Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.169
Filtrar
1.
Physiol Plant ; 176(3): e14325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715548

RESUMO

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Assuntos
Bacillus , Frutanos , Doenças das Plantas , Solanum lycopersicum , Triticum , Frutanos/metabolismo , Triticum/microbiologia , Triticum/metabolismo , Triticum/imunologia , Triticum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Bacillus/fisiologia , Botrytis , Imunidade Vegetal , Resistência à Doença , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/imunologia , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Sementes/imunologia , Ascomicetos
2.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731604

RESUMO

Edible grey oyster mushroom, Pleurotus sajor-caju, ß (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom ß-glucan using Hevea ß-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.


Assuntos
Diferenciação Celular , NF-kappa B , Fatores de Transcrição NFATC , Osteoclastos , Pleurotus , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Transdução de Sinais , Animais , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/citologia , Células RAW 264.7 , Ligante RANK/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Pleurotus/química , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , beta-Glucanas/farmacologia , beta-Glucanas/química , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Osteogênese/efeitos dos fármacos
3.
Mol Nutr Food Res ; 68(9): e2300758, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38639319

RESUMO

SCOPE: Obesity and metabolic diseases are closely associated, and individuals who become obese are also prone to type 2 diabetes and cardiovascular disorders. Gut microbiota is mediated by diet and can influence host metabolism and the incidence of metabolic disorders. Recent studies have suggested that improving gut microbiota through a fructooligosaccharide (FOS)-supplemented diet may ameliorate obesity and other metabolic disorders. Although accumulating evidence supports the notion of the developmental origins of health and disease, the underlying mechanisms remain obscure. METHODS AND RESULTS: ICR mice are fed AIN-93G formula-based cellulose -, FOS-, acetate-, or propionate-supplemented diets during pregnancy. Offspring are reared by conventional ICR foster mothers for 4 weeks; weaned mice are fed high fat diet for 12 weeks and housed individually. The FOS and propionate offspring contribute to suppressing obesity and improving glucose intolerance. Gut microbial compositions in FOS-fed mothers and their offspring are markedly changed. However, the beneficial effect of FOS diet on the offspring is abolished when antibiotics are administered to pregnant mice. CONCLUSION: The findings highlight the link between the maternal gut environment and the developmental origin of metabolic syndrome in offspring. These results open novel research avenues into preemptive therapies for metabolic disorders by targeting the maternal gut microbiota.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos ICR , Obesidade , Oligossacarídeos , Animais , Gravidez , Oligossacarídeos/farmacologia , Oligossacarídeos/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos Obesos , Camundongos , Efeitos Tardios da Exposição Pré-Natal , Fenótipo , Fenômenos Fisiológicos da Nutrição Materna , Suplementos Nutricionais
4.
Food Funct ; 15(9): 4763-4772, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38590256

RESUMO

Inulins, galacto-oligosaccharides (GOS) and polyphenols are considered to stimulate the growth of Akkermansia muciniphila (A. muciniphila) in the gut. We performed a meta-analysis of six microbiome studies (821 stool samples from 451 participants) to assess the effects of inulin, GOS, and polyphenols on the abundance of A. muciniphila in the gut. The intervention of GOS increased the relative abundance of A. muciniphila in healthy participants. Additionally, metabolic pathways associated with carbohydrate metabolism and short-chain fatty acid release were enriched following the GOS intervention. Furthermore, after the GOS intervention, the coexisting microbial communities of A. muciniphila, such as Eubacterium hallii and Bacteroides, exhibited an enhanced correlation with A. muciniphila. In conclusion, our findings suggest that GOS may promote the growth of A. muciniphila in the gut by modulating the gut microbiota composition.


Assuntos
Akkermansia , Microbioma Gastrointestinal , Inulina , Oligossacarídeos , Polifenóis , Microbioma Gastrointestinal/efeitos dos fármacos , Polifenóis/farmacologia , Inulina/farmacologia , Humanos , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Fezes/microbiologia , Verrucomicrobia , Prebióticos , Galactose
5.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611816

RESUMO

In this study, the α-glucosidase (maltase-glucoamylase: MGAM) and α-amylase inhibitory properties elicited by xylooligosaccharides (XOSs) prepared from dulse xylan were analysed as a potential mechanism to control postprandial hyperglycaemia for type-2 diabetes prevention and treatment. Xylan was purified from red alga dulse powder and used for enzymatic hydrolysis using Sucrase X to produce XOSs. Fractionation of XOSs produced xylobiose (X2), ß-(1→3)-xylosyl xylobiose (DX3), xylotriose (X3), ß-(1→3)-xylosyl-xylotriose (DX4), and a dulse XOS mixture with n ≥ 4 xylose units (DXM). The different fractions exhibited moderate MGAM (IC50 = 11.41-23.44 mg/mL) and α-amylase (IC50 = 18.07-53.04 mg/mL) inhibitory activity, which was lower than that of acarbose. Kinetics studies revealed that XOSs bound to the active site of carbohydrate digestive enzymes, limiting access to the substrate by competitive inhibition. A molecular docking analysis of XOSs with MGAM and α-amylase clearly showed moderate strength of interactions, both hydrogen bonds and non-bonded contacts, at the active site of the enzymes. Overall, XOSs from dulse could prevent postprandial hyperglycaemia as functional food by a usual and continuous consumption.


Assuntos
Algas Comestíveis , Glucuronatos , Hiperglicemia , Rodófitas , alfa-Amilases , Humanos , alfa-Glucosidases , Hipoglicemiantes/farmacologia , Xilanos/farmacologia , Simulação de Acoplamento Molecular , Oligossacarídeos/farmacologia
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 441-446, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645870

RESUMO

Objective: To study the immunoadjuvant effects of chitosan oligosaccharide (COS), including the immune activation and the triggering of lysosomal escape, and to explore whether COS can be used as an adjuvant for attenuated live bacteria vector vaccines. Methods: 1) Mouse macrophages RAW264.7 cells were cultured with COS at 0 mg/mL (the control group) and 0.1-4 mg/mL for 24 h and the effect on cell viability was measured by CCK8 assay. Mouse macrophages RAW264.7 were treated with COS at 0 (the control group), 1, 2, and 4 mg/mL for 24 h. Then, the mRNA expression levels of the cytokines, including IFN-γ, IL-10, TGF-ß, and TLR4, were determined by RT-qPCR assay. 2) RAW264.7 cells were treated with 1 mL of PBS containing different components, including calcein at 50 µg/mL, COS at 2 mg/mL, and bafilomycin A1, an inhibitor, at 1 µmol/mL, for culturing. The cells were divided into the Calcein group, Calcein+COS group, and Calcein+COS+Bafilomycin A1 group accordingly. Laser scanning confocal microscopy was used to observe the phagocytosis and the intracellular fluorescence distribution of calcein, a fluorescent dye, in RAW264.7 cells in the presence or absence of COS intervention to determine whether COS was able to trigger lysosomal escape. 3) LM∆E6E7 and LI∆E6E7, the attenuated Listeria vector candidate therapeutic vaccines for cervical cancer, were encapsulated with COS at the mass concentrations of 0.5 mg/mL, 1 mg/mL, 2 mg/mL , 4 mg/mL, and 8 mg/mL. Then, the changes in zeta potential were measured to select the concentration of COS that successfully encapsulated the bacteria. Phagocytosis of the vaccine strains by RAW264.7 cells was measured before and after LM∆E6E7 and LI∆E6E7 were coated with COS at 2 mg/mL. Results: 1) CCK8 assays showed that, compared with the findings for the control group, the intervention of RAW264.7 cells with COS at different concentrations for 24 h was not toxic to the cells and promoted cell proliferation, with the difference being statistically significant (P<0.05). According to the RT-qPCR results, compared with those of the control group, the COS intervention up-regulated the mRNA levels of TLR4 and IFN-γ in RAW264.7 cells, while it inhibited the mRNA expression levels of TGF-ß and IL-10, with the most prominent effect being observed in the 4 mg/mL COS group (P<0.05). 2) Laser scanning confocal microscopy revealed that the amount of fluorescent dye released from lysosomes into the cells was greater in the Calcein+COS group than that in the Calcein group. In other words, a greater amount of fluorescent dye was released from lysosomes into the cells under COS intervention. Furthermore, this process could be blocked by bafilomycin A1. 3) The zeta potential results showed that COS could successfully encapsulate the surface of bacteria when its mass concentration reached 2 mg/mL. Before and after the vaccine strain was encapsulated by COS, the phagocytosis of LM∆E6E7 by RAW264.7 cells was 5.70% and 22.00%, respectively, showing statistically significant differences (P<0.05); the phagocytosis of LI∆E6E7 by RAW264.7 cells was 1.55% and 6.12%, respectively, showing statistically significant differences (P<0.05). Conclusion: COS has the effect of activating the immune response of macrophages and triggering lysosomal escape. The candidates strains of coated live attenuated bacterial vector vaccines can promote the phagocytosis of bacteria by macrophages. Further research is warranted to develop COS into an adjuvant for bacterial vector vaccine.


Assuntos
Adjuvantes Imunológicos , Vacinas Bacterianas , Quitosana , Oligossacarídeos , Animais , Camundongos , Células RAW 264.7 , Oligossacarídeos/farmacologia , Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Vacinas Atenuadas/imunologia , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos
7.
Carbohydr Polym ; 336: 122129, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670770

RESUMO

Hyaluronan, a linear glycosaminoglycan comprising D-N-acetylglucosamine and D-glucuronic acid, is the main component of the extracellular matrix. Its influence on cell proliferation, migration, inflammation, signalling, and other functions, depends heavily on its molecular weight and chemical modification. Unsaturated HA oligosaccharides are available in defined length and purity. Their potential therapeutic utility can be further improved by chemical modification, e. g., reduction. No synthesis of such modified oligosaccharides, either stepwise or by hyaluronan cleavage, has been reported yet. Here we show a three-step synthesis (esterification, depolymerization and reduction) of unsaturated even numbered hyaluronan oligosaccharides with carboxylates and the reducing terminus reduced to an alcohol. Particular oligosaccharides were synthesised. The modified oligosaccharides are not cleaved by mammalian or bacterial hyaluronidase and do not affect the growth of mouse and human fibroblasts. Further, MTT and NRU viability tests showed that they inhibit the growth of human colon carcinoma cells HT-29 by 20-50 % in concentrations 500-1000 µg/mL. Interestingly, this effect takes place regardless of CD44 receptor expression and was not observed with unmodified HA oligosaccharides. These compounds could serve as enzymatically stable building blocks for biologically active substances.


Assuntos
Proliferação de Células , Citostáticos , Ácido Hialurônico , Hialuronoglucosaminidase , Oligossacarídeos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Humanos , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/antagonistas & inibidores , Citostáticos/farmacologia , Citostáticos/química , Citostáticos/síntese química , Células HT29 , Receptores de Hialuronatos/metabolismo , Fibroblastos/efeitos dos fármacos
8.
J Agric Food Chem ; 72(17): 9782-9794, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597360

RESUMO

Uncontrolled inflammation contributes significantly to the mortality in acute respiratory infections. Our previous research has demonstrated that maize bran feruloylated oligosaccharides (FOs) possess notable anti-inflammatory properties linked to the NF-kB pathway regulation. In this study, we clarified that the oral administration of FOs moderately inhibited H1N1 virus infection and reduced lung inflammation in influenza-infected mice by decreasing a wide spectrum of cytokines (IFN-α, IFN-ß, IL-6, IL-10, and IL-23) in the lungs. The mechanism involves FOs suppressing the transduction of the RIG-I/MAVS/TRAF3 signaling pathway, subsequently lowering the expression of NF-κB. In silico analysis suggests that FOs have a greater binding affinity for the RIG-I/MAVS signaling complex. This indicates that FOs have potential as promising targets for immune modulation. Moreover, in MAVS knockout mice, we confirmed that the anti-inflammatory function of FOs against influenza depends on MAVS. Comprehensive analysis using 16S rRNA gene sequencing and metabolite profiling techniques showed that FOs have the potential to restore immunity by modulating the gut microbiota. In conclusion, our study demonstrates that FOs are effective anti-inflammatory phytochemicals in inhibiting lung inflammation caused by influenza. This suggests that FOs could serve as a potential nutritional strategy for preventing the H1N1 virus infection and associated lung inflammation.


Assuntos
Proteína DEAD-box 58 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Camundongos Knockout , Oligossacarídeos , Infecções por Orthomyxoviridae , Transdução de Sinais , Fator 3 Associado a Receptor de TNF , Animais , Camundongos , Oligossacarídeos/administração & dosagem , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/imunologia , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/imunologia , Pneumonia/imunologia , Pneumonia/prevenção & controle , Pneumonia/metabolismo , Pneumonia/virologia , Camundongos Endogâmicos C57BL , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/virologia , Citocinas/metabolismo , Citocinas/imunologia , Citocinas/genética , Feminino , NF-kappa B/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia
9.
Chem Biodivers ; 21(5): e202400506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507138

RESUMO

Acute lung injury (ALI) is a disease characterized by extensive lung damage and rampant inflammation, with a high mortality rate and no effective treatments available. Morinda officinalis oligosaccharides (MOOs), derived from the root of the traditional Chinese medicinal herb Morinda officinalis, known for its immune-boosting properties, presents a novel therapeutic possibility. To date, the impact of MOOs on ALI has not been explored. Our study aimed to investigate the potential protective effects of MOOs against ALI and to uncover the underlying mechanisms through an integrated approach of network pharmacology, molecular docking, and experimental validation. We discovered that MOOs significantly mitigated the pathological damage and decreased the expression of pro-inflammatory cytokines in LPS-induced ALI in mice. Complementary in vitro studies further demonstrated that MOOs effectively attenuated the M1 polarization induced by LPS. Network pharmacology analysis identified HSP90AA1, HSP90AB1, and NF-κB as key overlapping targets within a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses elucidated the biological processes and signaling pathways implicated in MOOs' therapeutic action on ALI. Subsequently, molecular docking affirmed the binding of MOOs to the active sites of these identified targets. Corroborating these findings, our in vivo and in vitro experiments consistently demonstrated that MOOs significantly inhibited the LPS-induced upregulation of HSP90 and NF-κB. Collectively, these findings suggest that MOOs confer protection against ALI through a multi-target, multi-pathway mechanism, offering a promising new therapeutic strategy to mitigate this severe pulmonary condition.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Morinda , Oligossacarídeos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Animais , Morinda/química , Camundongos , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Masculino , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , NF-kappa B/metabolismo
10.
Front Immunol ; 15: 1271926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426086

RESUMO

Natural components of breast milk, human milk oligosaccharides (HMOs) and osteopontin (OPN) have been shown to have a variety of functional activities and are widely used in infant formulas. However, the preventive and therapeutic effects of both on influenza viruses are not known. In this study, antiviral assays using a human laryngeal carcinoma cell line (HEP-2) showed that 3'-sialyllactose (3'-SL) and OPN had the best antiviral ability with IC50 values of 33.46 µM and 1.65 µM, respectively. 3'-SL (10 µM) and OPN (4 µM) were used in combination to achieve 75% inhibition. Further studies found that the combination of 200 µg/mL of 3'-SL with 500 µg/mL of OPN exerted the best antiviral ability. The reason for this was related to reduced levels of the cytokines TNF-α, IL-6, and iNOS in relation to mRNA expression. Plaque assay and TCID50 assay found the same results and verified synergistic effects. Our research indicates that a combination of 3'-SL and OPN can effectively reduce inflammatory storms and exhibit anti-influenza virus effects through synergistic action.


Assuntos
Influenza Humana , Orthomyxoviridae , Lactente , Feminino , Humanos , Osteopontina/genética , Influenza Humana/tratamento farmacológico , Leite Humano/metabolismo , Oligossacarídeos/farmacologia , Antivirais
11.
J Hazard Mater ; 469: 133922, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442604

RESUMO

The dissemination of antibiotic resistance genes (ARGs), especially via plasmid-mediated horizontal gene transfer, poses a pervasive threat to global health. Chitosan-oligosaccharide (COS) is extensively utilized in medicine, plant and animal husbandry. However, their impact on microflora implies the potential to exert selective pressure on plasmid transfer. To explore the role of COS in facilitating the dissemination of ARGs via plasmid conjugation, we established in vitro mating models. The addition of COS to conjugation mixtures significantly enhanced the transfer of RP4 plasmid and mcr-1 positive IncX4 plasmid in both intra- and inter-specific. Phenotypic and transcriptome analysis revealed that COS enhanced intercellular contact by neutralizing cell surface charge and increasing cell surface hydrophobicity. Additionally, COS increased membrane permeability by inhibiting the Tol-Pal system, thereby facilitating plasmid conjugative transfer. Furthermore, COS served as the carbon source and was metabolized by E. coli, providing energy for plasmid conjugation through regulating the expression of ATPase and global repressor factor-related genes in RP4 plasmid. Overall, these findings improve our awareness of the potential risks associated with the presence of COS and the spread of bacterial antibiotic resistance, emphasizing the need to establish guidelines for the prudent use of COS and its discharge into the environment.


Assuntos
Antibacterianos , Quitosana , Animais , Antibacterianos/farmacologia , Genes Bacterianos , Escherichia coli/genética , Quitosana/farmacologia , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Transferência Genética Horizontal , Oligossacarídeos/farmacologia
12.
PeerJ ; 12: e17150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549777

RESUMO

Background: Oligosaccharides have been demonstrated as promoters for enhancing plant growth across several crops by elevating their secondary metabolites. However, the exploration of employing diverse oligosaccharides for qualitative trait improvements in cauliflower largely unknown. This study was intended to uncover the unexplored potential, evaluating the stimulatory effects of three oligosaccharides on cauliflower's curd and seed production. Methods: Two experiments were initiated in the early (15 September) and mid-season (15 October). Four treatments were implemented, encompassing a control (water) alongside chitosan oligosaccharide (COS 50 mg.L-1) with a degree of polymerization (DP) 2-10, oligo galacturonic acid (OGA 50 mg.L-1) with DP 2-10 and alginate oligosaccharide (AOS 50 mg.L-1) with DP 2-7. Results: Oligosaccharides accelerated plant height (4-17.6%), leaf number (17-43%), curd (5-14.55%), and seed yield (17.8-64.5%) in both early and mid-season compared to control. These enhancements were even more pronounced in the mid-season (7.6-17.6%, 21.37-43%, 7.27-14.55%, 25.89-64.5%) than in the early season. Additionally, three oligosaccharides demonstrated significant disease resistance against black rot in both seasons, outperforming the control. As a surprise, the early season experienced better growth parameters than the mid-season. However, performance patterns remained more or less consistent in both seasons under the same treatments. COS and OGA promoted plant biomass and curd yield by promoting Soil Plant Analysis Development (SPAD) value and phenol content. Meanwhile, AOS increased seed yield (56.8-64.5%) and elevated levels of chlorophyll, ascorbic acid, flavonoids, while decreasing levels of hydrogen per oxide (H2O2), malondialdehyde (MDA), half maximal inhibitory concentration (IC50), and disease index. The correlation matrix and principal component analysis (PCA) supported these relations and findings. Therefore, COS and OGA could be suggested for curd production and AOS for seed production in the early season, offering resistance to both biotic and abiotic stresses for cauliflower cultivation under field conditions.


Assuntos
Resistência à Doença , Peróxido de Hidrogênio , Sementes/metabolismo , Ácido Ascórbico , Oligossacarídeos/farmacologia
13.
Carbohydr Polym ; 334: 122006, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553211

RESUMO

Different types of functional oligosaccharides exhibit varying degrees of immune-enhancing effects, which might be attributable to differences in their glycosyl structures. The differences in the immunomodulatory action of three functional oligosaccharides with distinct glycosyl compositions: cello-oligosaccharides (COS), manno-oligosaccharides (MOS), and xylo-oligosaccharides (XOS), were investigated in mouse-derived macrophage RAW264.7. Moreover, the immune enhancement mechanism of oligosaccharides with diverse glycosyl compositions was investigated from a molecular interaction perspective. The TLR4-dependent immunoregulatory effect of functional oligosaccharides was shown by measuring the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 cells treated with different functional oligosaccharides, both with and without Resatorvid [TAK-242] (a Toll-like receptor 4 [TLR4] inhibitor). Western blot analysis showed that binding of the three oligosaccharides to TLR4 activated the downstream signaling pathway and consequently enhanced the immune response. The fluorescence spectra and molecular docking results revealed that the main mechanisms by which these oligosaccharides attach to the TLR4 active pocket are hydrogen bonds and van der Waals forces. Functional oligosaccharides were ranked according to their affinity for TLR4, as follows: MOS > COS > XOS, indicating that oligosaccharides or polysaccharides containing mannose units may confer significant advantages for immune enhancement.


Assuntos
Monossacarídeos , Receptor 4 Toll-Like , Animais , Camundongos , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunidade , Imunomodulação
14.
Front Immunol ; 15: 1359499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510254

RESUMO

Human milk oligosaccharides (HMOs) can modulate the intestinal barrier and regulate immune cells to favor the maturation of the infant intestinal tract and immune system, but the precise functions of individual HMOs are unclear. To determine the structure-dependent effects of individual HMOs (representing different structural classes) on the intestinal epithelium as well as innate and adaptive immune cells, we assessed fucosylated (2'FL and 3FL), sialylated (3'SL and 6'SL) and neutral non-fucosylated (LNT and LNT2) HMOs for their ability to support intestinal barrier integrity, to stimulate the secretion of chemokines from intestinal epithelial cells, and to modulate cytokine release from LPS-activated dendritic cells (DCs), M1 macrophages (MØs), and co-cultures with naïve CD4+ T cells. The fucosylated and neutral non-fucosylated HMOs increased barrier integrity and protected the barrier following an inflammatory insult but exerted minimal immunomodulatory activity. The sialylated HMOs enhanced the secretion of CXCL10, CCL20 and CXCL8 from intestinal epithelial cells, promoted the secretion of several cytokines (including IL-10, IL-12p70 and IL-23) from LPS-activated DCs and M1 MØs, and increased the secretion of IFN-γ and IL-17A from CD4+ T cells primed by LPS-activated DCs and MØs while reducing the secretion of IL-13. Thus, 3'SL and 6'SL supported Th1 and Th17 responses while reducing Th2 responses. Collectively, our data show that HMOs exert structure-dependent effects on the intestinal epithelium and possess immunomodulatory properties that confer benefits to infants and possibly also later in life.


Assuntos
Lipopolissacarídeos , Leite Humano , Lactente , Humanos , Leite Humano/química , Lipopolissacarídeos/farmacologia , Células Th17 , Oligossacarídeos/farmacologia , Células Epiteliais , Citocinas/análise
15.
J Ethnopharmacol ; 328: 118124, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38556138

RESUMO

ETHNOPHAMACOLOGICAL RELEVANCE: Morinda officinalis oligosaccharides (MOs) is a mixture of oligosaccharides extracted from the roots of Morinda officinalis (MO). It is approved by Chinese Food and Drug Administration (CFDA) for depression treatment. MOs could improve the antidepressant efficacy of escitalopram in clinic. AIM OF THE STUDY: We aim to explore the antidepressant activity and potential mechanism of the combination usage of MOs and escitalopram on animal model of depression. MATERIALS AND METHODS: Depressive animal model was induced by chronic mild stress (CMS). Behavioral tests were conducted to evaluate the antidepressant efficacy of MOs and escitalopram. Serum neurotransmitter levels were detected by High-performance liquid chromatography (HPLC). Quantitative real-time PCR and Western blotting were applied to assay the hippocampus neurotrophic factors' mRNA and protein levels. Peripheral cytokines levels were measured through Enzyme-Linked Immunosorbent Assay (ELISA). Micorglia polization phenotype was assayed by immunofluorescence and flow cytometry. RESULTS: MOs and escitalopram obviously attenuated depression-like behaviors of CMS mice. Importantly, MOs plus escitalopram exhibited better antidepressant activity on CMS mice than monotherapy. At the same time, MOs combined escitalopram treatment significantly increased hippocampus neurotransmitters and neurotrophic factor levels, stimulated hippocampus neurogenesis and relieved central nervous system (CNS) microglia over-activation of CMS mice. The combination therapy had greater effect on neuroprotection and inflammation attenuation of CMS mice than monotherapy. CONCLUSION: Our results indicates MOs combined escitalopram might produce antidepressant activity through protecting neuron activity, relieving inflammation and modulating microglia polarization process.


Assuntos
Escitalopram , Morinda , Camundongos , Animais , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Inflamação/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças
16.
Carbohydr Res ; 538: 109077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479043

RESUMO

In this study, carboxylic acids compounds were grafted onto chitooligosaccharides to prepare seven phenyl/indolyl-acyl chitooligosaccharides derivatives. The structures of the derivatives were characterized by IR spectroscopy, 13C NMR and elemental analysis. Meanwhile, antioxidant activities in vitro of the novel derivatives were analyzed. Compared to COS and carboxylic acid, the derivatives showed higher scavenging capacity for superoxide anion and DPPH radicals, with scavenging rates of 59.39% and 94.86%, respectively. The hydroxyl radical scavenging ability of the derivatives was only 18.89%. The antifungal activities of chitooligosaccharide derivatives against Diaporthe batatas and Phytophthora capsici were studied by the growth rate method. Compared with chitooligosaccharide itself, derivatives were inhibited by 97.77% and 100%. The above results showed that chitooligosaccharide derivatives have good biocompatibility and can be used in food, agriculture and medicine.


Assuntos
Antioxidantes , Quitosana , Antioxidantes/farmacologia , Antioxidantes/química , Antifúngicos/farmacologia , Antifúngicos/química , Quitosana/farmacologia , Quitosana/química , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Quitina
17.
Int J Biol Macromol ; 265(Pt 1): 131007, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508566

RESUMO

Derived from bountiful marine organisms (predominantly algae, fauna, and microorganisms), marine polysaccharides and marine oligosaccharides are intricate macromolecules that play a significant role in the growth and development of marine life. Recently, considerable attention has been paid to marine polysaccharides and marine oligosaccharides as auspicious natural products due to their promising biological attributes. Herein, we provide an overview of recent advances in the miscellaneous biological activities of marine polysaccharides and marine oligosaccharides that encompasses their anti-cancer, anti-inflammatory, antibacterial, antiviral, antioxidant, anti-diabetes mellitus, and anticoagulant properties. Furthermore, we furnish a concise summary of the underlying mechanisms governing the behavior of these biological macromolecules. We hope that this review inspires research on marine polysaccharides and marine oligosaccharides in medicinal applications while offering fresh perspectives on their broader facets.


Assuntos
Produtos Biológicos , Polissacarídeos , Polissacarídeos/farmacologia , Oligossacarídeos/farmacologia , Organismos Aquáticos , Substâncias Macromoleculares , Anti-Inflamatórios/farmacologia
18.
Food Funct ; 15(7): 3810-3823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511344

RESUMO

Antibiotic treatment often causes collateral damage to the gut microbiota, including changes in its diversity and composition. Dietary fiber helps maintain intestinal health, regulate short-chain fatty acids, and promote the recovery of the intestinal microbiome. However, it is currently unknown which specific plant-based dietary fiber is optimal as a dietary supplement for restoring the intestinal microbiota after antibiotic disturbance. Previously, we proposed predictive recovery-associated bacterial species (p-RABs) and identified the most important interventions. This study aimed to identify an optimal form of dietary fiber to recover the gut microbiome after antibiotic treatment. Therefore, we examined the types of dietary fibers associated with p-RABs through a p-RAB-metabolite bilayer network constructed from prior knowledge; we searched for dietary fiber that could provide nutritional support for Akkermansia muciniphila and Bacteroides uniformis. C57BL/6J mice were fed with 500 mg kg-1 of different types of dietary fibers daily for one week after being treated with ampicillin. The results showed that mannan-oligosaccharides could better promote the diversity of intestinal microbial growth, enhance the recovery of most genera, including Akkermansia and Bacteroides, and inhibit certain pathogenic bacteria, such as Proteus, compared to the other fiber types. Furthermore, mannan-oligosaccharides could regulate the levels of short-chain fatty acids, especially butyric acid. Functional predictions showed that starch metabolism, galactose metabolism, and the metabolism of other carbohydrates played key roles in the early recovery process. In conclusion, mannan-oligosaccharides could enhance the recovery of the intestinal microbiome after antibiotic treatment, offering valuable insights for targeted dietary strategies.


Assuntos
Antibacterianos , Mananas , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Mananas/metabolismo , Camundongos Endogâmicos C57BL , Oligossacarídeos/farmacologia , Fibras na Dieta/metabolismo , Bactérias , Ácidos Graxos Voláteis/metabolismo
19.
Wei Sheng Yan Jiu ; 53(1): 81-87, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38443177

RESUMO

OBJECTIVE: To explore the protective effect of different ratios of galactose oligosaccharide(GOS) and polydextrose(PDX) on intestinal cell barrier damage model of Caco-2. METHODS: The same batch of Caco-2 cells were cultured to form a cell barrier model and randomly divided into damaged model group without calcium, calcium-containing blank control group(1.8 mmol/L Ca~(2+)), low-ratio/low-dose group(1.8 mmol/L Ca~(2+)+2 mg/mL GOS+2 mg/mL PDX) and low-ratio/medium-dose group(1.8 mmol/L Ca~(2+)+4 mg/mL GOS+4 mg/mL PDX), low-ratio/high-dose group(1.8 mmol/L Ca~(2+)+8 mg/mL GOS+8 mg/mL PDX) and high-ratio/low-dose group(1.8 mmol/L Ca~(2+)+0.8 mg/mL GOS+3.2mg/mL PDX), high-ratio/medium-dose group(1.8 mmol/L Ca~(2+)+1.6 mg/mL GOS+6.4 mg/mL PDX), high-ratio/high-dose group(1.8 mmol/L Ca~(2+)+3.2mg/mL GOS+12.8 mg/mL PDX), a total of 8 groups, three parallel groups were performed in each group. The Trans Epithelial Electrical Resistance value and apparent permeability coefficient value of each group were determined after 4 d culture, and the morphology of tight junction proteins ZO-1, Occludin and Claudin-1 were observed by immunofluorescence method, and the expression levels of inflammatory related factors in each group were determined by protein microarray method. RESULTS: Compared with damaged model group, TEER ratio in calcium-containing blank control group was significantly increased(P<0.05), while Papp value was significantly decreased(P<0.05);Compared with calcium-containing blank control group, TEER ratio in low-ratio/medium-dose group and high-ratio/high-dose group was significantly increased(P<0.05) while Papp value was significantly decreased(P<0.05), and they could significantly down-regulate some inflammatory response related cytokines. The cell barrier was intact in all groups except for the compact junction protein structure in the model group. CONCLUSION: Compared with Ca~(2+) alone, the combination of two prebiotics can enhance the density of Caco-2 cell barrier and reduced the permeability of cell bypass. And it can significantly reduce the expression level of some inflammatory cytokines and effectively protect the intestinal cell barrier.


Assuntos
Cálcio da Dieta , Cálcio , Glucanos , Humanos , Células CACO-2 , Citocinas , Oligossacarídeos/farmacologia
20.
Carbohydr Polym ; 332: 121914, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431416

RESUMO

Chitosan oligosaccharide (COS), which represent the positively charged basic amino oligosaccharide in nature, is the deacetylated and degraded products of chitin. COS has become the focus of intensive scientific investigation, with a growing body of practical and clinical studies highlighting its remarkable health-enhancing benefits. These effects encompass a wide range of properties, including antibacterial, antioxidant, anti-inflammatory, and anti-tumor activities. With the rapid advancements in chemical modification technology for oligosaccharides, many COS derivatives have been synthesized and investigated. These newly developed derivatives possess more stable chemical structures, improved biological activities, and find applications across a broader spectrum of fields. Given the recent interest in the chemical modification of COS, this comprehensive review seeks to consolidate knowledge regarding the preparation methods for COS derivatives, alongside discussions on their structural characterization. Additionally, various biological activities of COS derivatives have been discussed in detail. Lastly, the potential applications of COS derivatives in biomedicine have been reviewed and presented.


Assuntos
Quitosana , Quitosana/farmacologia , Quitosana/química , Quitina/química , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Antibacterianos , Antioxidantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA