RESUMO
Early life stress (ELS) yields cognitive impairments of unknown molecular and physiological origin. We found that fragmented maternal care of mice during a neonatal critical period from postnatal days P2-9 elevated dopamine receptor D2R and suppressed D4R expression, specifically within the anterior cingulate cortex (ACC) in only the male offspring. This was associated with poor performance on a two-choice visual attention task, which was acutely rescued in adulthood by local or systemic pharmacological rebalancing of D2R/D4R activity. Furthermore, ELS male mice demonstrated heightened hypothalamic orexin and persistently disrupted sleep. Given that acute sleep deprivation in normally reared male mice mimicked the ACC dopamine receptor subtype modulation and disrupted attention of ELS mice, sleep loss likely underlies cognitive deficits in ELS mice. Likewise, sleep impairment mediated the attention deficits associated with early adversity in human children, as demonstrated by path analysis on data collected with multiple questionnaires for a large child cohort. A deeper understanding of the sex-specific cognitive consequences of ELS thus has the potential to reveal therapeutic strategies for overcoming them.
Assuntos
Atenção , Sono , Animais , Masculino , Feminino , Sono/fisiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/complicações , Humanos , Camundongos , Receptores de Dopamina D2/metabolismo , Camundongos Endogâmicos C57BL , Giro do Cíngulo/metabolismo , Privação do Sono/metabolismo , Orexinas/metabolismo , Hipotálamo/metabolismo , Receptores Dopaminérgicos/metabolismo , Criança , Privação MaternaRESUMO
BACKGROUND: Orexin is an excitatory neuropeptide produced in the lateral hypothalamus, playing a role in various physiological functions in humans. There is a growing body of literature on orexins. This paper utilizes CiteSpace software to organize and analyze a significant number of articles on orexin, providing readers with an intuitive overview of research trends and emerging hot topics in this field. METHODS: The electronic database, Web of Science Core Collection (WoSCC), was searched for publications related to orexins. Annual publications, countries/regions, institutions, authors and keywords were analyzed, and the results were visualized via CiteSpace software. RESULTS: A total of 5486 publications were included, with articles making up 85.30% and reviews 14.70%. The top 3 countries publishing the most papers on orexins were the United States (2057 papers), Japan (778), and China (556). The leading institutions included Research Libraries UK (278), Harvard University (250), and Stanford University (221). The most prolific authors in the field were Yves Dauvilliers (69), Abbas Haghparast (67), and Takeshi Sakurai (66). The most frequently used keywords were "neurons" (981), followed by "sleep" (824), "food intake" (612), "receptors" (547), and "neuropathology" (535). Recent research hotspots include melanin-concentrating hormone neurons, Alzheimer disease, gamma-aminobutyric acid neurons, oxidative stress, suvorexant, the orexin system, prevalence, and stress. Based on keyword clustering analysis, the top 5 research hotspots from 2003 to 2022 were: the effects of orexins on sleep and metabolism, potential pathways of orexin signaling, the relationship between orexin and immunity, new findings on depression and hypertension related to orexin, and possible targets for neurodegenerative diseases. CONCLUSION: Orexin, a neuropeptide linked to various physiological and pathological processes, plays a crucial role in sleep/wakefulness, reward mechanisms, stress responses, and neurodegenerative diseases. Its significant research value and potential medical applications are underscored by the rapid expansion of studies, particularly in the USA and Japan. However, the lack of collaboration among researchers highlights the need for enhanced academic exchange and cooperation to further advance the field of orexin research.
Assuntos
Bibliometria , Orexinas , Orexinas/metabolismo , Humanos , Sono/fisiologiaRESUMO
BACKGROUND: The aim of this study was to determine whether orexigenic neuropeptides, orexin and galanin, and anorexigenic neuropeptides, alpha-melanocyte-stimulating hormone (α-MSH) and cocaine- and amphetamine-regulated transcript (CART), are implicated in hyperemesis gravidarum (HG). METHODS: Fifty pregnant women who had been diagnosed with HG between April 2022 and February 2023 at the Siirt University Faculty of Medicine Training and Research Hospital (tertiary center) were recruited for this study. An equal number of pregnant women without an HG diagnosis were included in the study as the control group. Participants' age, pregnancy history, medical history, thyroid function test results, complete blood count results, and electrolyte levels were recorded, and their orexin, galanin, α-MSH, and CART serum levels were analyzed using an enzyme-linked immunosorbent assay. RESULTS: No statistically significant differences in orexigenic neuropeptides (orexin and galanin) were observed between the HG and control groups. A statistical difference was found between an anorexigenic neuropeptide (α-MSH) and the control group (Pâ =â .012). Based on a receiver operating characteristic analysis, the α-MSH parameter was statistically significant for distinguishing between participants with an HG diagnosis and those without, with a sensitivity of 63.6%, specificity of 65.9%, and cutoff value of 11769.3â pg/mL (Pâ =â .012, area under curve: 0.655). Based on the severity classification of ketonuria (ketonuria levels of +1 or +2 were classified as mild, whereas levels of +3 or +4 were classified as moderate to severe), the anorexigenic CART neuropeptide was found to be a statistically significant diagnostic indicator of severe ketonuria (Pâ =â .020). CONCLUSION: α-MSH and CART levels were found to be related in HG patients and in HG patients with severe ketonuria.
Assuntos
Galanina , Hiperêmese Gravídica , Orexinas , alfa-MSH , Humanos , Feminino , Hiperêmese Gravídica/sangue , Hiperêmese Gravídica/diagnóstico , Adulto , Gravidez , Estudos Prospectivos , Orexinas/sangue , Galanina/sangue , alfa-MSH/sangue , Neuropeptídeos/sangue , Estudos de Casos e Controles , Biomarcadores/sangue , Curva ROC , Proteínas do Tecido NervosoRESUMO
OBJECTIVE: Obesity is a chronic disease that affects more than 400 million adults with severe comorbidities. The search for new treatments to reduce its negative consequences is necessary. Orexins are hypothalamic neuropeptides involved in various physiological processes related to obesity. The aim of this study was to investigate the consequences of chronic orexin-A treatment in mouse models. METHODS: Female wild-type C57BL/6 mice that were obesity-prone or obesity-resistant and mice that were deficient for orexin receptors were fed with a high-fat diet. Glucose tolerance, indirect calorimetry, expression of brain neuropeptides and receptors, microglial activation, and microbiota were determined to evaluate the role of orexins on metabolic flexibility. RESULTS: Orexin-A reduces weight gain in obesity-prone mice. This reduction is associated with a decrease in body fat, food intake, steatosis, and insulin resistance, as well as alterations of intestinal microbiota composition. A decreased expression of orexin receptors and neuropeptides involved in food intake was also observed in the hypothalamus. CONCLUSIONS: Our data support the notion that orexin receptor signaling is involved in different aspects of energy metabolism and can mitigate several dysfunctions associated with obesity, suggesting that orexin receptors can represent new targets for obesity treatment.
Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Microbioma Gastrointestinal , Hipotálamo , Resistência à Insulina , Camundongos Endogâmicos C57BL , Obesidade , Receptores de Orexina , Orexinas , Animais , Orexinas/metabolismo , Obesidade/metabolismo , Camundongos , Feminino , Hipotálamo/metabolismo , Receptores de Orexina/metabolismo , Aumento de Peso , Tecido Adiposo/metabolismo , Ingestão de Alimentos/fisiologia , Transdução de Sinais , Camundongos Knockout , Modelos Animais de DoençasRESUMO
Grounding, a therapeutic technique involving direct contact with the earth, has been proposed by various studies to potentially have beneficial effects on pressure, sleep quality, stress, inflammation, and mood. However, the scientific evidence supporting its sedative effects remains incomplete. This study examined the sedative effectiveness of an earthing mat on sleep quality and investigated the underlying neural mechanisms using electroencephalography (EEG) analysis in rodents, focusing on orexin and superoxide dismutase (SOD) levels in the brain. Rats were randomly assigned to four groups: the naïve normal group (Nor), the group exposed to an earthing mat for 7 days (A-7D), the group exposed to an earthing mat for 21 days (A-21D), and the group exposed to an electronic blanket for 21 days (EM). EEG results revealed that the A-21D group exhibited significantly reduced wake time and increased rapid eye movement (REM), non-rapid eye movement (NREM), and total sleep time compared to the Nor group (p < 0.05). Moreover, the A-21D group demonstrated a significant increase in NREM sleep (p < 0.001), REM sleep (p < 0.01), and total sleep time (p < 0.001), along with a decrease in wake time compared to the EM group (p < 0.001). The orexin level in the A-21D group was significantly lower compared to the Nor group (p < 0.01), while SOD1 expression was markedly elevated in the A-21D group compared to the Nor group (p < 0.001). These results suggest that the earthing mat may represent a promising new method for promoting sleep quality and could serve as an effective therapeutic technique.
Assuntos
Eletroencefalografia , Orexinas , Animais , Ratos , Masculino , Orexinas/metabolismo , Qualidade do Sono , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Sono REM , Ratos Sprague-Dawley , Sono/fisiologiaRESUMO
The sleep-wake cycle plays an influential role in the development and progression of repeat mild traumatic brain injury (RmTBI)-related pathology. Therefore, we first aimed to manipulate the sleep-wake cycle post-RmTBI using modafinil, a wake-promoting substance used for the treatment of narcolepsy. We hypothesized that modafinil would exacerbate RmTBI-induced deficits. Chronic behavioural analyses were completed along with a 27-plex serum cytokine array, metabolomic and proteomic analyses of cerebrospinal fluid (CSF), as well as immunohistochemical staining in structures important for sleep/wake cycles, to examine orexin, melanin-concentrating hormone, tyrosine hydroxylase, and choline acetyltransferase, in the lateral hypothalamus, locus coeruleus, and basal forebrain, respectively. Contrary to expectation, modafinil administration attenuated behavioural deficits, metabolomic changes, and neuropathological modifications. Therefore, the second aim was to determine if the beneficial effects of modafinil treatment were driven by the orexinergic system. The same experimental protocol was used; however, RmTBI rats received chronic orexin-A administration instead of modafinil. Orexin-A administration produced drastically different outcomes, exacerbating anxiety-related and motor deficits, while also significantly disrupting their metabolomic and neuropathological profiles. These results suggest that the beneficial effects of modafinil administration post-RmTBI, work independently of its wake-promoting properties, as activation of the orexinergic wake-promoting system with orexin-A was detrimental. Overall, these findings highlight the complexity of sleep-wake changes in the injured brain and showcase the potential of the arousal and sleep systems in its treatment.
Assuntos
Concussão Encefálica , Modafinila , Orexinas , Ratos Sprague-Dawley , Promotores da Vigília , Animais , Modafinila/farmacologia , Modafinila/uso terapêutico , Masculino , Orexinas/metabolismo , Ratos , Concussão Encefálica/tratamento farmacológico , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Promotores da Vigília/uso terapêutico , Promotores da Vigília/farmacologiaRESUMO
The orexin (also known as hypocretin) system, consisting of neuropeptides orexin-A and orexin-B, was discovered over 25 years ago and was immediately identified as a central regulator of sleep and wakefulness. These peptides interact with two G-protein coupled receptors, orexin 1 (OX1) and orexin 2 (OX2) receptors which are capable of coupling to all heterotrimeric G-protein subfamilies, but primarily transduce increases in calcium signalling. Orexin neurons are regulated by a variety of transmitter systems and environmental stimuli that signal reward availability, including food and drug related cues. Orexin neurons are also activated by anticipation, stress, cues predicting motivationally relevant information, including those predicting drugs of abuse, and engage neuromodulatory systems, including dopamine neurons of the ventral tegmental area (VTA) to respond to these signals. As such, orexin neurons have been characterized as motivational activators that coordinate a range of functions, including feeding and arousal, that allow the individual to respond to motivationally relevant information, critical for survival. This review focuses on the role of orexins in appetitive motivation and highlights a role for these neuropeptides in pathologies characterized by inappropriately high levels of motivated arousal (overeating, anxiety and substance use disorders) versus those in which motivation is impaired (depression).
Assuntos
Hipotálamo , Motivação , Orexinas , Orexinas/metabolismo , Humanos , Animais , Motivação/fisiologia , Hipotálamo/metabolismo , Receptores de Orexina/metabolismo , Neuropeptídeos/metabolismoRESUMO
BACKGROUND: We wished to explore possible sexual dimorphism in mechanisms sensitizing or activating meningeal nociceptors that can promote the headache phase of migraine. METHODS: Male and female C57BL6J mice received either supradural orexin B and an inflammatory mediator cocktail (IM) with migraine-like pain behaviors and photophobia recorded. Expression of orexin 2 receptor (OX2R) in trigeminal ganglion (TG) and phosphorylated extracellular signal-regulated kinases (ERK) levels in trigeminal nucleus caudalis (TNC) were evaluated. Orexin B-induced excitability of TG cells was assessed with patch-clamp electrophysiology. Intranasal delivery of CRISPR/Cas9 plasmids was used to edit the expression of OX2R in the TG. RESULTS: Supradural orexin B induced migraine-like pain behaviors, photophobia and increased TNC ERK phosphorylation exclusively in males. Blockade of orexin signaling with supradural suvorexant, a dual orexin receptor antagonist, prevented, but did not reverse, migraine-like pain in males induced by supradural IM cocktail. OX2R expression was higher in male TG and orexin B increased TG neuron excitability in males. Intranasal OX2R CRISPR/Cas9 reduced TG receptor expression and orexin B-induced TNC ERK phosphorylation and prevented migraine-like pain induced by supradural orexin B in males. CONCLUSIONS: Our studies reveal a male-specific mechanism of TG nociceptor sensitization and migraine-like pain behavior mediated by orexin B/OX2R signaling. Sexually dimorphic mechanisms of trigeminal nociceptor sensitization and activation offer opportunities to improve patient outcomes by considering patient sex and may influence clinical trial design and interpretation.
Assuntos
Camundongos Endogâmicos C57BL , Transtornos de Enxaqueca , Receptores de Orexina , Gânglio Trigeminal , Animais , Masculino , Feminino , Camundongos , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Meninges/efeitos dos fármacos , Meninges/metabolismo , Caracteres Sexuais , Orexinas/metabolismoRESUMO
STUDY OBJECTIVES: The purpose of this study was to investigate the effects of neck myoclonus (NM) on sleep quality and daytime sleepiness in patients with narcolepsy (NT) and to further explore possible underlying mechanisms. METHODS: We included 72 patients with narcolepsy type 1 (NT1), 34 patients with narcolepsy type 2 (NT2) and 33 healthy controls. Patients underwent questionnaires, lumbar puncture procedure, polysomnography, and multiple sleep latency test (MSLT). Healthy controls underwent polysomnography and questionnaires. Orexin-A levels in the cerebrospinal fluid (CSF) were analyzed by radioimmunoassay. Three catecholamines, including dopamine, norepinephrine and epinephrine, in the CSF were measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS: Both the NT1 and NT2 groups displayed a higher level of NM incidence rate and index compared to the control group in PSG. NT1 displayed greater MSLT REM--NM incidence rate and index than NT2. NM were often associated with arousal or awakening and body movements, which had a prominent influence on sleep quality in both narcoleptic patients and controls. There was a positive correlation between the NM index and the Pittsburgh Sleep Quality Index (PSQI), Stanford Sleepiness Scale (SSS) and Ullanlinna Narcolepsy Scale (UNS) scores in NT1 patients. In MSLT of NT1 patients, REM-NM index were positively correlated with the CSF dopamine levels, and there were elevated dopamine levels but reduced orexin-A levels in patients with REM-NM. CONCLUSION: NM incidence rate and index were high in patients with narcolepsy, which had a huge effect on sleep quality and aggravated daytime sleepiness. NM should be considered pathological and viewed as a new sleep-related movement disorder. Orexin-A and dopamine may be involved in the development of NM.
Assuntos
Mioclonia , Narcolepsia , Orexinas , Polissonografia , Humanos , Narcolepsia/líquido cefalorraquidiano , Narcolepsia/complicações , Narcolepsia/fisiopatologia , Masculino , Feminino , Adulto , Orexinas/líquido cefalorraquidiano , Mioclonia/líquido cefalorraquidiano , Mioclonia/fisiopatologia , Neuropeptídeos/líquido cefalorraquidiano , Pessoa de Meia-Idade , Qualidade do Sono , Peptídeos e Proteínas de Sinalização Intracelular/líquido cefalorraquidiano , Inquéritos e Questionários , Adulto Jovem , Dopamina/líquido cefalorraquidianoRESUMO
Objective To investigate the effects of Schisandrae Chinensis Fructus lignans on the alertness of the rats with sleep deprived by treadmill exercise and the underlying neurobiological mechanism. Methods According to the random number table method,SD male rats were assigned into control,sleep deprivation,low-,medium-,and high-dose Schisandrae Chinensis Fructus lignans,and atomoxetine hydrochloride groups,with 8 rats in each group.The rats in other groups except the control group were subjected to sleep deprivation by treadmill exercise for 3 d.During the deprivation period,each administration group was administrated with the corresponding drug by gavage,and a 5-9 hole tester was used to test the alertness performance of rats in each group. Furthermore,other SD male rats were selected and randomized into control,sleep deprivation,Schisandrae Chinensis Fructus lignans (67.2 mg/kg) and atomoxetine hydrochloride groups,with 10 rats in each group.The rats were modeled with the sleep deprivation method the same as that above and administrated with corresponding agents.ELISA was employed to measure the serum level of orexin A in each group of rats.The protein levels of c-Fos,orexin receptor 1,and orexin receptor 2 in the prefrontal cortex of rats in each group were observed by immunofluorescence and Western blotting. Results Compared with the control group,sleep deprivation reduced the choice accuracy (P<0.001) and increased the omission responses,omission percent,and mean correct response latency (P=0.002,P=0.003,P=0.020).Compared with the sleep deprivation group,medium- and high-dose Schisandrae Chinensis Fructus lignans and atomoxetine hydrochloride improved the alertness of rats,as demonstrated by the increased choice accuracy (P=0.001,P=0.006,P<0.001) and reduced omission responses (P=0.001,P=0.001,P<0.001),omission percent (P=0.001,P=0.002,P<0.001),and mean correct response latency (P=0.018,P=0.003,P=0.014).Compared with the control group,the sleep deprivation group showed elevated level of orexin A in the serum (P<0.001),up-regulated expression of c-Fos (P<0.001),and down-regulated expression of orexin receptor 1 (P=0.037) in the prefrontal cortex.Compared with the sleep deprivation group,Schisandrae Chinensis Fructus lignans (67.2 mg/kg) and atomoxetine hydrochloride lowered the orexin A level in the serum (P=0.005,P=0.029),down-regulated the expression of c-Fos (P=0.028,P=0.036),and up-regulated the expression of orexin receptor 1 (P=0.043,P=0.013) in the prefrontal cortex. Conclusion Schisandrae Chinensis Fructus lignans may antagonize the alertness decrease caused by sleep deprivation by regulating the secretion of orexin and the expression of orexin receptor 1 in the prefrontal cortex.
Assuntos
Lignanas , Ratos Sprague-Dawley , Schisandra , Privação do Sono , Animais , Lignanas/farmacologia , Schisandra/química , Masculino , Privação do Sono/metabolismo , Privação do Sono/tratamento farmacológico , Ratos , Orexinas/metabolismo , Neuropeptídeos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismoRESUMO
Separation/conversion disorders in functional coma with pseudocataplexy are rare.On December 9,2021,a young female patient with separation/conversion disorders was treated in the Department of Neurology in the First Affiliated Hospital of Shandong First Medical University.The main symptoms were episodic consciousness disorders,sudden fainting,and urinary incontinence.Complete laboratory tests and cranial magnetic resonance imaging showed no obvious abnormalities.Standard multi-channel sleep monitoring and multiple sleep latency tests were performed.The patient was unable to wake up during nap and underwent stimulation tests.There was no response to orbital pressure,loud calls,or tapping,while the α rhythm in all electroencephalogram leads and the increased muscular tone in the mandibular electromyography indicated a period of wakefulness.The results of 24-hour sleep monitoring suggested that the patient had sufficient sleep at night and thus was easy to wake up in the morning.The results of daytime unrestricted sleep and wake-up test showed that the patient took one nap in the morning and one nap in the afternoon.When the lead indicated the transition from N3 to N2 sleep,a wake-up test was performed on the patient.At this time,the patient reacted to the surrounding environment and answered questions correctly.Because the level of orexin in the cerebrospinal fluid was over 110 pg/mL,episodic sleep disorder was excluded and the case was diagnosed as functional coma accompanied by pseudocataplexy.The patient did not present obvious symptom remission after taking oral medication,and thus medication withdrawl was recommended.Meanwhile,the patient was introduced to adjust the daily routine and mood.The follow-up was conducted six months later,and the patient reported that she did not experience similar symptoms after adjusting lifestyle.Up to now,no similar symptoms have appeared in multiple follow-up visits for three years.Functional coma with pseudocataplexy is prone to misdiagnosis and needs to be distinguished from true coma and episodic sleep disorders.
Assuntos
Coma , Humanos , Feminino , Coma/etiologia , Transtorno Conversivo/complicações , Transtorno Conversivo/diagnóstico , Eletroencefalografia , Cataplexia/diagnóstico , Cataplexia/complicações , Orexinas/líquido cefalorraquidianoRESUMO
Appetite hormones may play a significant role in neuronal excitability and synaptic plasticity and may also affect brain function development. This study aimed to explore the role of appetite hormones in attention deficit/hyperactivity disorder (ADHD), including aspects of pathophysiology, pharmacotherapy, and side effects. We recruited 119 patients with ADHD who were undergoing methylphenidate treatment (ADHD+MPH), 77 unmedicated ADHD patients (ADHD-MPH), and 87 healthy controls. Blood samples were collected from all participants to examine serum levels of orexin A, ghrelin, leptin, and adiponectin. Behavioral symptoms were assessed using the Swanson, Nolan, and Pelham Rating Scale, and visual and auditory attention were evaluated using computerized neuropsychological tests. The side effects of methylphenidate treatment were measured using Barkley's Side Effects Rating Scale. Orexin levels in the control group were significantly higher than in the ADHD-MPH (p=0.037) and ADHD+MPH (p<0.001) groups; additionally, orexin levels in the ADHD-MPH group were significantly higher than in the ADHD+MPH group (p=0.032). Leptin levels in both the ADHD+MPH (p=0.011) and ADHD-MPH (p=0.011) groups were significantly lower than in the control group. Ghrelin levels were positively associated with auditory attention across all ADHD groups (p=0.015). Furthermore, ghrelin levels were positively correlated with methylphenidate dosage (p=0.024), and negatively correlated with methylphenidate side effects (p=0.044) in the ADHD+MPH group. These findings provide further insight into the relationships between appetite hormones, pharmacotherapy, and ADHD. Orexin A and leptin are associated with the etiology of ADHD, while orexin A and ghrelin play important roles in attention deficits and methylphenidate usage in ADHD.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Grelina , Leptina , Metilfenidato , Orexinas , Humanos , Metilfenidato/efeitos adversos , Metilfenidato/uso terapêutico , Metilfenidato/farmacologia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Grelina/sangue , Masculino , Feminino , Orexinas/sangue , Criança , Leptina/sangue , Apetite/efeitos dos fármacos , Apetite/fisiologia , Adiponectina/sangue , Estimulantes do Sistema Nervoso Central/efeitos adversos , Estimulantes do Sistema Nervoso Central/uso terapêutico , Estimulantes do Sistema Nervoso Central/farmacologia , Testes Neuropsicológicos , Adolescente , Atenção/efeitos dos fármacos , Estudos de Casos e ControlesRESUMO
Cognitive dysfunction is not only a common symptom of major depressive disorder, but also a more common residual symptom after antidepressant treatment and a risk factor for chronic and recurrent disease. The disruption of hypocretin regulation is known to be associated with depression, however, their exact correlation is remains to be elucidated. Hypocretin-1 levels are increased in the plasma and hypothalamus from chronic unpredictable mild stress (CUMS) model mice. Excessive hypocretin-1 conducted with hypocretin receptor 1 (HCRTR1) reduced lactate production and brain-derived neurotrophic factor (BDNF) expression by hypoxia-inducible factor-1α (HIF-1α), thus impairing adult hippocampal neuroplasticity, and cognitive impairment in CUMS model. Subsequently, it is found that HCRTR1 antagonists can reverse these changes. The direct effect of hypocretin-1 on hippocampal lactate production and cognitive behavior is further confirmed by intraventricular injection of hypocretin-1 and microPET-CT in rats. In addition, these mechanisms are further validated in astrocytes and neurons in vitro. Moreover, these phenotypes and changes in molecules of lactate transport pathway can be duplicated by specifically knockdown of HCRTR1 in hippocampal astrocytes. In summary, the results provide molecular and functional insights for involvement of hypocretin-1-HCRTR1 in altered cognitive function in depression.
Assuntos
Modelos Animais de Doenças , Hipocampo , Ácido Láctico , Plasticidade Neuronal , Receptores de Orexina , Animais , Masculino , Camundongos , Ratos , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Depressão/metabolismo , Hipocampo/metabolismo , Homeostase/fisiologia , Ácido Láctico/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Orexinas/metabolismo , Ratos Sprague-DawleyRESUMO
The hypocretin (Hcrt) system modulates arousal and anxiety-related behaviors and has been considered as a novel treatment target for stress-related affective disorders. We examined the effects of Hcrt acting in the nucleus accumbens shell (NAcSh) and anterodorsal bed nucleus of the stria terminalis (adBNST) on social behavior in male and female California mice (Peromyscus californicus). In female but not male California mice, infusion of Hcrt1 into NAcSh decreased social approach. Weak effects of Hcrt1 on social vigilance were observed in both females and males. No behavioral effects of Hcrt1 infused into the adBNST were observed. Analyses of sequencing data from California mice and Mus musculus NAc showed that Hcrtr2 was more abundant than Hcrtr1, so we infused the selective Hcrt receptor 2 antagonist into the NAcSh, which increased social approach in females previously exposed to social defeat. A calcium imaging study in the NAcSh of females before and after stress exposure showed that neural activity increased immediately following the expression of social avoidance but not during freezing behavior. This observation is consistent with previous studies that identified populations of neurons in the NAc that drive avoidance. Intriguingly, calcium transients were not affected by stress. These data suggest that hypocretin acting in the NAcSh plays a key role in modulating stress-induced social avoidance.
Assuntos
Núcleo Accumbens , Orexinas , Peromyscus , Comportamento Social , Animais , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Feminino , Masculino , Orexinas/metabolismo , Receptores de Orexina/metabolismo , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia , Caracteres Sexuais , Estresse Psicológico/metabolismo , Camundongos , Antagonistas dos Receptores de Orexina/farmacologiaRESUMO
BACKGROUND: Rikkunshito (RKT), a traditional Japanese medicine, can relieve epigastric discomfort and anorexia in patients with functional dyspepsia. RKT enhances the orexigenic hormone, ghrelin. Ghrelin regulates food motivation by stimulating the appetite control center in the hypothalamus and the brain mesolimbic dopaminergic pathway (MDPW). However, the effect of RKT on MDPW remains unclear. Here, we aimed to investigate the central neural mechanisms underlying the orexigenic effects of RKT, focusing on the MDPW. METHODS: We examined the effects of RKT on food intake and neuronal c-Fos expression in restraint stress- and cholecystokinin octapeptide-induced anorexia in male rats. KEY RESULTS: RKT treatment significantly restored stress- and cholecystokinin octapeptide-induced decreased food intake. RKT increased c-Fos expression in the ventral tegmental area (VTA), especially in tyrosine hydroxylase-immunoreactive neurons, and nucleus accumbens (NAc). The effects of RKT were suppressed by the ghrelin receptor antagonist [D-Lys3]-GHRP-6. RKT increased the number of c-Fos/orexin-double-positive neurons in the lateral hypothalamus (LH), which project to the VTA. The orexin receptor antagonist, SB334867, suppressed RKT-induced increase in food intake and c-Fos expression in the LH, VTA, and NAc. RKT increased c-Fos expression in the arcuate nucleus and nucleus of the solitary tract of the medulla, which was inhibited by [D-Lys3]-GHRP-6. CONCLUSIONS & INFERENCES: RKT may restore appetite in subjects with anorexia through ghrelin- and orexin-dependent activation of neurons regulating the brain appetite control network, including the hypothalamus and MDPW.
Assuntos
Anorexia , Medicamentos de Ervas Chinesas , Grelina , Hipotálamo , Orexinas , Animais , Masculino , Grelina/farmacologia , Orexinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Anorexia/metabolismo , Anorexia/tratamento farmacológico , Ratos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Ratos Sprague-Dawley , Ingestão de Alimentos/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Dopamina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/metabolismoRESUMO
OBJECTIVES: Transcranial direct stimulation (tDCS) targeted to the dorsolateral prefrontal cortex (DLPFC) reduces food intake and hunger, but its effects on circulating factors are unclear. We assessed the effect of repeated administration of tDCS to the left DLPFC (L-DLPFC) on concentrations of pro/anti-inflammatory and appetitive hormone concentrations. MATERIALS AND METHODS: Twenty-nine healthy adults with obesity (12â¯M; 42±11â¯y; BMI=39±8â¯kg/m2) received 3 consecutive inpatient sessions of either anodal or sham tDCS targeted to the L-DLPFC during a period of ad libitum food intake. Fasting plasma concentrations of IL-6, orexin, cortisol, TNF-α, IL-1ß, ghrelin, PYY, and GLP-1 were measured before the initial and after the final tDCS sessions. RESULTS: IL-6 (ß=-0.92â¯pg/ml p=0.03) decreased in the anodal group compared with sham, even after adjusting for kcal intake; there were no changes in other hormones. Mean kcal intake was associated with higher IL-1ß and ghrelin concentrations after the ad libitum period (ß=0.00018â¯pg/ml/kcal, p=0.03; ß=0.00011â¯pg/ml/kcal, p=0.02; respectively), but not differ by intervention groups. CONCLUSIONS: IL-6 concentrations were reduced following anodal tDCS to the L-DLPFC independent of ad libitum intake. IL-6 concentrations reflect the inflammatory state of adiposity and may affect eating behavior and weight gain. These findings provide evidence of therapeutic benefit of tDCS.
Assuntos
Grelina , Interleucina-6 , Obesidade , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Adulto , Feminino , Interleucina-6/sangue , Grelina/sangue , Obesidade/sangue , Obesidade/terapia , Pessoa de Meia-Idade , Interleucina-1beta/sangue , Hidrocortisona/sangue , Córtex Pré-Frontal Dorsolateral/fisiologia , Córtex Pré-Frontal/metabolismo , Ingestão de Alimentos/fisiologia , Orexinas/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Fator de Necrose Tumoral alfa/sangue , Peptídeo YY/sangueRESUMO
Despite the well-known health benefits of physical activity, many people underexercise; what drives the prioritization of exercise over alternative options is unclear. We developed a task that enabled us to study how mice freely and rapidly alternate between wheel running and other voluntary activities, such as eating palatable food. When multiple alternatives were available, mice chose to spend a substantial amount of time wheel running without any extrinsic reward and maintained this behavior even when palatable food was added as an option. Causal manipulations and correlative analyses of appetitive and consummatory processes revealed this preference for wheel running to be instantiated by hypothalamic hypocretin/orexin neurons (HONs). The effect of HON manipulations on wheel running and eating was strongly context-dependent, being the largest in the scenario where both options were available. Overall, these data suggest that HON activity enables an eat-run arbitration that results in choosing exercise over food.
Assuntos
Neurônios , Orexinas , Condicionamento Físico Animal , Animais , Orexinas/metabolismo , Neurônios/fisiologia , Camundongos , Condicionamento Físico Animal/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Hipotálamo/fisiologia , Recompensa , Comportamento Alimentar/fisiologia , Ingestão de Alimentos/fisiologia , Corrida/fisiologia , Atividade Motora/fisiologiaRESUMO
Brain nuclei are traditionally defined by their anatomy, activity, and expression of specific markers. The hypothalamus contains discrete neuronal populations that coordinate fundamental behavioral functions, including sleep and wakefulness, in all vertebrates. Particularly, the diverse roles of hypocretin/orexin (Hcrt)-releasing neurons suggest functional heterogeneity among Hcrt neurons. Using single-cell RNA sequencing (scRNA-seq) and high-resolution imaging of the adult male and female zebrafish hypothalamic periventricular zone, we identified 21 glutamatergic and 28 GABAergic cell types. Integration of zebrafish and mouse scRNA-seq revealed evolutionary conserved and divergent hypothalamic cell types. The expression of specific genes, including npvf, which encodes a sleep-regulating neuropeptide, was enriched in subsets of glutamatergic Hcrt neurons in both larval and adult zebrafish. The genetic profile, activity, and neurite processing of the neuronal subpopulation that coexpresses both Hcrt and Npvf (Hcrt+Npvf+) differ from other Hcrt neurons. These interspecies findings provide a unified annotation of hypothalamic cell types and suggest that the heterogeneity of Hcrt neurons enables multifunctionality, such as consolidation of both wake and sleep by the Hcrt- and Npvf-releasing neuronal subpopulation.
Assuntos
Hipotálamo , Neurônios , Orexinas , Análise de Célula Única , Peixe-Zebra , Animais , Orexinas/metabolismo , Orexinas/genética , Neurônios/metabolismo , Feminino , Análise de Célula Única/métodos , Camundongos , Masculino , Hipotálamo/citologia , Hipotálamo/metabolismo , Evolução BiológicaRESUMO
Dopamine (DA) neurons in the ventral tegmental area (VTA) respond to motivationally relevant cues, and circuit-specific signaling drives different aspects of motivated behavior. Orexin (ox; also known as hypocretin) and dynorphin (dyn) are coexpressed lateral hypothalamic (LH) neuropeptides that project to the VTA. These peptides have opposing effects on the firing activity of VTADA neurons via orexin 1 (Ox1R) or kappa opioid (KOR) receptors. Given that Ox1R activation increases VTADA firing, and KOR decreases firing, it is unclear how the coreleased peptides contribute to the net activity of DA neurons. We tested if optical stimulation of LHox/dyn neuromodulates VTADA neuronal activity via peptide release and if the effects of optically driven LHox/dyn release segregate based on VTADA projection targets including the basolateral amygdala (BLA) or the lateral or medial shell of the nucleus accumbens (lAcbSh, mAchSh). Using a combination of circuit tracing, optogenetics, and patch-clamp electrophysiology in male and female orexincre mice, we showed a diverse response of LHox/dyn optical stimulation on VTADA neuronal firing, which is not mediated by fast transmitter release and is blocked by antagonists to KOR and Ox1R signaling. Additionally, where optical stimulation of LHox/dyn inputs in the VTA inhibited firing of the majority of BLA-projecting VTADA neurons, optical stimulation of LHox/dyn inputs in the VTA bidirectionally affects firing of either lAcbSh- or mAchSh-projecting VTADA neurons. These findings indicate that LHox/dyn corelease may influence the output of the VTA by balancing ensembles of neurons within each population which contribute to different aspects of reward seeking.
Assuntos
Neurônios Dopaminérgicos , Dinorfinas , Orexinas , Área Tegmentar Ventral , Animais , Orexinas/metabolismo , Orexinas/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Camundongos , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Feminino , Vias Neurais/fisiologia , Vias Neurais/efeitos dos fármacos , Região Hipotalâmica Lateral/fisiologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Camundongos Transgênicos , Optogenética , Receptores de Orexina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologiaRESUMO
Orexin is exclusively produced in neurons localized within the lateral hypothalamic area (LHA) and perifornical area (PFA). Orexin has been identified as a key promotor of arousal. The selective loss of orexinergic neurons results in narcolepsy. It is known that the intrinsic electrophysiological properties are critical for neurons to perform their functions in corresponding brain regions. In addition to hypothalamic orexin, other brain nuclei are involved in the regulation of sleep and wakefulness. Quite a lot of studies focus on elucidating orexin-induced regulation of sleep-wake states and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that the orexinergic neurons exhibit spontaneous firing activity which is associated with the states of sleep-wake cycle. Orexin mainly exerts postsynaptic excitatory effects on multiple brain nuclei associated with the process of sleep and wakefulness. This review may provide a background to guide future research about the cellular mechanisms of orexin-induced maintaining of arousal.