. Successful immobilization of MGMT-GFP on SNAP-Capture magnetic beads was verified by fluorescence microscopy. For the MGMT inhibition assay, the cell lysate underwent pre-treatment with established MGMT inhibitors before interaction with SNAP-capture magnetic beads and then underwent immobilization and fluorescence microscopy.


Assuntos
Inibidores Enzimáticos , O(6)-Metilguanina-DNA Metiltransferase , Humanos , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Inibidores Enzimáticos/farmacologia , Dissulfiram/farmacologia , Temozolomida/farmacologia , Microscopia de Fluorescência/métodos
3.
Neurosurg Rev ; 47(1): 285, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907038

RESUMO

To evaluate the utility of magnetic resonance imaging (MRI) histogram parameters in predicting O(6)-methylguanine-DNA methyltransferase promoter (pMGMT) methylation status in IDH-wildtype glioblastoma (GBM). From November 2021 to July 2023, forty-six IDH-wildtype GBM patients with known pMGMT methylation status (25 unmethylated and 21 methylated) were enrolled in this retrospective study. Conventional MRI signs (including location, across the midline, margin, necrosis/cystic changes, hemorrhage, and enhancement pattern) were assessed and recorded. Histogram parameters were extracted and calculated by Firevoxel software based on contrast-enhanced T1-weighted images (CET1). Differences and diagnostic performance of conventional MRI signs and histogram parameters between the pMGMT-unmethylated and pMGMT-methylated groups were analyzed and compared. No differences were observed in the conventional MRI signs between pMGMT-unmethylated and pMGMT-methylated groups (all p > 0.05). Compared with the pMGMT-methylated group, pMGMT-unmethylated showed a higher minimum, mean, Perc.01, Perc.05, Perc.10, Perc.25, Perc.50, and coefficient of variation (CV) (all p < 0.05). Among all significant CET1 histogram parameters, minimum achieved the best distinguishing performance, with an area under the curve of 0.836. CET1 histogram parameters could provide additional value in predicting pMGMT methylation status in patients with IDH-wildtype GBM, with minimum being the most promising parameter.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Glioblastoma , Isocitrato Desidrogenase , Imageamento por Ressonância Magnética , Regiões Promotoras Genéticas , Humanos , Glioblastoma/genética , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Adulto , Metilação de DNA/genética , Idoso , Isocitrato Desidrogenase/genética , Estudos Retrospectivos , O(6)-Metilguanina-DNA Metiltransferase/genética
4.
J Am Chem Soc ; 146(27): 18241-18252, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38815248

RESUMO

Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine "KL-50" is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA-MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA-MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.


Assuntos
Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/uso terapêutico
5.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612892

RESUMO

Glioblastoma (GBM) is a fatal brain tumor with limited treatment options. O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is the central molecular biomarker linked to both the response to temozolomide, the standard chemotherapy drug employed for GBM, and to patient survival. However, MGMT status is captured on tumor tissue which, given the difficulty in acquisition, limits the use of this molecular feature for treatment monitoring. MGMT protein expression levels may offer additional insights into the mechanistic understanding of MGMT but, currently, they correlate poorly to promoter methylation. The difficulty of acquiring tumor tissue for MGMT testing drives the need for non-invasive methods to predict MGMT status. Feature selection aims to identify the most informative features to build accurate and interpretable prediction models. This study explores the new application of a combined feature selection (i.e., LASSO and mRMR) and the rank-based weighting method (i.e., MGMT ProFWise) to non-invasively link MGMT promoter methylation status and serum protein expression in patients with GBM. Our method provides promising results, reducing dimensionality (by more than 95%) when employed on two large-scale proteomic datasets (7k SomaScan® panel and CPTAC) for all our analyses. The computational results indicate that the proposed approach provides 14 shared serum biomarkers that may be helpful for diagnostic, prognostic, and/or predictive operations for GBM-related processes, given further validation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Proteômica , Temozolomida/uso terapêutico , Proteínas Sanguíneas , Neoplasias Encefálicas/genética , O(6)-Metilguanina-DNA Metiltransferase , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética
6.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612480

RESUMO

The aim of this study was to investigate gene expression alterations associated with overall survival (OS) in glioblastoma (GBM). Using the Nanostring nCounter platform, we identified four genes (COL1A2, IGFBP3, NGFR, and WIF1) that achieved statistical significance when comparing GBM with non-neoplastic brain tissue. The four genes were included in a multivariate Cox Proportional Hazard model, along with age, extent of resection, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation, to create a unique glioblastoma prognostic index (GPI). The GPI score inversely correlated with survival: patient with a high GPI had a median OS of 7.5 months (18-month OS = 9.7%) whereas patients with a low GPI had a median OS of 20.1 months (18-month OS = 54.5%; log rank p-value = 0.004). The GPI score was then validated in 188 GBM patients from The Cancer Genome Atlas (TCGA) from a national data base; similarly, patients with a high GPI had a median OS of 10.5 months (18-month OS = 12.4%) versus 16.9 months (18-month OS = 41.5%) for low GPI (log rank p-value = 0.0003). We conclude that this novel mRNA-based prognostic index could be useful in classifying GBM patients into risk groups and refine prognosis estimates to better inform treatment decisions or stratification into clinical trials.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Genes Reguladores , Bases de Dados Factuais , O(6)-Metilguanina-DNA Metiltransferase , Expressão Gênica
7.
J Chem Inf Model ; 64(8): 3411-3429, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38511939

RESUMO

Chloroethylnitrosoureas (CENUs) are important chemotherapies applied in the treatment of cancer. They exert anticancer activity by inducing DNA interstrand cross-links (ICLs) via the formation of two O6-alkylguanine intermediates, O6-chloroethylguanine (O6-ClEtG) and N1,O6-ethanoguanine (N1,O6-EtG). However, O6-alkylguanine-DNA alkyltransferase (AGT), a DNA-repair enzyme, can restore the O6-alkylguanine damages and thereby obstruct the formation of ICLs (dG-dC cross-link). In this study, the inhibitory mechanism of ICL formation was investigated to elucidate the drug resistance of CENUs mediated by AGT in detail. Based on the structures of the substrate-enzyme complexes obtained from docking and MD simulations, two ONIOM (QM/MM) models with different sizes of the QM region were constructed. The model with a larger QM region, which included the substrate (O6-ClEtG or N1,O6-EtG), a water molecule, and five residues (Tyr114, Cys145, His146, Lys165, and Glu172) in the active pocket of AGT, accurately described the repairing reaction and generated the results coinciding with the experimental outcomes. The repair process consists of two sequential steps: hydrogen transfer to form a thiolate anion on Cys145 and alkyl transfer from the O6 site of guanine (the rate-limiting step). The repair of N1,O6-EtG was more favorable than that of O6-ClEtG from both kinetics and thermodynamics aspects. Moreover, the comparison of the repairing process with the formation of dG-dC cross-link and the inhibition of AGT by O6-benzylguanine (O6-BG) showed that the presence of AGT could effectively interrupt the formation of ICLs leading to drug resistance, and the inhibition of AGT by O6-BG that was energetically more favorable than the repair of O6-ClEtG could not prevent the repair of N1,O6-EtG. Therefore, it is necessary to completely eliminate AGT activity before CENUs medication to enhance the chemotherapeutic effectiveness. This work provides reasonable explanations for the supposed mechanism of AGT-mediated drug resistance of CENUs and will assist in the development of novel CENU chemotherapies and their medication strategies.


Assuntos
Reparo do DNA , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , O(6)-Metilguanina-DNA Metiltransferase , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Humanos , Teoria Quântica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos de Nitrosoureia/química , Compostos de Nitrosoureia/farmacologia , Compostos de Nitrosoureia/metabolismo
8.
Anal Chem ; 96(11): 4487-4494, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451469

RESUMO

O6-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O6-methylguanine modification (O6 MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O6 MeG-caged DNAzyme and the restoration of catalytic activity. The activated DNAzyme then specifically cleaves the ribonucleic acid site of hairpin DNA to expose toehold sequences. The liberated toehold sequence may act as a primer to trigger a cyclic exponential amplification reaction for the generation of enormous signal strands that bind with the Cy5/biotin-labeled probes to form sandwich hybrids. The assembly of sandwich hybrids onto 605QD obtains 605QD-dsDNA-Cy5 nanostructures, inducing efficient FRET between the 605QD donor and Cy5 acceptor. Notably, the introduction of a mismatched base in hairpin DNA can greatly minimize the background and improve the signal-to-noise ratio. This nanosensor achieves a dynamic range of 1.0 × 10-8 to 0.1 ng/µL and a detection limit of 155.78 aM, and it can screen MGMT inhibitors and monitor cellular MGMT activity with single-cell sensitivity. Moreover, it can distinguish the MGMT level in tissues of breast cancer patients and healthy persons, holding great potential in clinical diagnostics and epigenetic research studies.


Assuntos
Carbocianinas , DNA Catalítico , Guanina/análogos & derivados , Pontos Quânticos , Humanos , DNA Catalítico/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , DNA/química , Desmetilação
9.
Org Biomol Chem ; 22(14): 2749-2753, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502038

RESUMO

Fluorescent chemosensors offer a direct means of measuring enzyme activity for cancer diagnosis, predicting drug resistance, and aiding in the discovery of new anticancer drugs. O6-methylguanine DNA methyltransferase (MGMT) is a predictor of resistance towards anticancer alkylating agents such as temozolomide. Using the fluorescent molecular rotor, 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ), we synthesized, and evaluated a MGMT fluorescent chemosensor derived from a chloromethyl-triazole covalent inhibitor, AA-CW236, a non-pseudosubstrate of MGMT. Our fluorescence probe covalently labelled the MGMT active site C145, producing a 18-fold increase in fluorescence. Compared to previous fluorescent probes derived from a substrate-based inhibitor, our probe had improved binding and reaction rate. Overall, our chloromethyl triazole-based fluorescence MGMT probe is a promising tool for measuring MGMT activity to predict temozolomide resistance.


Assuntos
Antineoplásicos , Guanina/análogos & derivados , Temozolomida , O(6)-Metilguanina-DNA Metiltransferase/genética , DNA , Antineoplásicos Alquilantes/farmacologia
10.
Cancer Lett ; 588: 216812, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490327

RESUMO

The efficacy of temozolomide (TMZ) treatment in glioblastoma (GBM) is influenced by various mechanisms, mainly including the level of O6-methylguanine-DNA methyltransferase (MGMT) and the activity of DNA damage repair (DDR) pathways. In our previous study, we had proved that long non-coding RNA HOTAIR regulated the GBM progression and mediated DDR by interacting with EZH2, the catalytic subunit of PRC2. In this study, we developed a small-molecule inhibitor called EPIC-0628 that selectively disrupted the HOTAIR-EZH2 interaction and promoted ATF3 expression. The upregulation of ATF3 inhibited the recruitment of p300, p-p65, p-Stat3 and SP1 to the MGMT promoter. Hence, EPIC-0628 silenced MGMT expression. Besides, EPIC-0628 induced cell cycle arrest by increasing the expression of CDKN1A and impaired DNA double-strand break repair via suppressing the ATF3-p38-E2F1 pathway. Lastly, EPIC-0628 enhanced TMZ efficacy in GBM in vitro and vivo. Hence, this study provided evidence for the combination of epigenetic drugs EPIC-0628 with TMZ for GBM treatment through the above mechanisms.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/farmacologia , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Quebras de DNA de Cadeia Dupla , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fator 3 Ativador da Transcrição/genética
11.
Front Immunol ; 15: 1299044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384458

RESUMO

Cellular therapies, including chimeric antigen receptor T cell therapies (CAR-T), while generally successful in hematologic malignancies, face substantial challenges against solid tumors such as glioblastoma (GBM) due to rapid growth, antigen heterogeneity, and inadequate depth of response to cytoreductive and immune therapies, We have previously shown that GBM constitutively express stress associated NKG2D ligands (NKG2DL) recognized by gamma delta (γδ) T cells, a minor lymphocyte subset that innately recognize target molecules via the γδ T cell receptor (TCR), NKG2D, and multiple other mechanisms. Given that NKG2DL expression is often insufficient on GBM cells to elicit a meaningful response to γδ T cell immunotherapy, we then demonstrated that NKG2DL expression can be transiently upregulated by activation of the DNA damage response (DDR) pathway using alkylating agents such as Temozolomide (TMZ). TMZ, however, is also toxic to γδ T cells. Using a p140K/MGMT lentivector, which confers resistance to TMZ by expression of O(6)-methylguanine-DNA-methyltransferase (MGMT), we genetically engineered γδ T cells that maintain full effector function in the presence of therapeutic doses of TMZ. We then validated a therapeutic system that we termed Drug Resistance Immunotherapy (DRI) that combines a standard regimen of TMZ concomitantly with simultaneous intracranial infusion of TMZ-resistant γδ T cells in a first-in-human Phase I clinical trial (NCT04165941). This manuscript will discuss DRI as a rational therapeutic approach to newly diagnosed GBM and the importance of repeated administration of DRI in combination with the standard-of-care Stupp regimen in patients with stable minimal residual disease.


Assuntos
Glioblastoma , Glioma , Humanos , Temozolomida/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Imunoterapia Adotiva , Glioma/tratamento farmacológico , Glioblastoma/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico
12.
J Med Chem ; 67(4): 2425-2437, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38346097

RESUMO

Temozolomide (TMZ) is a DNA alkylating agent that produces objective responses in patients with neuroendocrine tumors (NETs) when the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is inactivated. At high doses, TMZ therapy exhausts MGMT activity but also produces dose-limiting toxicities. To reduce off-target effects, we converted the clinically approved radiotracer 68Ga-DOTA-TOC into a peptide-drug conjugate (PDC) for targeted delivery of TMZ to somatostatin receptor subtype-2 (SSTR2)-positive tumor cells. We used an integrated radiolabeling strategy for direct quantitative assessment of receptor binding, pharmacokinetics, and tissue biodistribution. In vitro studies revealed selective binding to SSTR2-positive cells with high affinity (5.98 ± 0.96 nmol/L), internalization, receptor-dependent DNA damage, cytotoxicity, and MGMT depletion. Imaging and biodistribution analysis showed preferential accumulation of the PDC in receptor-positive tumors and high renal clearance. This study identified a trackable SSTR2-targeting system for TMZ delivery and utilizes a modular design that could be broadly applied in PDC development.


Assuntos
Dacarbazina , Receptores de Somatostatina , Humanos , Temozolomida/farmacologia , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Receptores de Somatostatina/metabolismo , Distribuição Tecidual , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Metilases de Modificação do DNA/metabolismo , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral
13.
Biochem Biophys Res Commun ; 695: 149418, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38176171

RESUMO

Glioma is a highly recalcitrant disease with a 5-year survival of 6.8 %. Temozolomide (TMZ), first-line therapy for glioma, is more effective in O6-methylguanine-DNA methyltransferase (MGMT)-negative gliomas than in MGMT-positive gliomas as MGMT confers resistance to TMZ. Methionine restriction is effective for many cancers in mouse models including glioma. The concern is that methionine restriction could induce MGMT by decreasing DNA methylation and confer resistance to TMZ. In the present study, we investigated the efficacy of combining methionine restriction with TMZ for the treatment of MGMT-negative glioma, and whether methionine restriction induced MGMT. Human MGMT-negative U87 glioma cells were used to determine the efficacy of TMZ combined with methionine restriction. Recombinant methioninase (rMETase) inhibited U87 glioma growth without induction of MGMT in vitro. The combination of rMETase and TMZ inhibited U87 cell proliferation more than either agent alone in vitro. In the orthotopic nude-mouse model, the combination of TMZ and a methionine-deficient diet was much more effective than TMZ alone: two mice out of five were cured of glioma by the combination. No mice died during the treatment period. Methionine restriction enhanced the efficacy of TMZ in MGMT-negative glioma without inducing MGMT, demonstrating potential clinical promise for improved outcome of a currently incurable disease.


Assuntos
Neoplasias Encefálicas , Glioma , Temozolomida , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Metilases de Modificação do DNA/farmacologia , Metilases de Modificação do DNA/uso terapêutico , Enzimas Reparadoras do DNA/genética , Resistencia a Medicamentos Antineoplásicos , Glioma/tratamento farmacológico , Glioma/genética , Metionina/farmacologia , Camundongos Nus , O(6)-Metilguanina-DNA Metiltransferase , Racemetionina/farmacologia , Temozolomida/uso terapêutico , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/genética
14.
J Neurooncol ; 166(3): 419-430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277015

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , O(6)-Metilguanina-DNA Metiltransferase/genética , Estudos Retrospectivos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Metilação , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilação de DNA , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203783

RESUMO

The O-6-methylguanine-DNA methyltransferase (MGMT) gene is a critical guardian of genomic integrity. MGMT methylation in diffuse gliomas serves as an important determinant of patients' prognostic outcomes, more specifically in glioblastomas (GBMs). In GBMs, the absence of MGMT methylation, known as MGMT promoter unmethylation, often translates into a more challenging clinical scenario, tending to present resistance to chemotherapy and a worse prognosis. A pyrosequencing (PSQ) technique was used to analyze MGMT methylation status at different cut-offs (5%, 9%, and 11%) in a sample of 78 patients diagnosed with IDH-wildtype grade 4 GBM. A retrospective analysis was provided to collect clinicopathological and prognostic data. A statistical analysis was used to establish an association between methylation status and treatment response (TR) and disease-specific survival (DSS). The patients with methylated MGMT status experienced progressive disease rates of 84.6%, 80%, and 78.4% at the respective cut-offs of 5%, 9%, and 11%. The number was considerably higher when considering unmethylated patients, as all patients (100%), regardless of the cut-off, presented progressive disease. Regarding disease-specific survival (DSS), the Hazard Ratio (HR) was HR = 0.74 (0.45-1.24; p = 0.251); HR = 0.82 (0.51-1.33; p = 0.425); and HR = 0.79 (0.49-1.29; p = 0.350), respectively. Our study concludes that there is an association between MGMT unmethylation and worse TR and DSS. The 9% cut-off demonstrated a greater potential for patient survival as a function of time, which may shed light on the future need for standardization of MGMT methylation positivity parameters in PSQ.


Assuntos
Glioblastoma , Guanina , Isocitrato Desidrogenase , Humanos , DNA , Glioblastoma/genética , Guanina/análogos & derivados , Sequenciamento de Nucleotídeos em Larga Escala , Isocitrato Desidrogenase/genética , Metilação , O(6)-Metilguanina-DNA Metiltransferase/genética , Estudos Retrospectivos
16.
Chem Commun (Camb) ; 60(9): 1156-1159, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38190113

RESUMO

Alkylation at the O6 position of guanine is a common and highly mutagenic form of DNA damage. Direct repair of O6-alkylguanines by the "suicide" enzyme O6-methylguanine DNA methyltransferase (MGMT, AGT, AGAT) maintains genome stability and inhibits carcinogenesis. In this study, a fluorescent analogue of thymidine containing trans-stilbene (tsT) is quenched by O6-methylguanine residues in the opposite strand of DNA by molecular dynamics that propagate through the duplex with as much as ∼9 Šof separation. Increased fluorescence of tsT or the cytosine analogue tsC resulting from MGMT-mediated DNA repair were distinguishable from non-covalent DNA-protein binding following protease digest. To our knowledge, this is the first study utilizing molecular rotor base analogues to detect DNA damage and repair activities in duplex DNA.


Assuntos
Reparo do DNA , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , DNA/química , Dano ao DNA
17.
Front Immunol ; 15: 1328375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288307

RESUMO

Background: Glioblastoma (GBM) is a highly lethal brain tumor. The effectiveness of temozolomide (TMZ) treatment in GBM is linked to the methylation status of O6-methyl-guanine DNA methyltransferase (MGMT) promoter. Patients with unmethylated MGMT promoter have limited treatment options available. Consequently, there is a pressing need for alternative therapeutic strategies for such patients. Methods: Data, including transcriptomic and clinical information, as well as information on MGMT promoter methylation status in primary GBM, were obtained from The Cancer Genome Atlas (TCGA) (n=121) and Chinese Glioma Genome Atlas (CGGA) (n=83) datasets. Samples were categorized into high and low MGMT expression groups, MGMT-high (MGMT-H) and MGMT-low (MGMT-L) tumors. A comprehensive transcriptome analysis was conducted to explore the tumor-immune microenvironment. Furthermore, we integrated transcriptome data from 13 GBM patients operated at our institution with findings from tumor-infiltrating lymphocyte (TIL) cultures, specifically investigating their response to autologous tumors. Results: Gene signatures associated with various immune cells, including CD8 T cells, helper T cells, B cells, and macrophages, were noted in MGMT-H tumors. Pathway analysis confirmed the enrichment of immune cell-related pathways. Additionally, biological processes involved in the activation of monocytes and lymphocytes were observed in MGMT-H tumors. Furthermore, TIL culture experiments showed a greater presence of tumor-reactive T cells in MGMT-H tumors compared to MGMT-L tumors. These findings suggest that MGMT-H tumors has a potential for enhanced immune response against tumors mediated by CD8 T cells. Conclusion: Our study provides novel insights into the immune cell composition of MGMT-H tumors, which is characterized by the infiltration of type 1 helper T cells and activated B cells, and also the presence of tumor-reactive T cells evidenced by TIL culture. These findings contribute to a better understanding of the immune response in MGMT-H tumors, emphasizing their potential for immunotherapy. Further studies are warranted to investigate on the mechanisms of MGMT expression and antitumor immunity.


Assuntos
Glioblastoma , Glioma , O(6)-Metilguanina-DNA Metiltransferase , Humanos , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/patologia , Guanina , O(6)-Metilguanina-DNA Metiltransferase/genética , Temozolomida/uso terapêutico , Microambiente Tumoral/genética , Proteínas Supressoras de Tumor/genética
18.
J Neurooncol ; 166(1): 129-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224404

RESUMO

BACKGROUND: Malignant glioma carries a poor prognosis despite current therapeutic modalities. Standard of care therapy consists of surgical resection, fractionated radiotherapy concurrently administered with temozolomide (TMZ), a DNA-alkylating chemotherapeutic agent, followed by adjuvant TMZ. O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, removes alkylated lesions from tumor DNA, thereby promoting chemoresistance. MGMT promoter methylation status predicts responsiveness to TMZ; patients harboring unmethylated MGMT (~60% of glioblastoma) have a poorer prognosis with limited treatment benefits from TMZ. METHODS: Via lentiviral-mediated delivery into LN18 glioma cells, we employed deactivated Cas9-CRISPR technology to target the MGMT promoter and enhancer regions for methylation, as mediated by the catalytic domain of the methylation enzyme DNMT3A. Methylation patterns were examined at a clonal level in regions containing Differentially Methylation Regions (DMR1, DMR2) and the Methylation Specific PCR (MSP) region used for clinical assessment of MGMT methylation status. Correlative studies of genomic and transcriptomic effects of dCas9/CRISPR-based methylation were performed via Illumina 850K methylation array platform and bulk RNA-Seq analysis. RESULTS: We used the dCas9/DNMT3A catalytic domain to achieve targeted MGMT methylation at specific CpG clusters in the vicinity of promoter, enhancer, DMRs and MSP regions. Consequently, we observed MGMT downregulation and enhanced glioma chemosensitivity in survival assays in vitro, with minimal off-target effects. CONCLUSION: dCas9/CRISPR is a viable method of epigenetic editing, using the DNMT3A catalytic domain. This study provides initial proof-of-principle for CRISPR technology applications in malignant glioma, laying groundwork for subsequent translational studies, with implications for future epigenetic editing-based clinical applications.


Assuntos
Neoplasias Encefálicas , Glioma , Guanina , Humanos , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Dacarbazina/farmacologia , DNA/genética , DNA/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase/genética , Temozolomida/farmacologia
19.
Clin Cancer Res ; 30(7): 1338-1351, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967136

RESUMO

PURPOSE: We evaluated the properties and activity of AZD9574, a blood-brain barrier (BBB) penetrant selective inhibitor of PARP1, and assessed its efficacy and safety alone and in combination with temozolomide (TMZ) in preclinical models. EXPERIMENTAL DESIGN: AZD9574 was interrogated in vitro for selectivity, PARylation inhibition, PARP-DNA trapping, the ability to cross the BBB, and the potential to inhibit cancer cell proliferation. In vivo efficacy was determined using subcutaneous as well as intracranial mouse xenograft models. Mouse, rat, and monkey were used to assess AZD9574 BBB penetration and rat models were used to evaluate potential hematotoxicity for AZD9574 monotherapy and the TMZ combination. RESULTS: AZD9574 demonstrated PARP1-selectivity in fluorescence anisotropy, PARylation, and PARP-DNA trapping assays and in vivo experiments demonstrated BBB penetration. AZD9574 showed potent single agent efficacy in preclinical models with homologous recombination repair deficiency in vitro and in vivo. In an O6-methylguanine-DNA methyltransferase (MGMT)-methylated orthotopic glioma model, AZD9574 in combination with TMZ was superior in extending the survival of tumor-bearing mice compared with TMZ alone. CONCLUSIONS: The combination of three key features-PARP1 selectivity, PARP1 trapping profile, and high central nervous system penetration in a single molecule-supports the development of AZD9574 as the best-in-class PARP inhibitor for the treatment of primary and secondary brain tumors. As documented by in vitro and in vivo studies, AZD9574 shows robust anticancer efficacy as a single agent as well as in combination with TMZ. AZD9574 is currently in a phase I trial (NCT05417594). See related commentary by Lynce and Lin, p. 1217.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Humanos , Camundongos , Ratos , Antineoplásicos Alquilantes/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , DNA , Glioma/tratamento farmacológico , Glioma/patologia , O(6)-Metilguanina-DNA Metiltransferase/genética , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Pharmacol Res ; 199: 106990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984506

RESUMO

Resistance to temozolomide (TMZ), the frontline chemotherapeutic agent for glioblastoma (GBM), has emerged as a formidable obstacle, underscoring the imperative to identify alternative therapeutic strategies to improve patient outcomes. In this study, we comprehensively evaluated a novel agent, O6-methyl-2'-deoxyguanosine-5'-triphosphate (O6-methyl-dGTP) for its anti-GBM activity both in vitro and in vivo. Notably, O6-methyl-dGTP exhibited pronounced cytotoxicity against GBM cells, including those resistant to TMZ and overexpressing O6-methylguanine-DNA methyltransferase (MGMT). Mechanistic investigations revealed that O6-methyl-dGTP could be incorporated into genomic DNA, disrupting nucleotide pools balance, and inducing replication stress, resulting in S-phase arrest and DNA damage. The compound exerted its anti-tumor properties through the activation of AIF-mediated apoptosis and the parthanatos pathway. In vivo studies using U251 and Ln229 cell xenografts supported the robust tumor-inhibitory capacity of O6-methyl-dGTP. In an orthotopic transplantation model with U87MG cells, O6-methyl-dGTP showcased marginally superior tumor-suppressive activity compared to TMZ. In summary, our research, for the first time, underscores the potential of O6-methyl-dGTP as an effective candidate against GBM, laying a robust scientific groundwork for its potential clinical adoption in GBM treatment regimens.


Assuntos
Glioblastoma , Polifosfatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Caspases , Linhagem Celular Tumoral , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Nucleotídeos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico , Desoxiguanosina/farmacologia , Desoxiguanosina/uso terapêutico , DNA , Resistencia a Medicamentos Antineoplásicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA