Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 22(3): 352-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21921061

RESUMO

It is now emerging the new concept that the antibodies from some patients with Guillain-Barré syndrome (GBS) recognize an antigenic epitope formed by two different gangliosides, a ganglioside complex (GSC). We prepared the dimeric GM1-GD1a hybrid ganglioside derivative that contains two structurally different oligosaccharide chains to mimic the GSC. We use this compound to analyze sera from GBS patients by high-performance thin-layer chromatography immunostaining and enzyme-linked immunosorbent assay. We also synthesized the dimeric GM1-GM1 and GD1a-GD1a compounds that were used in control experiments together with natural gangliosides. The hybrid dimeric GM1-GD1a was specifically recognized by human sera from GBS patients that developed anti-oligosaccharide antibodies specific for grouped complex oligosaccharides, confirming the information that GBS patients developed antibodies against a GSC. High-resolution (1)H-(13)C heteronuclear single-quantum coherence-nuclear overhauser effect spectroscopy nuclear magnetic resonance experiments showed an interaction between the IV Gal-H1 of GM1 and the IV Gal-H2 of GD1a suggesting that the two oligosaccharide chains of the dimeric ganglioside form a single epitope recognized by a single-antibody domain. The availability of a method capable to prepare several hybrid gangliosides, and the availability of simple analytical approaches, opens new perspectives for the understanding and the therapy of several neuropathies.


Assuntos
Gangliosídeo G(M1)/imunologia , Gangliosídeos/imunologia , Síndrome de Guillain-Barré/sangue , Autoantígenos/química , Autoantígenos/imunologia , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia em Camada Fina , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/imunologia , Gangliosídeo G(M1)/química , Gangliosídeos/química , Síndrome de Guillain-Barré/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/química , Dados de Sequência Molecular , Oligossacarídeos , Oligossacarídeos de Cadeias Ramificadas/síntese química , Oligossacarídeos de Cadeias Ramificadas/química , Oligossacarídeos de Cadeias Ramificadas/imunologia , Ligação Proteica , Soro
2.
Immunobiology ; 216(1-2): 126-31, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20674073

RESUMO

Diabetic complications include infection and cardiovascular disease. Within the immune system, host-pathogen and regulatory host-host interactions operate through binding of oligosaccharides by C-type lectin. A number of C-type lectins recognise oligosaccharides rich in mannose and fucose - sugars with similar structures to glucose. This raises the possibility that high glucose conditions in diabetes affect protein-oligosaccharide interactions via competitive inhibition. Mannose-binding lectin, soluble DC-SIGN and DC-SIGNR, and surfactant protein D, were tested for carbohydrate binding in the presence of glucose concentrations typical of diabetes, via surface plasmon resonance and affinity chromatography. Complement activation assays were performed in high glucose. DC-SIGN and DC-SIGNR expression in adipose tissues was examined via immunohistochemistry. High glucose inhibited C-type lectin binding to high-mannose glycoprotein and binding of DC-SIGN to fucosylated ligand (blood group B) was abrogated in high glucose. Complement activation via the lectin pathway was inhibited in high glucose and also in high trehalose - a nonreducing sugar with glucoside stereochemistry. DC-SIGN staining was seen on cells with DC morphology within omental and subcutaneous adipose tissues. We conclude that high glucose disrupts C-type lectin function, potentially illuminating new perspectives on susceptibility to infectious and inflammatory disease in diabetes. Mechanisms involve competitive inhibition of carbohydrate binding within sets of defined proteins, in contrast to broadly indiscriminate, irreversible glycation of proteins.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Dendríticas/metabolismo , Glucose/metabolismo , Lectinas Tipo C/metabolismo , Lectina de Ligação a Manose/metabolismo , Oligossacarídeos de Cadeias Ramificadas/metabolismo , Receptores de Superfície Celular/metabolismo , Tecido Adiposo/patologia , Infecções Bacterianas , Ligação Competitiva/imunologia , Moléculas de Adesão Celular/genética , Lectina de Ligação a Manose da Via do Complemento , Células Dendríticas/imunologia , Células Dendríticas/patologia , Complicações do Diabetes , Glucose/química , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Imuno-Histoquímica , Imunomodulação , Lectinas Tipo C/genética , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/imunologia , Oligossacarídeos de Cadeias Ramificadas/química , Oligossacarídeos de Cadeias Ramificadas/imunologia , Receptores de Superfície Celular/genética , Estereoisomerismo , Ressonância de Plasmônio de Superfície
3.
J Viral Hepat ; 15(9): 675-83, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18482282

RESUMO

Hepatitis B virus (HBV) is a DNA virus that infects the liver as primary target. Currently, a high affinity receptor for HBV is still unknown. The dendritic cell specific C-type lectin DC-SIGN is involved in pathogen recognition through mannose and fucose containing carbohydrates leading to the induction of an anti-viral immune response. Many glycosylated viruses subvert this immune surveillance function and exploit DC-SIGN as a port of entry and for trans-infection of target cells. The glycosylation pattern on HBV surface antigens (HBsAg) together with the tissue distribution of HBV would allow interaction between HBV and DC-SIGN and its liver-expressed homologue L-SIGN. Therefore, a detailed study to investigate the binding of HBV to DC-SIGN and L-SIGN was performed. For HCV, both DC-SIGN and L-SIGN are known to bind envelope glycoproteins E1 and E2. Soluble DC-SIGN and L-SIGN specifically bound HCV virus-like particles, but no interaction with either HBsAg or HepG2.2.15-derived HBV was detected. Also, neither DC-SIGN nor L-SIGN transfected Raji cells bound HBsAg. In contrast, highly mannosylated HBV, obtained by treating HBV producing HepG2.2.15 cells with the alpha-mannosidase I inhibitor kifunensine, is recognized by DC-SIGN. The alpha-mannosidase I trimming of N-linked oligosaccharide structures thus prevents recognition by DC-SIGN. On the basis of these findings, it is tempting to speculate that HBV exploits mannose trimming as a way to escape recognition by DC-SIGN and thereby subvert a possible immune activation response.


Assuntos
Moléculas de Adesão Celular/metabolismo , Vírus da Hepatite B/química , Vírus da Hepatite B/imunologia , Lectinas Tipo C/metabolismo , Oligossacarídeos de Cadeias Ramificadas/análise , Oligossacarídeos de Cadeias Ramificadas/imunologia , Receptores de Superfície Celular/metabolismo , Ligação Viral , Linhagem Celular , Células Cultivadas , Células Dendríticas/virologia , Antígenos de Superfície da Hepatite B/metabolismo , Humanos , Ligação Proteica
4.
Glycobiology ; 16(4): 349-57, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16373330

RESUMO

Xylosylated and core alpha1,3-fucosylated N-glycans from plants are immunogenic, and they play a still obscure role in allergy and in the field of plant-made protein pharmaceuticals. We immunized mice to generate monoclonal antibodies (mAbs) binding plant N-glycans specifically via the epitope containing either the xylose or the core alpha1,3-fucose residue. Splenocytes expressing N-glycan-specific antibodies derived from C57BL/6 mice previously immunized with plant glycoproteins were preselected by cell sorting to generate hybridoma lines producing specific antibodies. However, we obtained only mAbs unable to distinguish fucosylated from xylosylated N-glycans and reactive even with the pentasaccharide core Man3GlcNAc2. In contrast, immunization of rabbits yielded polyclonal sera selectively reactive with either fucosylated or xylosylated N-glycans. Purification of these sera using glyco-modified neoglycoproteins coupled to a chromatography matrix provided polyclonal sera suitable for affinity determination. Surface plasmon resonance measurements using sensor chips with immobilized glyco-modified transferrins revealed dissociation constants of around 10(-9) M. This unexpectedly high affinity of IgG antibodies toward carbohydrate epitopes has repercussions on our conception of the binding strength and significance of antiglycan IgE antibodies in allergy.


Assuntos
Anticorpos Monoclonais/química , Afinidade de Anticorpos , Imunoglobulina G/química , Oligossacarídeos de Cadeias Ramificadas/química , Plantas/química , Animais , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Glicoproteínas/química , Glicoproteínas/imunologia , Imunoglobulina G/imunologia , Camundongos , Oligossacarídeos de Cadeias Ramificadas/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Plantas/imunologia , Coelhos , Especificidade da Espécie , Ressonância de Plasmônio de Superfície
5.
Proc Natl Acad Sci U S A ; 102(38): 13372-7, 2005 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16174734

RESUMO

Human antibody 2G12 neutralizes a broad range of HIV-1 isolates. Hence, molecular characterization of its epitope, which corresponds to a conserved cluster of oligomannoses on the viral envelope glycoprotein gp120, is a high priority in HIV vaccine design. A prior crystal structure of 2G12 in complex with Man(9)GlcNAc(2) highlighted the central importance of the D1 arm in antibody binding. To characterize the specificity of 2G12 more precisely, we performed solution-phase ELISA, carbohydrate microarray analysis, and cocrystallized Fab 2G12 with four different oligomannose derivatives (Man(4), Man(5), Man(7), and Man(8)) that compete with gp120 for binding to 2G12. Our combined studies reveal that 2G12 is capable of binding both the D1 and D3 arms of the Man(9)GlcNAc(2) moiety, which would provide more flexibility to make the required multivalent interactions between the antibody and the gp120 oligomannose cluster than thought previously. These results have important consequences for the design of immunogens to elicit 2G12-like neutralizing antibodies as a component of an HIV vaccine.


Assuntos
Anticorpos Monoclonais/química , Epitopos/química , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV , HIV-1 , Manose/química , Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos/imunologia , Sequência de Carboidratos , Cristalografia por Raios X , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/química , HIV-1/imunologia , Manose/imunologia , Dados de Sequência Molecular , Oligossacarídeos de Cadeias Ramificadas/química , Oligossacarídeos de Cadeias Ramificadas/imunologia
6.
Glycobiology ; 15(10): 895-904, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15932920

RESUMO

Nonreducing O-linked oligosaccharides were obtained from the peptidorhamnomannan of mycelia of Pseudallescheria boydii by alkaline beta-elimination under reducing conditions. They were separated by gel filtration chromatography to give three oligosaccharide fractions. The major oligosaccharide from fraction 1 was characterized by a combination of techniques including electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI MS/MS), matrix-assisted laser desorption ionization mass spectrometry (MALDI MS), nuclear magnetic resonance (NMR), and methylation gas-liquid chromatography-mass spectrometry (GC-MS) analysis. It was branched, with a principal chain of alpha-Rhap-(1 --> 3)-alpha-Rhap-(1 --> 3)-alpha-Manp-(1 --> 2)-Man-ol substituted at O-6 of mannitol with an alpha-Glcp-(1 --> 4)-beta-Galp group. Species containing one and two additional alpha-Glcp-(1 --> 4) substituents in the rhamnose branch were also present. The major component of fraction 2 was a substructure of oligosaccharide-1, lacking a hexose from the Glc-Gal branch. Fraction 3 contained a mixture of smaller, unbranched, oligosaccharides. In hapten inhibition tests, fractions 1 and 2 blocked the reaction between peptidorhamnomannan (PRM) and rabbit anti-P. boydii mycelium hyperimmune serum by approximately 75%, whereas fraction 3 inhibited by approximately 55%.


Assuntos
Glicoconjugados/química , Oligossacarídeos de Cadeias Ramificadas/química , Pseudallescheria/química , Animais , Cromatografia Gasosa-Espectrometria de Massas , Soros Imunes , Espectroscopia de Ressonância Magnética , Metilação , Oligossacarídeos de Cadeias Ramificadas/imunologia , Pseudallescheria/imunologia , Coelhos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Carbohydr Res ; 338(18): 1835-42, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12932366

RESUMO

A phosphorylated, choline-containing polysaccharide was obtained by O-deacylation of the lipopolysaccharide (LPS) of Proteus mirabilis O18 by treatment with aqueous 12% ammonia, whereas hydrolysis with dilute acetic acid resulted in depolymerisation of the polysaccharide chain by the glycosyl phosphate linkage. Treatment of the O-deacylated LPS with aqueous 48% hydrofluoric acid cleaved the glycosyl phosphate group but, unexpectedly, did not affect the choline phosphate group. The polysaccharide and the derived oligosaccharides were studied by NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HMQC and HMQC-TOSCY experiments, along with chemical methods, and the following structure of the pentasaccharide phosphate repeating unit was established: [carbohydrate structure in text] Where ChoP=Phosphocoline Immunochemical studies of the LPS, O-deacylated LPS and partially dephosphorylated pentasaccharide using rabbit polyclonal anti-P. mirabilis O18 serum showed the importance of the glycosyl phosphate group in manifesting the serological specificity of the O18-antigen.


Assuntos
Antígenos O/química , Oligossacarídeos de Cadeias Ramificadas/química , Fosfatos/análise , Fosforilcolina/análise , Proteus mirabilis/química , Ácido Acético/química , Acetilglucosamina/análise , Amônia/química , Animais , Western Blotting , Boroidretos/química , Sequência de Carboidratos , Cromatografia Gasosa , Reações Cruzadas/imunologia , Desaminação , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Galactose/análise , Glucose/análise , Ácido Fluorídrico/química , Hidrólise , Soros Imunes/imunologia , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Antígenos O/imunologia , Oligossacarídeos de Cadeias Ramificadas/imunologia , Fosfatos/imunologia , Fosforilcolina/imunologia , Proteus mirabilis/classificação , Coelhos , Sorotipagem , Espectrometria de Massas por Ionização por Electrospray
10.
Carbohydr Res ; 338(13): 1425-30, 2003 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-12801716

RESUMO

The O-polysaccharide (O-antigen) of Providencia alcalifaciens O21 was obtained by mild acid degradation of the lipopolysaccharide and studied by chemical methods and NMR spectroscopy. It was found that the polysaccharide is built up of branched pentasaccharide repeating units with a terminal residue of 3-formamido-3,6-dideoxy-D-galactose (D-Fuc3NFo) and has the following structure: [structure: see text]. Anti-P. alcalifaciens O21 serum cross-reacted with the O-antigen of Proteus vulgaris O47, which contains a GalNAc trisaccharide similar to that present in the P. alcalifaciens O21 O-polysaccharide.


Assuntos
Antígenos O/química , Oligossacarídeos de Cadeias Ramificadas/química , Providencia/química , Acetilgalactosamina/análise , Amino Açúcares/análise , Sequência de Carboidratos , Reações Cruzadas/imunologia , Ácidos Hexurônicos/análise , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oligossacarídeos de Cadeias Ramificadas/imunologia , Proteus vulgaris/química , Proteus vulgaris/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA