Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.788
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0302936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713716

RESUMO

Long-term evolution (LTE) radiofrequency electromagnetic field (RF-EMF) is widely used in communication technologies. Thus, the influence of RF-EMF on biological systems is a major public concern and its physiological effects remain controversial. In our previous study, we showed that continuous exposure of various human cell types to 1.7 GHz LTE RF-EMF at a specific absorption rate (SAR) of 2 W/Kg for 72 h can induce cellular senescence. To understand the precise cellular effects of LTE RF-EMF, we elaborated the 1.7 GHz RF-EMF cell exposure system used in the previous study by replacing the RF signal generator and developing a software-based feedback system to improve the exposure power stability. This refinement of the 1.7 GHz LTE RF-EMF generator facilitated the automatic regulation of RF-EMF exposure, maintaining target power levels within a 3% range and a constant temperature even during the 72-h-exposure period. With the improved experimental setup, we examined the effect of continuous exposure to 1.7 GHz LTE RF-EMF at up to SAR of 8 W/Kg in human adipose tissue-derived stem cells (ASCs), Huh7, HeLa, and rat B103 cells. Surprisingly, the proliferation of all cell types, which displayed different growth rates, did not change significantly compared with that of the unexposed controls. Also, neither DNA damage nor cell cycle perturbation was observed in the 1.7 GHz LTE RF-EMF-exposed cells. However, when the thermal control system was turned off and the subsequent temperature increase induced by the RF-EMF was not controlled during continuous exposure to SAR of 8 W/Kg LTE RF-EMF, cellular proliferation increased by 35.2% at the maximum. These observations strongly suggest that the cellular effects attributed to 1.7 GHz LTE RF-EMF exposure are primarily due to the induced thermal changes rather than the RF-EMF exposure itself.


Assuntos
Proliferação de Células , Campos Eletromagnéticos , Ondas de Rádio , Humanos , Proliferação de Células/efeitos da radiação , Ratos , Animais , Células HeLa , Temperatura
2.
Sci Rep ; 14(1): 10283, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704416

RESUMO

In this article, the impact of radiofrequency electromagnetic field (RF-EMF) exposure from a simulated base station for the 5G New Radio (5G NR) telecommunication on rats was studied. The base station affects all age groups of the population, thus, for the first time, the experiment was conducted on male Wistar rats of three different ages (juvenile, adult, and presenile). The base station exposure parameters were chosen according to ICNIRP recommendations for limiting the exposure to radiofrequency electromagnetic field: frequency 2.4 GHz with an average specific absorption rate of 0.0076 W/kg and 0.0059 W/kg over the whole body of experimental animals. Throughout the experiment, body weight was examined weekly, and the dynamics of body weight gain was monitored. Rectal and skin surface temperature on the right hind limb was monitored weekly. Testing in the Morris water maze was performed during the last, Week 5, of RF-EMF exposure. After euthanasia, organ weights were determined in experimental and control animals. None of the investigated parameters did show any statistically significant differences between exposed and control animals of the same age. The data obtained can be used to assess the possible consequences of chronic exposure to RF-EMF from 5G NR base stations.


Assuntos
Cognição , Campos Eletromagnéticos , Ondas de Rádio , Ratos Wistar , Animais , Masculino , Ondas de Rádio/efeitos adversos , Ratos , Campos Eletromagnéticos/efeitos adversos , Cognição/efeitos da radiação , Peso Corporal/efeitos da radiação , Aprendizagem em Labirinto/efeitos da radiação
3.
Int J Biol Macromol ; 267(Pt 1): 131470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599425

RESUMO

Hot air (HA) drying caused quality damage of grains with long treatment time. Radio frequency (RF) heating as an emerging technology was applied to improve drying quality of cereals effectively. The effects of HA-RF drying (50 °C, 70 °C, 90 °C) of corn kernels on the morphology, structure, and physicochemical properties of starch were investigated and compared with HA drying. The surface of treated starch became rough, along with fragments and pores. Drying treatments increased the amylose content from 10.59 % to 23.88 % and the residual protein content of starch from 0.58 % to 1.23 %, and reduced the crystallinity from 31.95 % to 17.15 % and short-range order structures of starch from 0.918 to 0.868. The change of structures in turn resulted in the increase of pasting viscosity, gelatinization temperature, storage modulus and loss modulus. Furthermore, the HA-RF dried starch displayed stronger thermal stability, higher gelatinization degree and better gelation properties than the HA-treated starch at the same temperature. The data proved that the synergistic effects of HA and RF were more effective in modulating the starch structure and improving the functional characteristics of corn starch. This paper would like to provide potential reference for better application of HA-RF technologies to corn.


Assuntos
Temperatura Alta , Amido , Zea mays , Zea mays/química , Amido/química , Amilose/química , Ondas de Rádio , Viscosidade , Dessecação/métodos , Ar
4.
Sci Total Environ ; 927: 172391, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608899

RESUMO

The rapid development of 5G communication technology has increased public concern about the potential adverse effects on human health. Till now, the impacts of radiofrequency radiation (RFR) from 5G communication on the central nervous system and gut-brain axis are still unclear. Therefore, we investigated the effects of 3.5 GHz (a frequency commonly used in 5G communication) RFR on neurobehavior, gut microbiota, and gut-brain axis metabolites in mice. The results showed that exposure to 3.5 GHz RFR at 50 W/m2 for 1 h over 35 d induced anxiety-like behaviour in mice, accompanied by NLRP3-dependent neuronal pyroptosis in CA3 region of the dorsal hippocampus. In addition, the microbial composition was widely divergent between the sham and RFR groups. 3.5 GHz RFR also caused changes in metabolites of feces, serum, and brain. The differential metabolites were mainly enriched in glycerophospholipid metabolism, tryptophan metabolism, and arginine biosynthesis. Further correlation analysis showed that gut microbiota dysbiosis was associated with differential metabolites. Based on the above results, we speculate that dysfunctional intestinal flora and metabolites may be involved in RFR-induced anxiety-like behaviour in mice through neuronal pyroptosis in the brain. The findings provide novel insights into the mechanism of 5G RFR-induced neurotoxicity.


Assuntos
Ansiedade , Microbioma Gastrointestinal , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ondas de Rádio/efeitos adversos , Inflamassomos/metabolismo , Neurônios , Masculino , Comportamento Animal/efeitos da radiação
5.
Radiat Prot Dosimetry ; 200(6): 598-616, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38491820

RESUMO

This study reviews recent research on Radiofrequency Electromagnetic Field (RF-EMF) exposure in confined environments, focusing on methodologies and parameters. Studies typically evaluate RF-EMF exposure using an electric field and specific absorption rate but fail to consider temperature rise in the tissues in confined environments. The study highlights the investigation of RF-EMF exposure in subterranean environments such as subways, tunnels and mines. Future research should evaluate the exposure of communication devices in such environments, considering the surrounding environment. Such studies will aid in understanding the risks and developing effective mitigation strategies to protect workers and the general public.


Assuntos
Campos Eletromagnéticos , Ondas de Rádio , Humanos , Exposição Ambiental/análise , Monitoramento de Radiação/métodos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle
6.
Electromagn Biol Med ; 43(1-2): 117-124, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38521997

RESUMO

This paper presents data on pain perception in rats exposed to 6 GHz radiofrequency electromagnetic radiation (RF-EMR). Rats were divided into two groups: control (n = 10, 4 replicates per test) and RF-EMR exposed group (n = 10, 4 replicates per test). Nociceptive responses of the groups were measured using rodent analgesiometry. Rats were divided into control and RF-EMR exposed groups. Nociceptive responses were measured using rodent analgesiometry. RF-EMR exposed rats had a 15% delay in responding to hot plate thermal stimulation compared to unexposed rats. The delay in responding to radiant heat thermal stimulation was 21%. We determined that RF-EMR promoted the occurrence of pressure pain as statistical significance by + 42% (p < 0.001). We observed that RF-EMR exposure increased nociceptive pain by + 35% by promoting cold plate stimulation (p < 0.05). RF-EMR exposure did not affect thermal preference as statistical significance but did support the formation of pressure pain perception.


In this study, we present data on pain perception in rats exposed to 6GHz RF-EMR. RF-EMR exposed rats showed delayed responses to hot plate and radiant heat thermal stimulation. RF-EMR increased pressure and nociceptive pain as statistically significance. In particular, the effects of RF-EMR should be considered when assessing hyperalgesic and hypoalgesic symptoms in the clinic. The results of this study indicate the need to take precautions against the possible negative effects of RF-EMR on human health with the rise of 5G technology.


Assuntos
Percepção da Dor , Ondas de Rádio , Animais , Ratos , Percepção da Dor/efeitos da radiação , Ondas de Rádio/efeitos adversos , Masculino , Radiação Eletromagnética , Ratos Sprague-Dawley , Temperatura Alta
7.
Environ Int ; 185: 108509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38492496

RESUMO

BACKGROUND: The World Health Organization is coordinating an international project aimed at systematically reviewing the evidence regarding the association between radiofrequency electromagnetic field (RF-EMF) exposure and adverse health effects. Reproductive health outcomes have been identified among the priority topics to be addressed. OBJECTIVES: To evaluate the effect of RF-EMF exposure on male fertility of experimental mammals and on human sperm exposed in vitro. METHODS: Three electronic databases (PubMed, Scopus and EMF Portal) were last searched on September 17, 2022. Two independent reviewers screened the studies, which were considered eligible if met the following criteria: 1) Peer-reviewed publications of sham controlled experimental studies, 2) Non-human male mammals exposed at any stage of development or human sperm exposed in vitro, 3) RF-EMF exposure within the frequency range of 100 kHz-300 GHz, including electromagnetic pulses (EMP), 4) one of the following indicators of reproductive system impairment:Two reviewers extracted study characteristics and outcome data. We assessed risk of bias (RoB) using the Office of Health Assessment and Translation (OHAT) guidelines. We categorized studies into 3 levels of overall RoB: low, some or high concern. We pooled study results in a random effects meta-analysis comparing average exposure to no-exposure and in a dose-response meta-analysis using all exposure doses. For experimental animal studies, we conducted subgroup analyses for species, Specific Absorption Rate (SAR) and temperature increase. We grouped studies on human sperm exposed in vitro by the fertility status of sample donors and SAR. We assessed the certainty of the evidence using the GRADE approach after excluding studies that were rated as "high concern" for RoB. RESULTS: One-hundred and seventeen papers on animal studies and 10 papers on human sperm exposed in vitro were included in this review. Only few studies were rated as "low concern" because most studies were at RoB for exposure and/or outcome assessment. Subgrouping the experimental animal studies by species, SAR, and temperature increase partly accounted for the heterogeneity of individual studies in about one third of the meta-analyses. In no case was it possible to conduct a subgroup analysis of the few human sperm in vitro studies because there were always 1 or more groups including less than 3 studies. Among all the considered endpoints, the meta-analyses of animal studies provided evidence of adverse effects of RF-EMF exposure in all cases but the rate of infertile males and the size of the sired litters. The assessment of certainty according to the GRADE methodology assigned a moderate certainty to the reduction of pregnancy rate and to the evidence of no-effect on litter size, a low certainty to the reduction of sperm count, and a very low certainty to all the other meta-analysis results. Studies on human sperm exposed in vitro indicated a small detrimental effect of RF-EMF exposure on vitality and no-effect on DNA/chromatin alterations. According to GRADE, a very low certainty was attributed to these results. The few studies that used EMP exposure did not show effects on the outcomes. A low to very low certainty was attributed to these results. DISCUSSION: Many of the studies examined suffered of severe limitations that led to the attribution of uncertainty to the results of the meta-analyses and did not allow to draw firm conclusions on most of the endpoints. Nevertheless, the associations between RF-EMF exposure and decrease of pregnancy rate and sperm count, to which moderate and low certainty were attributed, are not negligible, also in view of the indications that in Western countries human male fertility potential seems to be progressively declining. It was beyond the scope of our systematic review to determine the shape of the dose-response relationship or to identify a minimum effective exposure level. The subgroup and the dose-response fitting analyses did not show a consistent relationship between the exposure levels and the observed effects. Notably, most studies evaluated RF-EMF exposure levels that were higher than the levels to which human populations are typically exposed, and the limits set in international guidelines. For these reasons we cannot provide suggestions to confirm or reconsider current human exposure limits. Considering the outcomes of this systematic review and taking into account the limitations found in several of the studies, we suggest that further investigations with better characterization of exposure and dosimetry including several exposure levels and blinded outcome assessment were conducted. PROTOCOL REGISTRATION: Protocols for the systematic reviews of animal studies and of human sperm in vitro studies were published in Pacchierotti et al., 2021. The former was also registered in PROSPERO (CRD42021227729 https://www.crd.york.ac.uk/prospero/display_record.php?RecordID = 227729) and the latter in Open Science Framework (OSF Registration DOI https://doi.org/10.17605/OSF.IO/7MUS3).


Assuntos
Campos Eletromagnéticos , Infertilidade Masculina , Sêmen , Animais , Humanos , Masculino , Campos Eletromagnéticos/efeitos adversos , Mamíferos , Ondas de Rádio/efeitos adversos , Reprodução , Sêmen/efeitos da radiação , Infertilidade Masculina/etiologia
8.
Bioelectromagnetics ; 45(4): 193-199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444067

RESUMO

In Greece, 5G New Radio (NR) has started launching in the end of 2020, at the 3400-3800 MHz (FR1) frequency band. Focusing on 117 Base Stations (BSs) which were already equipped with 5G NR antennas, in situ broadband and frequency selective measurements have been conducted at minimum three points of interest, at adjacent rooftops (when accessible). The points have been selected according to the sweeping method and the electric field strength (E) value has been stored on the selected worst-case scenario point. Spectrum analysis was conducted in the FR1, for the allocated spectrum that corresponds to each mobile communication provider, in order to get preliminary results concerning the contribution of the 5G NR emissions in the general public exposure levels. The vast majority of the in situ measurements has been conducted in urban environments from the beginning of 2021 until the mid of 2022, since in Greece 5G NR services launching started from the big cities. Additionally, a 5G NR BS, installed in a suburban environment (in the city of Kalamata) is thoroughly investigated during its pilot and regular operation, based on broadband and frequency selective measurements data derived by the National Observatory of Electromagnetic Fields (NOEF) monitoring sensor network. In situ measurement data within the 5G NR frequency range are verified via the NOEF's output. The 5G NR contribution to the total E-field levels is assessed in time, from pilot to regular operation of the BS. In all cases, compliance with the reference levels for general public exposure is affirmed.


Assuntos
Campos Eletromagnéticos , Monitoramento de Radiação , Exposição Ambiental/análise , Grécia , Monitoramento de Radiação/métodos , Ondas de Rádio
9.
PLoS One ; 19(3): e0300049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466737

RESUMO

In order to assess the electromagnetic exposure safety of passengers under the civil communication system of the subway, the radio-frequency (RF) electromagnetic environment of subway carriage is established by using COMSOL Multiphysics software, it includes a 1-1/4 " leaky coaxial cable (LCX1) and a 1-5/8" leaky coaxial cable (LCX2), which are designed to be the exposure sources, and twelve passengers at different position. The electromagnetic environment model has been verified through field measurement. The exposure dose distribution of twelve passengers is compared and analyzed, when LCX1 and LCX2 works respectively. The simulated results show that, to compare with LCX2, the electromagnetic dose absorbed by the passengers is reduced by 9.19% and 22.50% at 2100 MHz and 2600 MHz respectively. The specific absorption rate (SAR) of passengers obtains the maximum value of 1.91×10-4 W/Kg and the temperature rise to 0.214 K when the LCX1 works at 3400 MHz. By comparing with the public exposure limitation of the International Commission of Non-Ionizing Radiation Protection (ICNIRP), it demonstrates the electromagnetic exposure safety of the passengers under the civil communication system. More importantly, the proposed LCX1 not only could add the 5G signal cover but also lower the SAR absorbed by the passengers, which indicates that the public electromagnetic exposure dose could be reduced by adjusting the radiation performances of exposure source, which provide a new way for electromagnetic protecting.


Assuntos
Campos Eletromagnéticos , Ferrovias , Campos Eletromagnéticos/efeitos adversos , Ondas de Rádio/efeitos adversos , Temperatura , Comunicação
10.
J Magn Reson ; 360: 107636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377783

RESUMO

Very-low field (VLF) magnetic resonance imaging (MRI) offers advantages in term of size, weight, cost, and the absence of robust shielding requirements. However, it encounters challenges in maintaining a high signal-to-noise ratio (SNR) due to low magnetic fields (below 100 mT). Developing a close-fitting radio frequency (RF) receive coil is crucial to improve the SNR. In this study, we devised and optimized a helmet-shaped dual-channel RF receive coil tailored for brain imaging at a magnetic field strength of 54 mT (2.32 MHz). The methodology integrates the inverse boundary element method (IBEM) to formulate initial coil structures and wiring patterns, followed by optimization through introducing regularization terms. This approach frames the design process as an inverse problem, ensuring a close fit to the head contour. Combining theoretical optimization with physical measurements of the coil's AC resistance, we identified the optimal loop count for both axial and radial coils as nine and eight loops, respectively. The effectiveness of the designed dual-channel coil was verified through the imaging of a CuSO4 phantom and a healthy volunteer's brain. Notably, the in-vivo images exhibited an approximate 16-25 % increase in SNR with poorer B1 homogeneity compared to those obtained using single-channel coils. The high-quality images achieved by T1, T2-weighted, and fluid-attenuated inversion-recovery (FLAIR) protocols enhance the diagnostic potential of VLF MRI, particularly in cases of cerebral stroke and trauma patients. This study underscores the adaptability of the design methodology for the customization of RF coil structures in alignment with individual imaging requirements.


Assuntos
Encéfalo , Dispositivos de Proteção da Cabeça , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Cabeça/diagnóstico por imagem , Razão Sinal-Ruído , Imagens de Fantasmas , Desenho de Equipamento , Ondas de Rádio , Neuroimagem
11.
Lasers Surg Med ; 56(3): 288-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334177

RESUMO

BACKGROUND AND OBJECTIVE: Fractional radiofrequency microneedling (FRM) is widely used as an option for skin rejuvenation, however there is a lack of histological evidence for the various energy delivery systems available. The objective was to assess thermal denaturation of tissue and the wound healing response in monopolar mode versus bipolar mode. Histological analysis was performed to demonstrate the efficacy of automatic impedance feedback system in monopolar mode. STUDY DESIGN AND METHODS: In this study, the acute thermal effects caused by monopolar FRM treatment to the dorsal skin of pigs were assessed histologically by hematoxylin & eosin (H&E) staining. Then, one session of either monopolar or bipolar FRM was used to treat one or the other side of the pig using varying power levels and pulse widths. The acute and chronic tissue reactions were assessed using H&E, immunofluorescence, and western blot analysis at 0, 14, 30, and 90 days after treatment. The efficacy of the impedance feedback system was also monitored histologically. RESULTS: High-energy FRM treatment produced tissue loss and necrosis. The power level and pulse duration significantly affected the coagulation amount. Histopathology at 0, 14, 30, and 90 days showed that the skin tissue reaction was more pronounced for bipolar compared to monopolar FRM. Immunofluorescence showed the expression of TGF-ß, Ki67, MMP3, and elastin increased dramatically with both modes, but were higher in the bipolar FRM treated side. The automatic impedance feedback system could effectively adjust the output energy. CONCLUSIONS: We found that bipolar FRM produced greater thermal effects, more collagen coagulation, and more pronounced molecular changes compared with monopolar mode in a porcine animal model.


Assuntos
Indução Percutânea de Colágeno , Ondas de Rádio , Suínos , Animais , Necrose , Colágeno , Cicatrização
12.
Phys Med Biol ; 69(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38324901

RESUMO

A direct comparison of the impact of RF coil design under specific absorption rate andB1+rmslimitations are investigated and quantified using RF coils of different geometries and topologies at 64 MHz and 128 MHz. The RF-inducedin vivoelectric field and power deposition of a 50 cm long pacemaker and 55 cm long deep brain stimulator (DBS) are evaluated within two anatomical models exposed with these RF coils. The associated uncertainty is quantified and analyzed under a fixedB1+rmsincident and normal operating mode. For a fixedB1+rmsincident, thein vivoincident field shows a much higher uncertainty (>5.6 dB) to the RF coil diameter compared to other design parameters (e.g. <2.2 dB for coil length and topology), while the associated uncertainty reduced greatly (e.g. <1.5 dB) under normal operating mode exposure. Similar uncertainties are observed in the power deposition near the pacemaker and DBS electrode. Compared to the normal operating mode, applying a fixedB1+rmsfield to the untested implant will lead to a large variation in the induced incident and power deposition of the implant, as a result, a larger safe margin when different coil designs (e.g. coil diameter) are considered.


Assuntos
Calefação , Temperatura Alta , Imageamento por Ressonância Magnética , Próteses e Implantes , Ondas de Rádio , Imagens de Fantasmas
13.
Magn Reson Imaging ; 108: 146-160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364973

RESUMO

OBJECTIVE: This study evaluates the performance of a twisted pair transmission line coil as a transceive element for 7 T MRI in terms of physical flexibility, robustness to shape deformations, and interelement decoupling. METHODS: Each coil element was created by shaping a twisted pair of wires into a circle. One wire was interrupted at the top, while the other was interrupted at the bottom, and connected to the matching circuit. Electromagnetic simulations were conducted to determine the optimal number of twists per length (in terms of B1+ field efficiency, SAR efficiency, sensitivity to elongation, and interelement decoupling properties) and for investigating the fundamental operational principle of the coil through fields streamline visualisation. A comparison between the twisted pair coil and a conventional loop coil in terms of B1+ fields, maxSAR10g, and stability of S11 when the coil was deformed was performed. Experimentally measured interelement coupling between individual elements of multichannel arrays was also investigated. RESULTS: Increasing the number of twists per length resulted in a more physically robust coil. Poynting vector streamline visualisation showed that the twisted pair coil concentrated most of the energy in the near field. The twisted pair coil exhibited comparable B1+ fields and improved maxSAR10g to the conventional coil but demonstrated exceptional stability with respect to coil deformation and a strong self-decoupling nature when placed in an array configuration. DISCUSSION: The findings highlight the robustness of the twisted pair coil, showcasing its stability under shape variations. This coil holds great potential as a flexible RF coil for various imaging applications using multiple-element arrays, benefiting from its inherent decoupling.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
14.
Magn Reson Med ; 92(1): 112-127, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38376455

RESUMO

PURPOSE: To develop a new electromagnetic interference (EMI) elimination strategy for RF shielding-free MRI via active EMI sensing and deep learning direct MR signal prediction (Deep-DSP). METHODS: Deep-DSP is proposed to directly predict EMI-free MR signals. During scanning, MRI receive coil and EMI sensing coils simultaneously sample data within two windows (i.e., for MR data and EMI characterization data acquisition, respectively). Afterward, a residual U-Net model is trained using synthetic MRI receive coil data and EMI sensing coil data acquired during EMI signal characterization window, to predict EMI-free MR signals from signals acquired by MRI receive and EMI sensing coils. The trained model is then used to directly predict EMI-free MR signals from data acquired by MRI receive and sensing coils during the MR signal-acquisition window. This strategy was evaluated on an ultralow-field 0.055T brain MRI scanner without any RF shielding and a 1.5T whole-body scanner with incomplete RF shielding. RESULTS: Deep-DSP accurately predicted EMI-free MR signals in presence of strong EMI. It outperformed recently developed EDITER and convolutional neural network methods, yielding better EMI elimination and enabling use of few EMI sensing coils. Furthermore, it could work well without dedicated EMI characterization data. CONCLUSION: Deep-DSP presents an effective EMI elimination strategy that outperforms existing methods, advancing toward truly portable and patient-friendly MRI. It exploits electromagnetic coupling between MRI receive and EMI sensing coils as well as typical MR signal characteristics. Despite its deep learning nature, Deep-DSP framework is computationally simple and efficient.


Assuntos
Encéfalo , Aprendizado Profundo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagem , Ondas de Rádio , Imagens de Fantasmas , Campos Eletromagnéticos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Processamento de Sinais Assistido por Computador
15.
Magn Reson Med ; 92(1): 406-415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38411281

RESUMO

PURPOSE: To utilize the transmit radiofrequency (RF) field in MRI as a power source, near or within the field of view but without affecting image quality or safety. METHODS: Power harvesting is performed by RF induction in a resonant coil. Resulting RF field distortion in the subject is canceled by a selective shield that couples to the harvester while being transparent to the RF transmitter. Such shielding is designed with the help of electromagnetic simulation. A shielded harvester of 3 cm diameter is implemented, assessed on the bench, and tested in a 3T MRI system, recording power yield during typical scans. RESULTS: The concept of selective shielding is confirmed by simulation. Bench tests show effective power harvesting in the presence of the shield. In the MRI system, it is confirmed that selective shielding virtually eliminates RF perturbation. In scans with the harvester immediately adjacent to a phantom, up to 100 mW of average power are harvested without affecting image quality. CONCLUSION: Selective shielding enables stealthy RF harvesting which can be used to supply wireless power to on-body devices during MRI.


Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio , Imageamento por Ressonância Magnética/instrumentação , Proteção Radiológica/instrumentação , Humanos , Análise de Falha de Equipamento
16.
Bioelectromagnetics ; 45(4): 200-205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38348555

RESUMO

A crucial aspect of IARC's evaluation of the relative carcinogenicity of agents is the communication of its conclusions. The present paper addressed the experimental risk perception literature pertaining to IARC's radiofrequency electromagnetic field evaluation communication, and derived specific recommendations for improving it.


Assuntos
Campos Eletromagnéticos , Neoplasias , Humanos , Campos Eletromagnéticos/efeitos adversos , Neoplasias/etiologia , Ondas de Rádio/efeitos adversos , Comunicação
17.
Acta Neurochir (Wien) ; 166(1): 56, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302773

RESUMO

OBJECTIVE: Radiofrequency thermocoagulation (RFT) for refractory trigeminal neuralgia is usually performed in awake patients to localize the involved trigeminal branches. It is often a painful experience. Here, we present RFT under neuromonitoring guidance and general anesthesia. METHOD: Stimulation of trigeminal branches at the foramen ovale with the tip of the RFT cannula is performed under short general anesthesia. Antidromic sensory-evoked potentials (aSEP) are recorded from the 3 trigeminal branches. The cannula is repositioned until the desired branch can be stimulated and lesioned. CONCLUSION: aSEP enable accurate localization of involved trigeminal branches during RFT and allow performing the procedure under general anesthesia.


Assuntos
Forame Oval , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/cirurgia , Eletrocoagulação/métodos , Dor , Ondas de Rádio , Resultado do Tratamento , Gânglio Trigeminal
18.
PLoS One ; 19(2): e0298738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412167

RESUMO

INTRODUCTION: Wireless communication connects billions of people worldwide, relying on radiofrequency electromagnetic fields (RF-EMF). Generally, fifth-generation (5G) networks shift RF carriers to higher frequencies. Although radio, cell phones, and television have benefitted humans for decades, higher carrier frequencies can present potential health risks. Insects closely associated with humans (such as mosquitoes) can undergo increased RF absorption and dielectric heating. This process inadvertently impacts the insects' behaviour, morphology, and physiology, which can influence their spread. Therefore, this study examined the impact of RF exposure on Ae. aegypti mosquitoes, which are prevalent in indoor environments with higher RF exposure risk. The morphologies of Ae. aegypti eggs and their developments into Ae. aegypti mosquitoes were investigated. METHODS: A total of 30 eggs were exposed to RF radiation at three frequencies: baseline, 900 MHz, and 18 GHz. Each frequency was tested in triplicate. Several parameters were assessed through daily observations in an insectarium, including hatching responses, development times, larval numbers, and pupation periods until the emergence of adult insects. RESULTS: This study revealed that the hatching rate for the 900 MHz group was the highest (79 ± 10.54%) compared to other exposures (p = 0.87). The adult emergence rate for the 900 MHz group was also the lowest at 33 ± 2.77%. A significant difference between the groups was demonstrated in the statistical analysis (p = 0.03). CONCLUSION: This work highlighted the morphology sensitivity of Ae. aegypti eggs and their developments in the aquatic phase to RF radiation, potentially altering their life cycle.


Assuntos
Aedes , Animais , Adulto , Humanos , Aedes/fisiologia , Larva , Comunicação , Ondas de Rádio/efeitos adversos
19.
Transfusion ; 64(4): 578-584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419577

RESUMO

BACKGROUND: Before implementation of the radio frequency identification (RFID) system, there was a high loss rate of 4.0%-4.3% of red blood cell (RBC) units every year expiring on the shelf in our transfusion service laboratory. We introduced RFID technology to improve inventory management and the burden of work on the staff. The goal of this study was to evaluate the impact of RFID technology on the inventory management of RBC units and the staff workload in a transfusion service laboratory. STUDY DESIGN AND METHODS: Using an RFID system involves encoding RBC units with an RFID tag capturing information such as donor identification number, product code, blood type, expiration date, product volume, and negative antigen(s). Tag information is collected through retrofitted storage shelves linked to the RFID server. The study analyzed RBC usage by unit and by volume (mL) and staff work effort to carry out inventory management tasks before and after the implementation of the RFID system. RESULTS: Implementation of the RFID technology reduced the loss, or discard, of RBC units to less than 1% annually (a statistically significant change, p < .001). The RFID computer dashboard provides a constant visual update of the inventory, allowing technologists to have accurate product counts and reducing their work burden. DISCUSSION: Implementation of RFID technology substantially reduced RBC product loss, improved inventory management, and lessened staff work burden.


Assuntos
Bancos de Sangue , Dispositivo de Identificação por Radiofrequência , Humanos , Eritrócitos , Ondas de Rádio
20.
NMR Biomed ; 37(6): e5112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38299770

RESUMO

Missing pulse (MP) steady-state free precession (SSFP) is a magnetic resonance imaging (MRI) pulse sequence that is highly tolerant to the magnetic field inhomogeneity. In this study, optimal flip angle and radiofrequency (RF) phase scheduling in three-dimensional (3D) MP-SSFP is introduced to maximize the steady-state magnetization while keeping broadband excitation to cover widely distributed frequencies generated by inhomogeneous magnetic fields. Numerical optimization based on extended phase graph (EPG) simulation was performed to maximize the MP-SSFP steady-state magnetization. To limit the specific absorption rate (SAR) associated with the broadband excitation in 3D MP-SSFP, SAR constraint was introduced in the numerical optimization. Optimized flip angle and RF phase settings were experimentally tested by introducing a linear inhomogeneous magnetic field in a range of 10-20 mT/m and using a phantom with known T1/T2 relaxation and diffusion parameters at 3 T. The experimental results were validated through comparisons with EPG simulation. Image contrasts and molecular diffusion effects were investigated in in vivo human brain imaging with 3D MP-SSFP with the optimal flip angle and RF phase settings. In the phantom measurements, the optimal flip angle and RF phase settings improved the MP-SSFP steady-state magnetization/signal-to-noise ratio by up to 41% under the fixed SAR conditions, which matched well with EPG simulation results. In vivo brain imaging with the optimal RF pulse settings provided T2-like image contrasts. Diffusion effects were relatively minor with the linear inhomogeneous field of 10-20 mT/m for white and gray matter, but cerebrospinal fluid showed conspicuous signal intensity attenuation as the linear inhomogeneous field increased. Numerical optimization achieved significant improvement in the steady-state magnetization in MP-SSFP compared with the RF pulse settings used in previous studies. The proposed flip angle and RF phase optimization is promising to improve 3D MP-SSFP image quality for MRI in inhomogeneous magnetic fields.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio , Humanos , Simulação por Computador , Encéfalo/diagnóstico por imagem , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA