Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Biomed Res Int ; 2021: 1315618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692826

RESUMO

Toxoplasmosis is a global threat with significant zoonotic concern. The present in silico study was aimed at determination of bioinformatics features and immunogenic epitopes of a tyrosine-rich oocyst wall protein (TrOWP) of Toxoplasma gondii. After retrieving the amino acid sequence from UniProt database, several parameters were predicted including antigenicity, allergenicity, solubility and physico-chemical features, signal peptide, transmembrane domain, and posttranslational modifications. Following secondary and tertiary structure prediction, the 3D model was refined, and immunogenic epitopes were forecasted. It was a 25.57 kDa hydrophilic molecule with 236 residues, a signal peptide, and significant antigenicity scores. Moreover, several linear and conformational B-cell epitopes were present. Also, potential mouse and human cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes were predicted in the sequence. The findings of the present in silico study are promising as they render beneficial characteristics of TrOWP to be included in future vaccination experiments.


Assuntos
Oocistos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Sequência de Aminoácidos , Biologia Computacional/métodos , Simulação por Computador , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Humanos , Oocistos/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Toxoplasma/isolamento & purificação , Toxoplasmose/imunologia , Toxoplasmose/parasitologia
2.
Front Immunol ; 12: 680020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484178

RESUMO

Lipid-derived signaling molecules known as eicosanoids have integral roles in mediating immune and inflammatory processes across metazoans. This includes the function of prostaglandins and their cognate G protein-coupled receptors (GPCRs) to employ their immunological actions. In insects, prostaglandins have been implicated in the regulation of both cellular and humoral immune responses, yet in arthropods of medical importance, studies have been limited. Here, we describe a prostaglandin E2 receptor (AgPGE2R) in the mosquito Anopheles gambiae and demonstrate that its expression is most abundant in oenocytoid immune cell populations. Through the administration of prostaglandin E2 (PGE2) and AgPGE2R-silencing, we demonstrate that prostaglandin E2 signaling regulates a subset of prophenoloxidases (PPOs) and antimicrobial peptides (AMPs) that are strongly expressed in populations of oenocytoids. We demonstrate that PGE2 signaling via the AgPGE2R significantly limits both bacterial replication and Plasmodium oocyst survival. Additional experiments establish that PGE2 treatment increases phenoloxidase (PO) activity through the increased expression of PPO1 and PPO3, genes essential to anti-Plasmodium immune responses that promote oocyst killing. We also provide evidence that the mechanisms of PGE2 signaling are concentration-dependent, where high concentrations of PGE2 promote oenocytoid lysis, negating the protective effects of lower concentrations of PGE2 on anti-Plasmodium immunity. Taken together, our results provide new insights into the role of PGE2 signaling on immune cell function and its contributions to mosquito innate immunity that promote pathogen killing.


Assuntos
Anopheles/imunologia , Anopheles/microbiologia , Anopheles/parasitologia , Dinoprostona/metabolismo , Oocistos/imunologia , Plasmodium/imunologia , Transdução de Sinais , Animais , Anopheles/classificação , Hemócitos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Viabilidade Microbiana , Mosquitos Vetores/imunologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/parasitologia , Filogenia , Plasmodium/crescimento & desenvolvimento , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E/metabolismo
3.
Vet Parasitol ; 295: 109451, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34049224

RESUMO

This study was carried out to compare the efficacy of immunization, by a low-dose of live sporulated oocysts of different Eimeria species separately, with the efficacy of amprolium plus sulphaquinoxaline in the management of challenged coccidiosis in Japanese quail. Dropping samples were collected and sent to the laboratory for isolation and identification of Eimeria species. Three Eimeria species were isolated and identified as E. bateri, E. uzura, and E. tsunodai. Single oocyst isolation and propagation were done successfully for each species. For the experimental trial, Japanese quails were divided into 11 groups of thirty birds each and given different treatments. The assessment of each treatment relied on clinical signs, mortality, lesion score, oocyst output, weight gain, feed conversion ratio, and hematological parameters. The results revealed that immunization, with any isolated species, gave the best results regarding all tested parameters. Thus, we concluded that immunization by a low-dose of live sporulated oocysts was better compared to amprolium plus sulphaquinoxaline in the management of coccidiosis in Japanese quail.


Assuntos
Coccidiose , Coturnix , Imunização , Doenças das Aves Domésticas , Animais , Coccidiose/tratamento farmacológico , Coccidiose/imunologia , Coccidiose/prevenção & controle , Coccidiose/veterinária , Coccidiostáticos/uso terapêutico , Coturnix/parasitologia , Combinação de Medicamentos , Imunização/normas , Imunização/veterinária , Oocistos/imunologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle
4.
mSphere ; 6(2)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789941

RESUMO

Mosquitoes may feed multiple times during their life span in addition to those times needed to acquire and transmit malaria. To determine the impact of subsequent blood feeding on parasite development in Anopheles gambiae, we examined Plasmodium parasite infection with or without an additional noninfected blood meal. We found that an additional blood meal significantly reduced Plasmodium berghei immature oocyst numbers, yet had no effect on the human parasite Plasmodium falciparum These observations were reproduced when mosquitoes were fed an artificial protein meal, suggesting that parasite losses are independent of blood ingestion. We found that feeding with either a blood or protein meal compromises midgut basal lamina integrity as a result of the physical distention of the midgut, enabling the recognition and lysis of immature P. berghei oocysts by mosquito complement. Moreover, we demonstrate that additional feeding promotes P. falciparum oocyst growth, suggesting that human malaria parasites exploit host resources provided with blood feeding to accelerate their growth. This is in contrast to experiments with P. berghei, where the size of surviving oocysts is independent of an additional blood meal. Together, these data demonstrate distinct differences in Plasmodium species in evading immune detection and utilizing host resources at the oocyst stage, representing an additional, yet unexplored component of vectorial capacity that has important implications for the transmission of malaria.IMPORTANCE Mosquitoes must blood feed multiple times to acquire and transmit malaria. However, the impact of an additional mosquito blood meal following malaria parasite infection has not been closely examined. Here, we demonstrate that additional feeding affects mosquito vector competence; namely, additional feeding significantly limits Plasmodium berghei infection, yet has no effect on infection of the human parasite P. falciparum Our experiments support that these killing responses are mediated by the physical distension of the midgut and by temporary damage to the midgut basal lamina that exposes immature P. berghei oocysts to mosquito complement, while human malaria parasites are able to evade these killing mechanisms. In addition, we provide evidence that additional feeding promotes P. falciparum oocyst growth. This is in contrast to P. berghei, where oocyst size is independent of an additional blood meal. This suggests that human malaria parasites are able to exploit host resources provided by an additional feeding to accelerate their growth. In summary, our data highlight distinct differences in malaria parasite species in evading immune recognition and adapting to mosquito blood feeding. These observations have important, yet previously unexplored, implications for the impact of multiple blood meals on the transmission of malaria.


Assuntos
Anopheles/parasitologia , Comportamento Alimentar , Interações Hospedeiro-Parasita , Plasmodium/crescimento & desenvolvimento , Plasmodium/imunologia , Animais , Anopheles/fisiologia , Sangue , Feminino , Evasão da Resposta Imune , Malária/parasitologia , Malária/transmissão , Refeições , Camundongos , Mosquitos Vetores/parasitologia , Oocistos/crescimento & desenvolvimento , Oocistos/imunologia , Plasmodium/classificação , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia
5.
Parasitol Res ; 120(5): 1861-1871, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33689009

RESUMO

Coccidiosis triggered by Eimeria tenella is accompanied by haemorrhagic caecum and high morbidity. Vaccines are preferable choices to replace chemical drugs against coccidiosis. Surface antigens of apicomplexan parasites can adhere to host cells during the infection process. Therefore, truncated fragments coding E. tenella surface antigen 16 (EtSAG16) and 22 (EtSAG22) were cloned into pET-28a prokaryotic vector to express recombinant protein 16 (rEtSAG16) and 22 (rEtSAG22), respectively. Likewise, pEGFP-N1-EtSAG16 and pEGFP-N1-EtSAG22 plasmids were constructed using pEGFP-N1 eukaryotic vector. Further, pEGFP-N1-EtSAG4-16-22 multiple gene plasmid carrying EtSAG4, 16 and 22 were designed as cocktail vaccines to study integral immunoprotective effects. Western blot and RT-PCR (reverse transcription) assay were performed to verify expressions of EtSAG16 and 22 genes. Immunoprotective effects of recombinant protein or DNA vaccine were evaluated using different doses (50 or 100 µg) in vivo. All chickens in the vaccination group showed higher cytokine concentration (IFN-γ and IL-17), raised IgY antibody level, increased weight gain, lower caecum lesion score and reduced oocyst shedding compared with infection control groups (p < 0.05). The highest anticoccidial index (ACI) value 173.11 was from the pEGFP-N1-EtSAG4-16-22 plasmid (50 µg) group. In conclusion, EtSAG16 and 22 might be alternative candidate genes for generating vaccines against E. tenella infection.


Assuntos
Coccidiose/veterinária , Eimeria tenella/imunologia , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Vacinas de DNA/imunologia , Animais , Antígenos de Superfície/imunologia , Galinhas/parasitologia , Coccidiose/imunologia , Coccidiose/prevenção & controle , Citocinas/imunologia , Eimeria tenella/genética , Imunogenicidade da Vacina , Oocistos/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/genética , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/imunologia
6.
PLoS Pathog ; 17(2): e1009353, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33626094

RESUMO

Repeated blood meals provide essential nutrients for mosquito egg development and routes for pathogen transmission. The target of rapamycin, the TOR pathway, is essential for vitellogenesis. However, its influence on pathogen transmission remains to be elucidated. Here, we show that rapamycin, an inhibitor of the TOR pathway, effectively suppresses Plasmodium berghei infection in Anopheles stephensi. An. stephensi injected with rapamycin or feeding on rapamycin-treated mice showed increased resistance to P. berghei infection. Exposing An. stephensi to a rapamycin-coated surface not only decreased the numbers of both oocysts and sporozoites but also impaired mosquito survival and fecundity. Transcriptome analysis revealed that the inhibitory effect of rapamycin on parasite infection was through the enhanced activation of immune responses, especially the NF-κB transcription factor REL2, a regulator of the immune pathway and complement system. Knockdown of REL2 in rapamycin-treated mosquitoes abrogated the induction of the complement-like proteins TEP1 and SPCLIP1 and abolished rapamycin-mediated refractoriness to Plasmodium infection. Together, these findings demonstrate a key role of the TOR pathway in regulating mosquito immune responses, thereby influencing vector competence.


Assuntos
Anopheles/efeitos dos fármacos , Imunidade Inata/imunologia , Malária/tratamento farmacológico , Mosquitos Vetores/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Sirolimo/farmacologia , Animais , Anopheles/imunologia , Anopheles/parasitologia , Feminino , Perfilação da Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Imunossupressores/farmacologia , Malária/imunologia , Malária/parasitologia , Malária/transmissão , Camundongos , Camundongos Endogâmicos BALB C , Mosquitos Vetores/imunologia , Mosquitos Vetores/parasitologia , Oocistos/efeitos dos fármacos , Oocistos/crescimento & desenvolvimento , Oocistos/imunologia , Esporozoítos/efeitos dos fármacos , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/imunologia
7.
Parasite Immunol ; 43(1): e12800, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068486

RESUMO

AIMS: Immunocompromised mice are extensively used in the screening of vaccines and drugs for Cryptosporidium, but this study model does not reflect the real status of infection in immunocompetent animals. This study aimed to provide an optimized animal model for future studies of Cryptosporidium vaccine. METHODS AND RESULTS: Three mouse strains (ICR, BALB/c and KM) with or without immunosuppression were compared after challenge with Cryptosporidium tyzzeri (C tyzzeri). The results indicated that ICR mice shed a greater number of faecal oocysts (20 346 ± 203 oocysts/g) compared with BALB/c (2077 ± 142 oocysts/g) and KM mice (3207 ± 431 oocysts/g) after experimental infection with C tyzzeri (P < .001). However, ICR mouse model is uniquely effective for C tyzzeri, not for other Cryptosporidium spp. such as C parvum. ICR mice were then used to determine the immunoreactions and immunoprotection of P23-DNA vaccine (pVAX1-P23) to C tyzzeri experimental infection. The results showed that a significant increase in anti-P23 antibody levels was induced by the pVAX1-P23 vaccine. Compared to pVAX1, TB and blank control mice, pVAX1-P23 immunized mice produced specific spleen cell proliferation as well as enhanced IL-5, IL-12p70 and IFN-γ production in sera. After challenge with 5 × 106 C tyzzeri oocysts, the oocyst shedding of the pVAX1-P23 immunized group was reduced by 69.94% comparing to the infection control. CONCLUSION: These results provide an optimized animal model for the study of prophylactic vaccines and this model might be applied to other candidates against Cryptosporidium, not only for pVAX1-P23.


Assuntos
Criptosporidiose/prevenção & controle , Cryptosporidium/imunologia , Vacinas Protozoárias/imunologia , Vacinas de DNA/imunologia , Animais , Formação de Anticorpos/imunologia , Criptosporidiose/imunologia , Modelos Animais de Doenças , Fezes/parasitologia , Interferon gama/sangue , Subunidade p35 da Interleucina-12/sangue , Interleucina-5/sangue , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Oocistos/imunologia , Vacinação
8.
Exp Parasitol ; 220: 108034, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33188795

RESUMO

Eimeria ninakohlyakimovae represents a highly pathogenic coccidian parasite causing severe haemorrhagic typhlocolitis in goat kids worldwide. NETosis was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites in vitro and in vivo. In vitro interactions of caprine PMN with parasitic stages of E. ninakohlyakimovae (i. e. oocysts and sporozoites) as well as soluble oocyst antigens (SOA) were analyzed at different ratios, concentrations and time spans. Extracellular DNA staining was used to illustrate classical molecules induced during caprine NETosis [i. e. histones (H3) and neutrophil elastase (NE)] via antibody-based immunofluorescence analyses. Functional inhibitor treatments with DPI and DNase I were applied to unveil role of NADPH oxidase (NOX) and characterize DNA-backbone composition of E. ninakohlyakimovae-triggered caprine NETosis. Scanning electron microscopy (SEM)- and immunofluorescence-analyses demonstrated that caprine PMN underwent NETosis upon contact with sporozoites and oocysts of E. ninakohlyakimovae, ensnaring filaments which firmly entrapped parasites. Detailed co-localization studies of E. ninakohlyakimovae-induced caprine NETosis revealed presence of PMN-derived DNA being adorned with nuclear H3 and NE corroborating molecular characteristics of NETosis. E. ninakohlyakoimovae-induced caprine NETosis was found to be NOX-independent since DPI inhibition led to a slight decrease of NETosis. Exposure of caprine PMN to vital E. ninakohlyakimovae sporozoites as well as SOA resulted in up-regulation of IL-12, TNF-α, IL-6, CCL2 and iNOS gene transcription in stimulated PMN. Since vital E. ninakohlyakimovae-sporozoites induced caprine NETosis, this effective entrapment mechanism might reduce initial sporozoite epithelial host cell invasion during goat coccidiosis ultimately resulting in less macromeront formation and reduced merozoites I production.


Assuntos
Coccidiose/veterinária , Citocinas/genética , Eimeria/imunologia , Doenças das Cabras/parasitologia , Neutrófilos/parasitologia , Análise de Variância , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Coccidiose/imunologia , Coccidiose/parasitologia , Colite/parasitologia , Colite/veterinária , Citocinas/metabolismo , Eimeria/genética , Eimeria/ultraestrutura , Hemorragia Gastrointestinal/parasitologia , Hemorragia Gastrointestinal/veterinária , Doenças das Cabras/imunologia , Cabras , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Microscopia Eletrônica de Varredura/veterinária , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Neutrófilos/ultraestrutura , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oocistos/genética , Oocistos/imunologia , Reação em Cadeia da Polimerase/veterinária , Esporozoítos/genética , Esporozoítos/imunologia , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Tiflite/parasitologia , Tiflite/veterinária , Regulação para Cima
9.
Parasit Vectors ; 13(1): 446, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32891162

RESUMO

BACKGROUND: Vector control with Bacillus sphaericus (Bs) is an effective way to block the transmission of malaria. However, in practical application of Bs agents, a sublethal dose effect was often caused by insufficient dosing, and it is little known whether the Bs exposure would affect the surviving mosquitoes' vector capacity to malaria. METHODS: A sublethal dose of the Bs 2362 strain was administrated to the early fourth-instar larvae of Anopheles dirus to simulate shortage use of Bs in field circumstance. To determine vector competence, mosquitoes were dissected and the oocysts in the midguts were examined on day 9-11 post-infection with Plasmodium yoelii. Meanwhile, a SYBR quantitative PCR assay was conducted to examine the transcriptional level of the key immune molecules of mosquitoes, and RNA interference was utilized to validate the role of key immune effector molecule TEP1. RESULTS: The sublethal dose of Bs treatment significantly reduced susceptibility of An. dirus to P. yoelii, with the decrease of P. yoelii infection intensity and rate. Although there existed a melanization response of adult An. dirus following challenge with P. yoelii, it was not involved in the decrease of vector competence as no significant difference of melanization rates and densities between the control and Bs groups was found. Further studies showed that Bs treatment significantly increased TEP1 expression in the fourth-instar larvae (L4), pupae (Pu), 48 h post-infection (hpi) and 72 hpi (P < 0.001). Further, gene-silencing of TEP1 resulted in disappearance of the Bs impact on vector competence of An. dirus to P. yoelii. Moreover, the transcriptional level of PGRP-LC and Rel2 were significantly elevated by Bs treatment with decreased expression of the negative regulator Caspar at 48 hpi, which implied that the Imd signaling pathway was upregulated by Bs exposure. CONCLUSIONS: Bs exposure can reduce the vector competence of An. dirus to malaria parasites through upregulating Imd signaling pathway and enhancing the expression of TEP1. The data could not only help us to understand the impact and mechanism of Bs exposure on Anopheles' vector competence to malaria but also provide us with novel clues for wiping out malaria using vector control.


Assuntos
Anopheles , Bacillaceae/imunologia , Plasmodium yoelii , Animais , Anopheles/imunologia , Anopheles/microbiologia , Anopheles/parasitologia , Vetores de Doenças , Proteínas de Drosophila/metabolismo , Imunidade , Controle de Insetos , Proteínas de Insetos/metabolismo , Intestinos/parasitologia , Larva/imunologia , Larva/metabolismo , Larva/microbiologia , Larva/parasitologia , Malária/transmissão , Mosquitos Vetores/imunologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/parasitologia , Oocistos/crescimento & desenvolvimento , Oocistos/imunologia , Oocistos/patogenicidade , Controle Biológico de Vetores , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/patogenicidade
10.
Proc Natl Acad Sci U S A ; 117(13): 7363-7373, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32165544

RESUMO

After being ingested by a female Anopheles mosquito during a bloodmeal on an infected host, and before they can reach the mosquito salivary glands to be transmitted to a new host, Plasmodium parasites must establish an infection of the mosquito midgut in the form of oocysts. To achieve this, they must first survive a series of robust innate immune responses that take place prior to, during, and immediately after ookinete traversal of the midgut epithelium. Understanding how parasites may evade these responses could highlight new ways to block malaria transmission. We show that an ookinete and sporozoite surface protein designated as PIMMS43 (Plasmodium Infection of the Mosquito Midgut Screen 43) is required for parasite evasion of the Anopheles coluzzii complement-like response. Disruption of PIMMS43 in the rodent malaria parasite Plasmodium berghei triggers robust complement activation and ookinete elimination upon mosquito midgut traversal. Silencing components of the complement-like system through RNAi largely restores ookinete-to-oocyst transition but oocysts remain small in size and produce a very small number of sporozoites that additionally are not infectious, indicating that PIMMS43 is also essential for sporogonic development in the oocyst. Antibodies that bind PIMMS43 interfere with parasite immune evasion when ingested with the infectious blood meal and significantly reduce the prevalence and intensity of infection. PIMMS43 genetic structure across African Plasmodium falciparum populations indicates allelic adaptation to sympatric vector populations. These data add to our understanding of mosquito-parasite interactions and identify PIMMS43 as a target of malaria transmission blocking.


Assuntos
Anopheles/imunologia , Mosquitos Vetores/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Anopheles/metabolismo , Anopheles/parasitologia , Feminino , Interações Hospedeiro-Parasita/imunologia , Humanos , Evasão da Resposta Imune , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Mosquitos Vetores/metabolismo , Mosquitos Vetores/parasitologia , Oocistos/imunologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/imunologia
11.
Elife ; 92020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31916937

RESUMO

Immune factors in snails of the genus Biomphalaria are critical for combating Schistosoma mansoni, the predominant cause of human intestinal schistosomiasis. Independently, many of these factors play an important role in, but do not fully define, the compatibility between the model snail B. glabrata, and S. mansoni. Here, we demonstrate association between four previously characterized humoral immune molecules; BgFREP3, BgTEP1, BgFREP2 and Biomphalysin. We also identify unique immune determinants in the plasma of S. mansoni-resistant B. glabrata that associate with the incompatible phenotype. These factors coordinate to initiate haemocyte-mediated destruction of S. mansoni sporocysts via production of reactive oxygen species. The inclusion of BgFREP2 in a BgFREP3-initiated complex that also includes BgTEP1 almost completely explains resistance to S. mansoni in this model. Our study unifies many independent lines of investigation to provide a more comprehensive understanding of the snail immune system in the context of infection by this important human parasite.


Assuntos
Biomphalaria/parasitologia , Interações Hospedeiro-Parasita/imunologia , Fatores Imunológicos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Schistosoma mansoni/fisiologia , Animais , Biomphalaria/imunologia , Hemócitos/imunologia , Humanos , Imunidade Humoral , Oocistos/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/prevenção & controle
12.
Methods Mol Biol ; 2052: 1-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31452153

RESUMO

Stained microscopy of fecal smears was the cornerstone of Cryptosporidium diagnosis for many years, and still provides a low-cost method for detecting oocysts. The development and commercialization of improved enzyme immunosorbent assays (EIA) for coproantigen detection provided an automatable method for mass testing, and rapid diagnostics when incorporated onto a cartridge format. Similarly, immunochromatographic lateral flow assays (ICLF) enable rapid diagnostics. Nevertheless, it is important that positive reactions by EIA or ICLF are confirmed. Here we describe microscopical methods using tinctorial stains for the diagnosis of acute cryptosporidiosis, and using immunofluorescent reagents for diagnosis or for confirmation of EIA or ICLF positive reactions.


Assuntos
Criptosporidiose/diagnóstico , Cryptosporidium/imunologia , Imunofluorescência/métodos , Técnicas Imunoenzimáticas/métodos , Microscopia de Fluorescência/métodos , Microscopia/métodos , Oocistos/imunologia , Animais , Corantes , Criptosporidiose/imunologia , Fezes/parasitologia , Humanos , Microscopia/instrumentação , Microscopia de Fluorescência/instrumentação , Oocistos/isolamento & purificação , Sensibilidade e Especificidade , Coloração e Rotulagem/métodos , Fluxo de Trabalho
13.
Methods Mol Biol ; 2052: 23-41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31452155

RESUMO

The procedure described here provides instructions for detection of Cryptosporidium recovered from large-volume water samples. Water samples are collected by dead-end ultrafiltration in the field and ultrafilters are processed in a laboratory. Microbes recovered from the filters are further concentrated and subjected to Cryptosporidium isolation or nucleic acid extraction methods for the detection of Cryptosporidium oocysts or Cryptosporidium DNA.


Assuntos
Cryptosporidium/isolamento & purificação , Microscopia de Fluorescência/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ultrafiltração/métodos , Água/parasitologia , Cryptosporidium/genética , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Imunofluorescência/métodos , Microscopia de Fluorescência/instrumentação , Oocistos/imunologia , Ultrafiltração/instrumentação , Fluxo de Trabalho
14.
Parasitol Res ; 118(11): 3173-3183, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31606835

RESUMO

Prevention of coccidiosis is one of the best ways of controlling disease. Therefore, the present study was carried out to evaluate the protective effect of ultraviolet (UV)-irradiated sporulated oocysts of Eimeria species against coccidiosis in layer chickens. One hundred forty-four one-day-old layer chicks were randomly divided into 4 groups (n = 36), including non-immunized/non-challenged negative control group (NC group), non-immunized/challenged control group (NIC group), non-irradiated sporulated oocyst/challenged group (CA group), and UV-irradiated sporulated oocyst/challenged (UV group). At the age of 4 days, chickens in groups UV and CA were both orally inoculated with 1.0 × 104 UV-irradiated and non-irradiated sporulated oocysts of Eimeria species, respectively. Chickens in groups NIC and NC were served as positive and negative controls, respectively. Chickens in all groups were orally challenged with 7.5 × 104 sporulated oocysts of Eimeria species except the NC group at the age of 21 days. The results revealed that chicks receiving UV-irradiated sporulated oocysts had no signs of illness with minimal or no changes in the cecal integrity and a significantly lower oocyst shedding (OPG) than in the NIC group. Additionally, the cytokine gene expression profiles were evaluated. Expression levels of IL-2, IL-12, and IFN-γ were significantly higher in the spleen of chicks in the UV and CA groups than in the NC group post-challenge. As expected, treatment with irradiated oocysts resulted in a significant reduction in oocyst shedding and maintenance of cecal mucosal integrity. Furthermore, the body weight was higher in chickens inoculated with UV-irradiated oocysts than their non-irradiated counterparts. In conclusion, our results demonstrate that inoculation with UV-irradiated sporulated oocysts of Eimeria species can produce a substantial reduction in infection symptoms.


Assuntos
Galinhas , Coccidiose/veterinária , Eimeria , Oocistos/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Animais , Peso Corporal , Coccidiose/prevenção & controle , Eimeria/imunologia , Eimeria/efeitos da radiação , Masculino , Oocistos/efeitos da radiação , Doenças das Aves Domésticas/parasitologia , Raios Ultravioleta , Vacinação/veterinária
15.
Parasitol Res ; 118(10): 3033-3041, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31407118

RESUMO

Coccidiosis, caused by the infection of Eimeria parasites, is one of the most common diseases in domestic rabbits. Live anticoccidial vaccine formulated with attenuated precocious lines of pathogenic eimerian parasites is expected to be valuable for the control of rabbit coccidiosis as a similar strategy to produce anticoccidial vaccines against chicken coccidiosis has being used for several decades. Eimeria media, moderate pathogenic, is widespread in China. Therefore, attenuated anticoccidial vaccines against rabbit coccidiosis should contain vaccine strain(s) of E. media. In this study, a precocious line of E. media (Empre) was selected by collecting and propagating the early excreted oocysts with 16 successive generations. The prepatent period of Empre reduced from 108 h of its parental strain (Emwt) to 70 h. The fecundity of Empre was about 1/10 to 1/3 lower than that of Emwt. Each sporocyst of Empre sporulated oocyst contained only one large refractile body instead of two smaller ones seen in the parental strain. When vaccinated with 1 × 103 or 1 × 104 precocious line oocysts, the rabbits were completely protected against homologous challenge with the parental strain 14 days post challenge by terms of body weight gain and oocyst output counting, indicating the efficacy of Empre. Meanwhile, all immunized rabbits showed no clinical sign post immunization, indicating the safety of Empre. For co-immunization, 1 × 103Empre oocysts and 5 × 102 oocysts of a precocious line of E. intestinalis (EIP8) were inoculated to each rabbit in a trial. No diarrhea or mortality was found after vaccination, and the weight gains of the vaccinated group were similar to that of unvaccinated-unchallenged control (UUC) group, while the weight gains of the vaccinated group were similar to that of unvaccinated-unchallenged control (UUC) group (P > 0.05), but significantly higher than that of UCC group (P < 0.01) after challenge, indicating it is safe and effective when using co-immunization. These results together show that Empre, as a precocious line, is a good candidate of precocious line of E. media for anticoccidial vaccine development.


Assuntos
Coccidiose/veterinária , Eimeria/patogenicidade , Infecções Protozoárias em Animais/parasitologia , Animais , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Eimeria/crescimento & desenvolvimento , Eimeria/imunologia , Eimeria/fisiologia , Imunização/veterinária , Oocistos/crescimento & desenvolvimento , Oocistos/imunologia , Oocistos/patogenicidade , Infecções Protozoárias em Animais/prevenção & controle , Vacinas Protozoárias/imunologia , Coelhos , Reprodução , Vacinas Atenuadas/imunologia
16.
Proc Natl Acad Sci U S A ; 116(28): 14119-14128, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235594

RESUMO

Mosquito immunity is composed of both cellular and humoral factors that provide protection from invading pathogens. Immune cells known as hemocytes, have been intricately associated with phagocytosis and innate immune signaling. However, the lack of genetic tools has limited hemocyte study despite their importance in mosquito anti-Plasmodium immunity. To address these limitations, we employ the use of a chemical-based treatment to deplete phagocytic immune cells in Anopheles gambiae, demonstrating the role of phagocytes in complement recognition and prophenoloxidase production that limit the ookinete and oocyst stages of malaria parasite development, respectively. Through these experiments, we also define specific subtypes of phagocytic immune cells in An. gambiae, providing insights beyond the morphological characteristics that traditionally define mosquito hemocyte populations. Together, this study represents a significant advancement in our understanding of the roles of mosquito phagocytes in mosquito vector competence and demonstrates the utility of clodronate liposomes as an important tool in the study of invertebrate immunity.


Assuntos
Anopheles/imunologia , Imunidade Inata , Malária Falciparum/imunologia , Fagocitose/imunologia , Animais , Anopheles/genética , Anopheles/parasitologia , Catecol Oxidase/genética , Ácido Clodrônico/farmacologia , Proteínas do Sistema Complemento/imunologia , Precursores Enzimáticos/genética , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Hemócitos/parasitologia , Humanos , Lipossomos/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mosquitos Vetores/imunologia , Mosquitos Vetores/parasitologia , Oocistos/imunologia , Fagócitos/efeitos dos fármacos , Fagócitos/imunologia , Fagócitos/parasitologia , Fagocitose/efeitos dos fármacos
17.
Parasit Vectors ; 12(1): 206, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060594

RESUMO

BACKGROUND: Effective malaria transmission-blocking vaccines (TBVs) can support malaria eradication programmes, and the standard membrane-feeding assay (SMFA) has been used as a "gold standard" assay for TBV development. However, in SMFA, the inhibitory activity is commonly measured at oocyst stage of parasites, while it is the sporozoites which transmit malaria from a mosquito to a human. A handful of studies have shown that there is a positive correlation between oocyst and sporozoite intensities. However, no study has been completed to compare inhibition levels in oocyst and sporozoite intensities in the presence of transmission-blocking (TB) antibodies. RESULTS: Plasmodium falciparum NF54 gametocytes were fed to Anopheles stephensi mosquitoes with or without anti-Pfs25 or anti-Pfs48/45 TB antibodies in 15 independent assays. For each group, a portion of the mosquitoes was dissected for oocyst counts (day 8 after feed), and a portion of the remaining mosquitoes was dissected for sporozoite counts (day 16). This study covered a large range of oocyst and sporozoite intensities: 0.2 to 80.5 on average for oocysts, and 141 to 77,417 for sporozoites. The sporozoite data were well explained by a zero-inflated negative binomial model, regardless of the presence or absence of TB antibodies. Inhibition levels in both oocyst and sporozoite intensities were determined within the same groups in 9 independent assays. When the level of inhibition in sporozoite number (expressed as Log Mean Ratio, LMR; average number in a control group was divided by the one in a test group, then took a log of the ratio) was plotted against LMR in oocyst number, the best-fit slope of a linear regression was not different from 1 (the best estimate, 1.08; 95% confidence interval, 0.87 to 1.29). Furthermore, a Bland-Altman analysis showed a strong agreement between inhibitions in oocysts and in sporozoites. CONCLUSIONS: The results indicate that percent inhibition in oocyst intensity of a test sample can be directly converted to % inhibition in sporozoite intensity in P. falciparum SMFA. Therefore, if sporozoite intensity determines transmission rate from mosquitoes to humans, the percent inhibition in oocyst intensity measured by SMFA can be used to estimate the TBV efficacy.


Assuntos
Malária/parasitologia , Oocistos/fisiologia , Plasmodium falciparum/fisiologia , Esporozoítos/fisiologia , Animais , Anopheles/parasitologia , Anticorpos Antiprotozoários/imunologia , Comportamento Alimentar , Feminino , Humanos , Malária/prevenção & controle , Malária/transmissão , Vacinas Antimaláricas/imunologia , Membranas Artificiais , Oocistos/imunologia , Plasmodium falciparum/imunologia , Esporozoítos/imunologia
18.
Poult Sci ; 98(2): 634-641, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376126

RESUMO

Coccidiosis is an economically significant enteric disease caused by Eimeria species. Control of the disease is achieved through various means, including chemical anticoccidial drugs, ionophore antibiotics, and vaccination. Differences between the vaccines include the number of oocysts per dose (varying by as much as tenfold between vaccines), attenuation status of the oocysts, and the species present within the vaccine. Coccidia vaccines are typically administered via spray cabinet to day old chicks; however, a new gel-based delivery system that claims to elongate preening time and increase oocyst ingestion has been introduced and is specifically recommended for certain low dose vaccines. The purpose of this trial was to compare the application properties between high and low oocyst dose vaccines administered via gel and spray delivery systems to determine if application systems could potentially affect application success. The vaccines were mixed into gel and spray diluents per manufacturer's instructions, and samples were taken to assess how well the oocysts remained in suspension. Gel and spray application patterns were assessed by measuring the size and number of droplets applied onto a plexiglass sheet in a chick basket. Different size droplets were collected and oocyst enumeration and speciation were performed. Results show that no settling occurred after mixing in either diluent. As expected, the number of oocysts per droplet increased as droplet size of the spray administration increased but stayed constant in the uniform droplet size of gel administration. There was also a consistent number of oocysts found in each of the sections across the plexiglass sheet. Taken together, these data will aid poultry producers in deciding which delivery system will provide the best application in their production system.


Assuntos
Galinhas , Coccidiose/veterinária , Eimeria/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Vacinação/veterinária , Animais , Coccidiose/prevenção & controle , Oocistos/imunologia , Vacinação/instrumentação , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem
19.
Parasit Vectors ; 11(1): 390, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973271

RESUMO

BACKGROUND: To date, investigations on the immune response to Cystoisospora suis infections focused on suckling piglets, the age group clinically most affected. Actively immunizing piglets is unfeasible due to their immature immune system and the typically early infection in the first days after birth. Therefore, understanding and possibly enhancing the immune response of immune-competent animals is the prerequisite to develop a passive immunization strategy for piglets which currently rely on very limited treatment options. METHODS: To investigate antibody and cytokine responses of immune-competent animals and the impact of the oral immunization protocol on their immune response, growers with unknown previous exposure to C. suis (10-11 weeks-old) were infected one or three times with different doses (600 and 6000 or 200 and 2000, respectively) of C. suis oocysts, and compared to uninfected controls. Oocyst excretion was evaluated, and blood and intestinal mucus antibody titers were determined by IFAT. Systemic production of Th1, Th2, inflammatory and regulatory cytokines was determined in different immune compartments at mRNA and (after stimulation with a recombinant merozoite-protein) at protein level by PCR and multiplex fluorescent immunoassay, respectively. RESULTS: Infection generated significantly increased serum IgA and IgG levels against C. suis sporozoites and merozoites, irrespective of infection mode, with IgG against merozoites showing the strongest increase. No clinical signs and only occasional excretion were observed. The systemic cytokine response to C. suis was only weak. Nonetheless, in white blood cells, IL-4, IL-6 and IL-10 mRNA-levels significantly increased after infection, whereas IFN-É£, IL-2 and TGF-ß expression tended to decrease. In mesenteric lymph nodes (MLN), IL-10 and TNF-α levels were elevated while splenic cytokine expression was unaltered upon infection. Stimulated MLN-derived lymphocytes from infected pigs produced slightly more IL-12 and less IFN-α than controls. CONCLUSIONS: An infection and a subsequent systemic immune response can be induced in immune-competent animals by all evaluated infection models and growers can be used as models to mimic sow immunizations. The immune response to C. suis, although mild and with considerable variation in cytokine expression, was characterized by a Th2-associated and regulatory cytokine profile and antibody production. However, none of the parameters clearly stood out as a potential marker associated with protection. Antibody titers were significantly positively related with oocyst excretion and might thus serve as correlates for parasite replication or severity of infection.


Assuntos
Anticorpos Antiprotozoários/imunologia , Coccidiose/imunologia , Citocinas/imunologia , Sarcocystidae/imunologia , Doenças dos Suínos/imunologia , Fatores Etários , Animais , Anticorpos Antiprotozoários/biossíntese , Anticorpos Antiprotozoários/sangue , Citocinas/biossíntese , Citocinas/sangue , Citocinas/genética , Fezes/parasitologia , Feminino , Imunocompetência , Imunoglobulina G/sangue , Merozoítos/imunologia , Oocistos/imunologia , Contagem de Ovos de Parasitas , Esporozoítos/imunologia , Suínos , Doenças dos Suínos/parasitologia , Células Th2/imunologia
20.
Parasit Vectors ; 11(1): 393, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973272

RESUMO

BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan parasite that causes congenital toxoplasmosis, as well as other serious clinical presentations in immune compromised humans. The parasite has also been recently linked to behavioral diseases in humans and other mammalian hosts. New antigens are being evaluated to develop a diagnostic kit for the diagnosis of acute infection or a protective vaccine. METHODS: In this study, we have focused on the discovery of new antigenic proteins from T. gondii genomic data using a high throughput protein microarray screening. To date, microarrays containing > 2870 candidate exon products of T. gondii have been probed with sera collected from patients with toxoplasmosis. Here, the protein microarrays are probed with well-characterized serum samples from animal models administered orally with oocysts or tissue cysts. The aim was to discover the antigens that overlap in the mouse profile with human antibody profiles published previously. For this, a reactive antigen list of 240 antigens recognized by murine IgG and IgM was identified using pooled sera from orally infected mice. RESULTS: Analyses of screening data have identified plenty of antigens and showed strong immunogenicity in both mouse and human antibody profiles. Among them, ROP1, GRA2, GRA3, GRA4, GRA5, GRA6, GRA7, GRA8, GRA14, MIC1, MIC2 and MAG1 have shown strong immunogenicity and used as antigen in development of vaccines or serological diagnostic assays in previous studies. CONCLUSION: In addition to the above findings, ROP6, MIC12, SRS29A and SRS13 have shown strong immunogenicity but have not been tested in development of a diagnostic assay or a vaccine model yet.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/isolamento & purificação , Oocistos/imunologia , Análise Serial de Proteínas , Proteínas de Protozoários/isolamento & purificação , Toxoplasma/química , Administração Oral , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Camundongos , Proteínas de Protozoários/imunologia , Testes Sorológicos , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasmose/sangue , Toxoplasmose/diagnóstico , Toxoplasmose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA