Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
ACS Appl Mater Interfaces ; 11(31): 27624-27640, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31303000

RESUMO

Nonviral delivery of nucleic acids to the cell nucleus typically requires chemical methods that do not guarantee specific delivery (e.g., transfection agent) or physical methods that may require extensive fabrication (e.g., microfluidics) or an elevated pressure (e.g., 105 Pa for microneedles). We report a method of delivering oligonucleotides to the nucleus with high specificity (relative to the cytosol) by synergistically combining chemical and physical approaches. Particularly, we demonstrate that DNA oligonucleotides appended with a polythymidine [poly(T)] segment (chemical) profusely accumulate inside the nucleus when the cells are under gentle compression imposed by the weight of a single glass coverslip (physical; ∼2.2 Pa). Our "compression-cum-poly(T)" delivery method is simple, can be generalizable to three "hard-to-transfect" cell types, and does not induce significant levels of cytotoxicity or long-term oxidative stress to the treated cells when provided the use of suitable compression times and oligonucleotide concentrations. In bEnd.3 endothelial cells, compression-aided intranuclear delivery of poly(T) is primarily mediated by importin ß and nucleoporin 62. Our method significantly enhances the intranuclear delivery of antisense oligonucleotides to bEnd.3 endothelioma cells and the inhibition of two target genes, including a reporter gene encoding the enhanced green fluorescent protein and an intranuclear lncRNA oncogene (metastasis-associated lung adenocarcinoma transcript 1), when compared with delivery without gentle compression or poly(T) attachment. Our data underscore the critical roles of pressure and nucleotide sequence on the intranuclear delivery of nucleic acids.


Assuntos
Núcleo Celular/metabolismo , Sistemas de Liberação de Medicamentos , Oligodesoxirribonucleotídeos Antissenso , Poli T , Animais , Camundongos , Oligodesoxirribonucleotídeos Antissenso/química , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Poli T/química , Poli T/farmacocinética , Poli T/farmacologia , Células RAW 264.7
2.
Sci Rep ; 8(1): 11256, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050146

RESUMO

The current study investigated the use of two cationic peptides, Xentry-KALA (XK) and Xentry-Protamine (XP), for intracellular delivery of Connexin43 antisense oligonucleotides (Cx43AsODN). The charge and size of Cx43AsODN:XK and Cx43AsODN:XP complexes was determined by Zetasizer analysis. The earliest positive zeta potential reading was obtained at a 1:2 and 1:1.2 charge ratio of Cx43AsODN:XK and Cx43AsODN:XP respectively, with Cx43AsODN:XK resulting in overall larger complexes than Cx43AsODN:XP. Gel shift mobility assays revealed complete complex formation at a 1:2.5 and 1:2.2 charge ratio of Cx43AsODN:XK and Cx43AsODN:XP, respectively. Cellular uptake studies were carried out in ARPE-19 cells. While both complexes were able to enter the cells, Cx43AsODN:XK uptake appeared punctate and circular indicative of endosomal containment. Cx43AsODN:XP uptake, in contrast, resulted in diffuse appearance inside the cell suggesting endosomal escape of the cargo. Finally, western blot analysis confirmed that Cx43AsODN:XP was able to knockdown Cx43 expression in these cells under normal and hypoxic conditions.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos/metabolismo , Células Epiteliais/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Pinocitose , Linhagem Celular , Humanos , Peso Molecular , Oligodesoxirribonucleotídeos Antissenso/química , Epitélio Pigmentado da Retina , Eletricidade Estática
3.
J Nanosci Nanotechnol ; 16(2): 1370-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433588

RESUMO

A series of pluronic grafted dendritic alpha,epsilon-poly(L-lysine)s (DPL-PF127) were synthesized by a conjugation reaction and evaluated the potential use of DPL-PF127 as a delivery agent of antisense oligonucleotide into A375 B3 cells. The structural features of the DPL-PF127 were identified by NMR and FT-IR. The number of pluronic F127 on DPL surface, determined by fluorescamine assay, increased proportionally to the mole ratio between DPL and activated PF127 in reaction. DPL- PF127 showed the physical properties of decrease in zetapotential and increase in size as the mole ratio of PF127 to DPL increased. The complex formation of DPL-PF127 with oligonucleotide was confirmed by running capillary zone electrophoresis (CZE) and agarose gel electrophoresis. DPL-PF127, prepared at the mole ratio of 1:10 in reaction, was the most suitable as a delivery adjuvant of oligonucleotide. In addition, DPL-PF127/oligonucleotide complexes were taken into A375B3 cell without cellular toxicity and delivered antisense oligonucleotide into cell.


Assuntos
Portadores de Fármacos , Oligodesoxirribonucleotídeos Antissenso , Poloxâmero , Polilisina , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Oligodesoxirribonucleotídeos Antissenso/química , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Poloxâmero/química , Poloxâmero/classificação , Poloxâmero/farmacocinética , Poloxâmero/farmacologia , Polilisina/química , Polilisina/farmacocinética , Polilisina/farmacologia
4.
Adv Healthc Mater ; 5(14): 1786-99, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27253638

RESUMO

Antisense oligodeoxynucleotides targeting the mRNA of the gap junction protein Cx43 promote tissue repair in a variety of different wounds. Delivery of the antisense drug has most often been achieved by a thermoreversible hydrogel, Pluronic F-127, which is very effective in the short term but does not allow for sustained delivery over several days. For chronic wounds that take a long time to heal, repeated dosing with the drug may be desirable but is not always compatible with conventional treatments such as the weekly changing of compression bandages on venous leg ulcers. Here the coating of collagen scaffolds with antisense oligonucleotides is investigated and a way to provide protection of the oligodeoxynucleotide drug is found in conjunction with sustained release over a 7 d period. This approach significantly reduces the normal foreign body reaction to the scaffold, which induces an increase of Cx43 protein and an inhibition of healing. As a result of the antisense integration into the scaffold, inflammation is reduced with the rate of wound healing and contracture is significantly improved. This coated scaffold approach may be very useful for treating venous leg ulcers and also for providing a sustained release of any other types of oligonucleotide drugs that are being developed.


Assuntos
Materiais Revestidos Biocompatíveis/química , Colágeno/química , Conexina 43 , Oligodesoxirribonucleotídeos Antissenso , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/terapia , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Oligodesoxirribonucleotídeos Antissenso/química , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Poloxâmero/química , Poloxâmero/farmacocinética , Poloxâmero/farmacologia , Ratos , Ratos Sprague-Dawley , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
5.
Eur J Clin Pharmacol ; 72(3): 267-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26645588

RESUMO

PURPOSE: The aim of this study to evaluate the effect of mipomersen on QT intervals in a phase I dose escalation, placebo-controlled study, and a thorough QT (tQT) study in healthy subjects. METHODS: In the initial phase I study, 29 healthy subjects received either single or multiple (for 4 weeks) ascending doses of mipomersen (50-400 mg) administered subcutaneously (SC) or via a 2-h intravenous (IV) infusion, and 7 subjects received placebo. In the confirmative tQT study, 58 healthy subjects received placebo, 400 mg IV moxifloxacin, 200 mg SC, or 200 mg IV of mipomersen in a double-blind, 4-way crossover design with a minimum 5-day washout between treatments. ECG measurements were performed at baseline and selected time points (including Tmax). The correlation between QTcF intervals corrected for baseline and time-matched placebo when available with PK plasma exposure was evaluated by linear regression analysis. RESULTS: In the phase I study, no positive correlation between the PK exposure and ∆QTcF or ∆∆QTcF was observed within the wide dose or exposure range tested. Similar results were observed in the tQT study, where the predicted ΔΔQTcF and its upper bound of the 90% CI at Cmax of therapeutic and supratherapeutic dose were approximately -1.7 and 2.9 ms, respectively. CONCLUSIONS: Mipomersen showed no effect on QT intervals in both the phase I dose escalation study and the tQT study. These results support the proposal that QT assessment can be made in a phase I dose escalation study, and no tQT study may be necessary if the phase I dose escalation study showed a negative QT effect.


Assuntos
Eletrocardiografia/efeitos dos fármacos , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Adulto , Apolipoproteína B-100/genética , Estudos Cross-Over , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Oligodesoxirribonucleotídeos Antissenso/sangue , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos/sangue , Oligonucleotídeos/farmacocinética , RNA Mensageiro , Adulto Jovem
6.
Clin Pharmacokinet ; 54(2): 133-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25559341

RESUMO

Mipomersen (Kynamro(®)), a second-generation 2'-O-methoxyethyl chimeric antisense oligonucleotide (ASO), inhibits the synthesis of apolipoprotein B (apoB) and is indicated in the US as an adjunct therapy for homozygous familial hypercholesterolemia (HoFH) at a dose of 200 mg subcutaneously (SC) once weekly. The pharmacokinetic (PK) properties of mipomersen are generally consistent across all species studied, including mouse, rat, monkey, and humans. After SC administration, mipomersen is rapidly and extensively absorbed. It has an apparent plasma and tissue terminal elimination half-life of approximately 30 days. Mipomersen achieves steady-state tissue concentrations within approximately 4-6 months of once-weekly dosing. It does not exhibit PK-based drug-drug interactions with other concomitant medications, either involving competition for plasma protein binding or alterations in disposition of any evaluated drugs. Furthermore, mipomersen does not prolong the corrected QT (QTc) interval. There have been no ethnic- or gender-related differences in PK observed. In clinical trials, both as a single agent and in the presence of maximal lipid-lowering therapy, mipomersen has demonstrated significant dose-dependent reductions in all measured apoB-containing atherogenic lipoproteins. Overall, mipomersen has well-characterized PK and pharmacodynamic properties in both animals and humans, and is an efficacious adjunct treatment for patients with HoFH.


Assuntos
Anticolesterolemiantes/farmacologia , Apolipoproteínas B/antagonistas & inibidores , Oligonucleotídeos/farmacologia , Oligonucleotídeos/farmacocinética , Animais , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacocinética , Sequência de Bases , Ensaios Clínicos como Assunto , Humanos , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Hiperlipoproteinemia Tipo I/metabolismo , Modelos Moleculares , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/química
7.
Nucleic Acid Ther ; 24(5): 326-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25093529

RESUMO

The species sensitivity and mechanism of complement pathway activation by a phosphorothioate oligonucleotide were investigated in monkey and human serum. Increasing concentrations of a phosphorothioate oligonucleotide, ISIS 2302, were incubated in either monkey or human serum. Complement activation in monkey serum was selective for the alternative pathway and occurred at concentrations ≥ 50 µg/mL ISIS 2302. By comparison, complement activation in human serum was absent. A similar difference in sensitivity for activation was also observed for a representative 2'-methoxyethyl (MOE)-modified oligonucleotide. The absence of oligonucleotide-induced complement activation was also observed in dogs. Protein binding with ISIS 2302 and enzyme competition studies suggested that factor H was important in oligonucleotide-mediated complement activation process, and addition of factor H to serum effectively prevented the activation in monkey serum. Furthermore, based on the immunoassay for factor H, there was an apparent decrease in factor H concentration as the ISIS 2302 concentration increased. This result suggests that ISIS 2302 binds to factor H and interferes with the factor H antibody from the immunoassay. Factor H is a regulatory protein that limits alternative pathway activation. Disruption of factor H interaction with C3 convertase by oligonucleotide could promote activation in this pathway.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Fator H do Complemento/metabolismo , Fármacos Gastrointestinais/sangue , Imunossupressores/sangue , Oligodesoxirribonucleotídeos Antissenso/sangue , Oligonucleotídeos Fosforotioatos/sangue , Animais , Convertases de Complemento C3-C5/química , Convertases de Complemento C3-C5/metabolismo , Fator H do Complemento/química , Via Alternativa do Complemento/efeitos dos fármacos , Cães , Fármacos Gastrointestinais/imunologia , Fármacos Gastrointestinais/farmacocinética , Humanos , Imunossupressores/imunologia , Imunossupressores/farmacocinética , Injeções Intravenosas , Macaca fascicularis , Macaca mulatta , Masculino , Oligodesoxirribonucleotídeos Antissenso/imunologia , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Fosforotioatos/imunologia , Oligonucleotídeos Fosforotioatos/farmacocinética , Ligação Proteica , Especificidade da Espécie
8.
J Pharmacol Exp Ther ; 350(1): 46-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24784568

RESUMO

Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by the loss of survival of motor neuron (SMN) protein. Previously, we demonstrated that ISIS 396443, an antisense oligonucleotide (ASO) targeted to the SMN2 pre-mRNA, is a potent inducer of SMN2 exon 7 inclusion and SMN protein expression, and improves function and survival of mild and severe SMA mouse models. Here, we demonstrate that ISIS 396443 is the most potent ASO in central nervous system (CNS) tissues of adult mice, compared with several other chemically modified ASOs. We evaluated methods of ISIS 396443 delivery to the CNS and characterized its pharmacokinetics and pharmacodynamics in rodents and nonhuman primates (NHPs). Intracerebroventricular bolus injection is a more efficient method of delivering ISIS 396443 to the CNS of rodents, compared with i.c.v. infusion. For both methods of delivery, the duration of ISIS 396443-mediated SMN2 splicing correction is long lasting, with maximal effects still observed 6 months after treatment discontinuation. Administration of ISIS 396443 to the CNS of NHPs by a single intrathecal bolus injection results in widespread distribution throughout the spinal cord. Based upon these preclinical studies, we have advanced ISIS 396443 into clinical development.


Assuntos
Encéfalo/efeitos dos fármacos , Atrofia Muscular Espinal/genética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Splicing de RNA/efeitos dos fármacos , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Encéfalo/metabolismo , Feminino , Infusões Intraventriculares , Injeções Intraventriculares , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , Atrofia Muscular Espinal/tratamento farmacológico , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/uso terapêutico
9.
J Cardiovasc Pharmacol ; 64(2): 164-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24691275

RESUMO

Mipomersen is a second-generation antisense oligonucleotide indicated as an adjunct therapy for homozygous familial hypercholesterolemia (HoFH). Warfarin is commonly prescribed for a variety of cardiac disorders in homozygous familial hypercholesterolemia population, and concurrent use of warfarin and mipomersen is likely. This open-label, single-sequence 2-period phase 1 study in healthy subjects evaluated the potential drug-drug interactions between mipomersen and warfarin. The subjects received a single oral 25 mg dose of warfarin alone on day 1, and after a 7-day washout period, received 200 mg mipomersen alone subcutaneously every other day on days 8-12, and received both concurrently on day 14. Coadministration of mipomersen did not change the pharmacodynamics (international normalized ratio, prothrombin time, and activated partial thromboplastin time) and pharmacokinetics (PK) of warfarin. There were no clinically significant changes in the PK of mipomersen with concurrent administration of warfarin. There were no events indicative of an increase in bleeding tendency when warfarin was coadministered with mipomersen, and the adverse event profile of mipomersen did not appear to be altered in combination with warfarin, as compared with that of the respective reference treatment. The combination of these 2 medications appeared to be safe and well tolerated. These results suggest that the dosage adjustment of warfarin or mipomersen is not expected to be necessary with coadministration.


Assuntos
Oligodesoxirribonucleotídeos Antissenso/farmacologia , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos/farmacologia , Oligonucleotídeos/farmacocinética , Varfarina/farmacologia , Varfarina/farmacocinética , Adolescente , Adulto , Interações Medicamentosas , Feminino , Voluntários Saudáveis , Humanos , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Coeficiente Internacional Normatizado , Masculino , Pessoa de Meia-Idade , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/efeitos adversos , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Varfarina/administração & dosagem , Varfarina/efeitos adversos , Adulto Jovem
10.
J Control Release ; 180: 92-9, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24566256

RESUMO

Recently, we demonstrated the utility of positron emission tomography (PET) imaging-based pharmacokinetic evaluation studies for preclinical experiments and microdose clinical trials, mainly focused on low molecular weight compounds. In order to investigate the pharmacokinetics of nucleic acid drugs and their drug delivery systems (DDSs) in vivo by using PET imaging, we developed a novel and efficient method for radiolabeling oligodeoxynucleotides with the positron-emitting radionuclide (18)F (stoichiometry-focused Huisgen-type (18)F labeling). By using this method, we succeeded in synthesizing a variety of (18)F-labeled oligodeoxynucleotides with not only phosphodiesters (PO) in natural forms, but also phosphorothioate (PS) and bridged nucleic acid (BNA) in artificial forms, and then performed PET studies and radioactive metabolite analyses of these (18)F-labeled oligodeoxynucleotides. The tissue-distribution and dynamic changes in radioactivity showed significantly different profiles between these antisense oligodeoxynucleotides. The radioactivity of (18)F-labeled PO-DNA and PO-BNA rapidly accumulated in the kidneys and liver and then moved to the renal medulla, ureter, bladder, and intestine. However, the radioactivity of (18)F-labeled PS-DNA and PS-BNA, possessing PS backbone structures, was retained in the blood for relatively long periods and then gradually accumulated in the liver and kidneys. The metabolite analysis showed that (18)F-labeled PO-DNA rapidly degraded by 5min and (18)F-labeled PO-BNA gradually degraded over time by 60min. Conversely, (18)F-labeled PS-DNA and PS-BNA were shown to be much more stable. To demonstrate the usefulness of the PET imaging technique for evaluating the improved targeting potential of the DDS, we designed and synthesized a cholesterol-modified oligodeoxynucleotide, that we developed as an antisense nucleic acid drug against proprotein convertase subtilisin/kexin type 9 (PCSK9) for hypercholesterolemia therapy, and evaluated its pharmacokinetics using PET imaging. As expected, the (18)F-labeled cholesterol-modified PS-BNA-type oligodeoxynucleotide showed much higher and more rapid accumulation in the delivery target organ, that is, the liver, which encourages us to develop this drug. These results suggest that dynamic PET studies using (18)F-incorporated oligodeoxynucleotide synthesized by stoichiometry-focused Huisgen-type labeling is useful for quantitative pharmacokinetic evaluation of nucleic acid drugs and their delivery systems.


Assuntos
Portadores de Fármacos/química , Radioisótopos de Flúor/farmacocinética , Ácidos Nucleicos/farmacocinética , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Animais , Colesterol/análogos & derivados , Radioisótopos de Flúor/administração & dosagem , Radioisótopos de Flúor/química , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/química , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/química , Compostos Organotiofosforados/química , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
11.
J Labelled Comp Radiopharm ; 57(2): 97-101, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307558

RESUMO

Targeting and visualization of human telomerase reverse transcriptase (hTERT) represents a promising approach for providing diagnostic value. The uptake kinetics and imaging results of (99m) Tc-hTERT antisense oligonucleotides (ASON) in hTERT-expressing cells were examined in vitro and in vivo. The pharmacokinetics and acute toxicity studies of (99m) Tc-hTERT ASON were also performed. The labeling efficiencies of radiolabeled oligonucleotide reached 76 ± 5%, the specific activity was up to 1850 kBq/µg, and the radiochemical purity was above 96%. Radioactivity accumulated to a higher concentration in hTERT-expressing cells with antisense probe than with sense control (p < 0.05). Lipid carrier incorporation significantly increased the transmembrane delivery of radiolabeled probes (p < 0.05). hTERT-expressing xenografts in nude mice were clearly visualized at 6 h postinjection of the antisense probe but not the sense control probe. However, liposome did not increase the radioactivity accumulation of probes in tumors for either antisense or sense probe (p > 0.05). Radioactivity counts per minute versus time profiles for (99m) Tc-hTERT ASON were biphasic, indicative of a three-compartment model. The pharmacokinetics parameters of half-life of distribution (T1/2α ), half-life of elimination (T1/2ß ), total apparent volume of distribution (Vd), and total rate of clearance were 2.04 ± 0.48 min, 24 ± 4.8 min, 109.83 ± 17.20 mL, and 3.19 ± 0.17 mL/min, respectively. The acute toxicity study results showed the safe application of (99m) Tc-hTERT ASON in vivo. This study provides further evidences that (99m) Tc-hTERT ASON should be developed as a safe, potential molecular image-guided diagnostic agent.


Assuntos
Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/farmacocinética , Telomerase/genética , Animais , Células Hep G2 , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Oligodesoxirribonucleotídeos Antissenso/efeitos adversos , Compostos Radiofarmacêuticos/efeitos adversos , Tecnécio/efeitos adversos , Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Drugs ; 73(5): 487-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23564617

RESUMO

Mipomersen sodium (Kynamro™) (henceforth mipomersen) is a second-generation antisense oligonucleotide inhibitor of apolipoprotein B-100, which is the main structural component of atherogenic lipid particles. Mipomersen is administered via subcutaneous injection and is indicated as adjunctive treatment for homozygous familial hypercholesterolaemia (HoFH). The drug was developed by Isis Pharmaceuticals, which now collaborates with Genzyme Corporation for on-going development and product marketing. Multinational phase III trials of mipomersen as adjunctive therapy were completed in patients with HoFH, severe FH, heterozygous FH (HeFH) with coronary artery disease (CAD), and in those with hypercholesterolaemia at high risk of CAD. Mipomersen 200 mg once weekly has been approved in the USA as an adjunct to lipid-lowering medications and diet in HoFH patients and is undergoing regulatory review in the EU for the same indication. Genzyme is also conducting a multinational phase III, open-label extension study to evaluate long-term treatment in HoFH and HeFH patients, as well as a multinational trial to evaluate a three-times-per-week mipomersen regimen in patients with severe FH. This article summarises the milestones in the development of once-weekly, subcutaneous mipomersen leading to this first approval.


Assuntos
Anticolesterolemiantes/uso terapêutico , Aprovação de Drogas/métodos , Hipercolesterolemia/tratamento farmacológico , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos/uso terapêutico , Animais , Anticolesterolemiantes/farmacocinética , Ensaios Clínicos como Assunto/métodos , Aprovação de Drogas/legislação & jurisprudência , Indústria Farmacêutica/legislação & jurisprudência , Indústria Farmacêutica/tendências , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/epidemiologia , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos/farmacocinética
14.
FASEB J ; 27(2): 712-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23150521

RESUMO

How amphetamine affects the neuroglia in living brains is not well understood. In an effort to elucidate this effect, we investigated neuroglia in response to amphetamine exposure using antisense (AS) or sense (S) phosphorothioate-modified oligodeoxynucleotide (sODN) sequences that correspond to glial fibrillary acidic protein (GFAP) mRNA (AS-gfap or S-gfap, respectively) expression. The control is a random-sequence sODN (Ran). Using cyanine 5.5-superparamagnetic iron oxide nanoparticle (Cy5.5-SPION) labeling and fluorescent microscopy, we demonstrated that living neural progenitor cells (PC-12.1), as well as the cells in fresh brain slices and intact brains of male C57BL6 mice, exhibited universal uptake of all of the sODNs but rapidly excluded all sODN-Ran and most S-gfap. Moreover, transmission electron microscopy revealed electron-dense nanoparticles only in the neuroglia of normal or transgenic mice [B6;DBA-Tg(Fos-tTA, Fos-EGFP*)1MmayTg(tetO-lacZ,tTA*)1Mmay/J] that had been administered AS-gfap or Cy5.5-SPION-gfap. Subtraction R2* maps from mice with acute and chronic amphetamine exposure demonstrated, validated by postmortem immunohistochemistry, a reduction in striatal neuroglia, with gliogenesis in the subventricular zone and the somatosensory cortex in vivo. The sensitivity of our unique gene transcript targeted MRI was illustrated by a positive linear correlation (r(2)=1.0) between in vivo MRI signal changes and GFAP mRNA copy numbers determined by ex vivo quantitative RT-PCR. The study provides direct evidence for targeting neuroglia by antisense DNA-based SPION-gfap that enables in vivo MRI of inaccessible tissue with PCR sensitivity. The results enable us to conclude that amphetamine induces toxicity to neuroglia in vivo, which may cause remodeling or reconnectivity of neuroglia.


Assuntos
Anfetamina/toxicidade , Neuroglia/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Carbocianinas/administração & dosagem , Sistemas de Liberação de Medicamentos , Proteína Glial Fibrilar Ácida , Drogas Ilícitas/toxicidade , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/genética , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Células PC12 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
15.
ACS Nano ; 6(9): 7681-91, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22862291

RESUMO

RNA interference (RNAi)--using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein--is very useful in dissecting genetic function and holds significant promise as a molecular therapeutic. A major obstacle in achieving gene silencing with RNAi technology is the systemic delivery of therapeutic oligonucleotides. Here we demonstrate an engineered gold nanoshell (NS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly-L-lysine peptide (PLL) epilayer covalently attached to the NS surface (NS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotides, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. Controlled release of the captured therapeutic oligonucleotides in each case is accomplished by continuous wave NIR laser irradiation at 800 nm, near the resonance wavelength of the nanoshell. Fluorescently tagged oligonucleotides were used to monitor the time-dependent release process and light-triggered endosomal release. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and gene silencing mediated by the NS-PLL carrying GFP gene-specific single-stranded DNA antisense oligonucleotide (AON-GFP), or a double-stranded siRNA (siRNA-GFP), in vitro. Light-triggered delivery resulted in ~47% and ~49% downregulation of the targeted GFP expression by AON-GFP and siRNA-GFP, respectively. Cytotoxicity induced by both the NS-PLL delivery vector and by laser irradiation is minimal, as demonstrated by a XTT cell proliferation assay.


Assuntos
Inativação Gênica/efeitos da radiação , Neoplasias Pulmonares/genética , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Oligodesoxirribonucleotídeos Antissenso/genética , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Ouro/química , Humanos , Lasers , Neoplasias Pulmonares/metabolismo , Teste de Materiais , Nanopartículas Metálicas/química , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacocinética , Transfecção/métodos
16.
Nucleic Acids Res ; 40(13): 6135-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467214

RESUMO

We report the evaluation of 20-, 18-, 16- and 14-mer phosphorothioate (PS)-modified tricycloDNA (tcDNA) gapmer antisense oligonucleotides (ASOs) in T(m), cell culture and animal experiments and compare them to their gap-matched 20-mer 2'-O-methoxyethyl (MOE) and 14-mer 2',4'-constrained ethyl (cEt) counterparts. The sequence-matched 20-mer tcDNA and MOE ASOs showed similar T(m) and activity in cell culture under free-uptake and cationic lipid-mediated transfection conditions, while the 18-, 16- and 14-mer tcDNA ASOs were moderate to significantly less active. These observations were recapitulated in the animal experiments where the 20-mer tcDNA ASO formulated in saline showed excellent activity (ED(50) 3.9 mg/kg) for reducing SR-B1 mRNA in liver. The tcDNA 20-mer ASO also showed better activity than the MOE 20-mer in several extra-hepatic tissues such as kidney, heart, diaphragm, lung, fat, gastrocnemius and quadriceps. Interestingly, the 14-mer cEt ASO showed the best activity in the animal experiments despite significantly lower T(m) and 5-fold reduced activity in cell culture relative to the 20-mer tcDNA and MOE-modified ASOs. Our experiments establish tcDNA as a useful modification for antisense therapeutics and highlight the role of chemical modifications in influencing ASO pharmacology and pharmacokinetic properties in animals.


Assuntos
Oligodesoxirribonucleotídeos Antissenso/química , Receptores Depuradores Classe B/genética , Animais , Linhagem Celular , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , RNA Mensageiro/metabolismo , Receptores Depuradores Classe B/metabolismo , Distribuição Tecidual
17.
Drug Deliv ; 18(7): 493-501, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21696294

RESUMO

The efficacy of antisense oligodeoxynucleotides (AsODNs) is compromised by their poor stability in biological fluids and the inefficient cellular uptake due to their size and negative charge. Since chemical modifications of these molecules have resulted in a number of non-antisense activities, incorporation into particulate delivery systems has offered a promising alternative. The aim of this study was to evaluate various poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles for AsODN entrapment and delivery. PLGA nanoparticles were prepared using the double emulsion solvent evaporation method. The influence of formulation parameters such as PLGA concentration and volume ratio of internal aqueous phase volume (Va1) to organic phase volume (Vo) to external aqueous phase volume (Va2) on particle size, polydispersity index (PDI) and zeta potential (ZP) was investigated using a full factorial study. The particle size increased with increasing PLGA concentrations and volume ratios, with an interaction detectable between the two factors. AsODN entrapment efficiencies ranged between 49.97% and 54.95% with no significant difference between various formulations. By fitting the in vitro release profiles to a dual first order release model it was shown that the AsODN release occurred via two processes: a diffusion controlled process in the early phase (25 to 32% within one day) and a PLGA degradation process in the latter (39 to 70% after 14 days). Cellular uptake studies using primary corneal epithelial cells suggested active transport of nanoparticles via endocytosis. PLGA nanoparticles therefore show potential to successfully entrap AsODNs, transport them into cells and release them over time due to polymer erosion.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Epitélio Corneano/metabolismo , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Transporte Biológico Ativo , Preparações de Ação Retardada , Emulsões , Endocitose , Humanos , Ácido Láctico/química , Modelos Teóricos , Nanopartículas , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solventes/química
18.
Surgery ; 148(2): 335-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20633730

RESUMO

BACKGROUND: Transplantation of pancreatic islets is an effective treatment for select patients with type 1 diabetes. Improved cellular therapy results may be realized by altering the gene expression profile of transplanted islets. Current viral and nonviral vectors used to introduce nucleic acids for gene regulation hold promise, but safety and efficacy shortcomings motivate the development of new transfection strategies. Polyvalent gold nanoparticles (AuNPs) densely functionalized with covalently immobilized DNA oligonucleotides (AuNP-DNA) are new single entity transfection and gene regulating agents (ie, not requiring lipids, polymers, or viral vectors for cell entry) able to enter cells with high efficiency and no evidence of toxicity. We hypothesize that AuNP-DNA conjugates can efficiently transfect pancreatic islets with no impact on viability or functionality, and can function to regulate targeted gene expression. METHODS: AuNPs were surface-functionalized with control and antisense DNA oligonucleotides. Purified murine and human islets were exposed to AuNP-DNA conjugates for 24 hours. Islet AuNP-DNA uptake, cell viability, and functionality were measured. Furthermore, the ability of antisense AuNP-DNA conjugates to regulate gene expression was measured using murine islets expressing eGFP. RESULTS: Collectively, fluorescent confocal microscopy, transmission electron microscopy, mass spectrometry, and flow cytometry revealed substantial penetration of the AuNP-DNA conjugates into the inner core of the islets and within islet cells. No change in cellular viability occurred and the insulin stimulation index was unchanged in treated versus untreated islets. Transplantation of AuNP-DNA treated islets cured diabetic nude mice. Functionally, antisense eGFP AuNP-DNA conjugates reduced eGFP expression in MIP-eGFP islets. CONCLUSION: Polyvalent AuNP-DNA conjugates may represent the next generation of nucleic acid-based therapeutic agents for improving pancreatic islet engraftment, survival, and long-term function.


Assuntos
Ilhotas Pancreáticas/metabolismo , Nanopartículas Metálicas/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/genética , Transfecção/métodos , Animais , Sequência de Bases , Sobrevivência Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/cirurgia , Diabetes Mellitus Tipo 1/terapia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Terapia Genética/métodos , Ouro , Proteínas de Fluorescência Verde/genética , Humanos , Técnicas In Vitro , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Transplante das Ilhotas Pancreáticas/métodos , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Proteínas Recombinantes/genética , Transplante Heterólogo
19.
Int J Oncol ; 31(5): 1243-50, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17912453

RESUMO

We previously demonstrated that liposome-incorporated antisense oligodeoxynucleotide specific for the grb2 mRNA (L-Grb2) inhibited Grb2 protein expression and the proliferation of bcr-abl-positive leukemia cell lines. To determine whether L-Grb2 has the potential of being a therapeutic modality against bcr-abl-positive leukemia, we studied the tissue distribution of L-Grb2 in normal mice before studying its effects in mice bearing bcr-abl-positive leukemia xenografts. L-Grb2 was widely distributed in the body. The highest tissue concentrations of L-Grb2 were found in the spleen and liver, which are the organs where the tumor mass of bcr-abl-positive leukemia is mainly found. At 4 h post-injection, the amount of L-Grb2 detected per g of tissue was 64 microg in spleen and 50 microg in liver. Intravenous injection of bcr-abl-positive 32D mouse leukemia cells into radiated NOD/scid mice caused a lethal leukemia syndrome; we determined whether L-Grb2 could prolong the survival of mice bearing such xenografts. One day after leukemia cell inoculation, mice received twice weekly intravenous injections of L-Grb2. At an injection dose of 15 mg of L-Grb2 per kg of mouse body weight, 80% of mice treated with L-Grb2 survived to 48 days (end of study) whereas 0% of mice treated with the same dose of liposomal control oligonucleotide survived; the mean survival duration of these groups was 44 and 20 days, respectively. Our data indicate that L-Grb2 prolonged the survival of mice bearing bcr-abl-positive leukemia xenografts. L-Grb2 may be used as a novel cancer therapeutic modality.


Assuntos
Proteínas de Fusão bcr-abl/análise , Proteína Adaptadora GRB2/antagonistas & inibidores , Leucemia Experimental/terapia , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Animais , Proteína Adaptadora GRB2/genética , Leucemia Experimental/mortalidade , Contagem de Leucócitos , Lipossomos , Camundongos , Camundongos Endogâmicos ICR , Transplante de Neoplasias , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Ratos , Ratos Endogâmicos Lew , Distribuição Tecidual , Transplante Heterólogo
20.
J Surg Res ; 141(2): 284-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17561117

RESUMO

BACKGROUND: c-Met, a receptor tyrosine kinase, and its ligand, hepatocyte growth factor, are critical in cellular proliferation, motility, and invasion and are known to be overexpressed in gliomas. The aim of our study was to investigate the uptake and effects of c-Met antisense oligodeoxynucleotides (ASODNs) on rat and human glioma cells in vitro and the uptake and toxicity of these nucleotides in rat carcinomatosis and brain tumor models. MATERIALS AND METHODS: The three human cell lines (U87, BT325, SHG44) and the C6 rat glioma cell line were cultured. To study the uptake of oligodeoxynucleotides (ODNs) by glioma cells in vitro, cultured glioma cells readily incorporated caroboxyfluorescein-5-succimidyl ester (FAM) labeled phosphorothioate oligodeoxynucleotides, as demonstrated by immunofluorescence microscopy and flow cytometry. To study the effect of ASODNs treatment on c-Met expression in vitro, Expression of c-Met was assessed by immunofluorescence microscopy and reverse transcriptase polymerase chain reaction (RT-PCR) analysis. For animal studies of ODNs toxicity and uptake, eight rats underwent placement of cisternal catheters, under general anesthesia. Four rats were given 24 mug FAM-labeled ASODNs while the others were given a saline control injection. After a 24 h observation period, rats were sacrificed by barbiturate overdose, and their brains were studied. RESULTS: For all cell lines, fluorescence was seen to increase with increasing ASODNs concentration. Cells treated in similar fashion were also analyzed by flow cytometry to graphically illustrate the differing fluorescence. Multiple glioma cell lines were tested, with similar results. c-Met ASODNs was found to be successfully incorporated from the media into cultured human glioma cells, even at concentrations as low as 2 muM. In addition, maintenance of the pH-dependent green fluorescence color, as seen by immunofluorescence microscopy and by using flow cytometry, indicated that the FAM was not contained within lysosomes. Immunofluorescence microscopy and RT-PCR analysis showed decreases in c-Met expression with oligodeoxynucleotides treatment. Uptake into tumor cells was also demonstrated in vivo, with no detectable toxicity at concentrations exceeding expected therapeutic levels. CONCLUSION: These data are encouraging for further study of c-Met antisense oligodeoxynucleotides as a therapeutic modality for glioma.


Assuntos
Glioma/tratamento farmacológico , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Masculino , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligodesoxirribonucleotídeos Antissenso/toxicidade , Proteínas Proto-Oncogênicas c-met/genética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA