Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.402
Filtrar
1.
PeerJ ; 12: e17323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726377

RESUMO

The rice receptor kinase XA21 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. To investigate the relationship between the expression level of XA21 and resulting resistance, we generated independent HA-XA21 transgenic rice lines accumulating the XA21 immune receptor fused with an HA epitope tag. Whole-genome sequence analysis identified the T-DNA insertion sites in sixteen independent T0 events. Through quantification of the HA-XA21 protein and assessment of the resistance to Xoo strain PXO99 in six independent transgenic lines, we observed that XA21-mediated resistance is dose dependent. In contrast, based on the four agronomic traits quantified in these experiments, yield is unlikely to be affected by the expression level of HA-XA21. These findings extend our knowledge of XA21-mediated defense and contribute to the growing number of well-defined genomic landing pads in the rice genome that can be targeted for gene insertion without compromising yield.


Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Xanthomonas , Xanthomonas/genética , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases
2.
BMC Plant Biol ; 24(1): 384, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724935

RESUMO

BACKGROUND: Semi-dwarfing alleles are used widely in cereals to confer improved lodging resistance and assimilate partitioning. The most widely deployed semi-dwarfing alleles in rice and barley encode the gibberellin (GA)-biosynthetic enzyme GA 20-OXIDASE2 (GA20OX2). The hexaploid wheat genome carries three homoeologous copies of GA20OX2, and because of functional redundancy, loss-of-function alleles of a single homoeologue would not be selected in wheat breeding programmes. Instead, approximately 70% of wheat cultivars carry gain-of-function mutations in REDUCED HEIGHT 1 (RHT1) genes that encode negative growth regulators and are degraded in response to GA. Semi-dwarf Rht-B1b or Rht-D1b alleles encode proteins that are insensitive to GA-mediated degradation. However, because RHT1 is expressed ubiquitously these alleles have pleiotropic effects that confer undesirable traits in some environments. RESULTS: We have applied reverse genetics to combine loss-of-function alleles in all three homoeologues of wheat GA20OX2 and its paralogue GA20OX1 and evaluated their performance in three years of field trials. ga20ox1 mutants exhibited a mild height reduction (approximately 3%) suggesting GA20OX1 plays a minor role in stem elongation in wheat. ga20ox2 mutants have reduced GA1 content and are 12-32% shorter than their wild-type segregants, comparable to the effect of the Rht-D1b 'Green Revolution' allele. The ga20ox2 mutants showed no significant negative effects on yield components in the spring wheat variety 'Cadenza'. CONCLUSIONS: Our study demonstrates that chemical mutagenesis can expand genetic variation in polyploid crops to uncover novel alleles despite the difficulty in identifying appropriate mutations for some target genes and the negative effects of background mutations. Field experiments demonstrate that mutations in GA20OX2 reduce height in wheat, but it will be necessary to evaluate the effect of these alleles in different genetic backgrounds and environments to determine their value in wheat breeding as alternative semi-dwarfing alleles.


Assuntos
Fenótipo , Proteínas de Plantas , Triticum , Triticum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Oryza/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Alelos , Giberelinas/metabolismo , Genes de Plantas
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731885

RESUMO

Lysine is an essential amino acid that cannot be synthesized in humans. Rice is a global staple food for humans but has a rather low lysine content. Identification of the quantitative trait nucleotides (QTNs) and genes underlying lysine content is crucial to increase lysine accumulation. In this study, five grain and three leaf lysine content datasets and 4,630,367 single nucleotide polymorphisms (SNPs) of 387 rice accessions were used to perform a genome-wide association study (GWAS) by ten statistical models. A total of 248 and 71 common QTNs associated with grain/leaf lysine content were identified. The accuracy of genomic selection/prediction RR-BLUP models was up to 0.85, and the significant correlation between the number of favorable alleles per accession and lysine content was up to 0.71, which validated the reliability and additive effects of these QTNs. Several key genes were uncovered for fine-tuning lysine accumulation. Additionally, 20 and 30 QTN-by-environment interactions (QEIs) were detected in grains/leaves. The QEI-sf0111954416 candidate gene LOC_Os01g21380 putatively accounted for gene-by-environment interaction was identified in grains. These findings suggested the application of multi-model GWAS facilitates a better understanding of lysine accumulation in rice. The identified QTNs and genes hold the potential for lysine-rich rice with a normal phenotype.


Assuntos
Estudo de Associação Genômica Ampla , Lisina , Oryza , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Oryza/genética , Oryza/metabolismo , Lisina/metabolismo , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Interação Gene-Ambiente , Grão Comestível/genética , Grão Comestível/metabolismo
4.
BMC Genomics ; 25(1): 449, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714914

RESUMO

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas Fúngicas , Oryza , Proteômica , Oryza/microbiologia , Oryza/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Mutação , Multiômica , Ascomicetos
5.
Braz J Biol ; 84: e282495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747865

RESUMO

Rice (Oryza sativa L.) grown in many countries around the world with different climatic conditions and a huge number of environmental stresses, both biotic (fungi, bacteria, viruses, insects) and abiotic (cold, drought, salinity) limit rice productivity. In this regard, breeders and scientists are trying to create rice lines that are resistant to multiple stresses. The aim of this work was to screen and select cold and blast resistant rice breeding lines (RBLs) using molecular markers. Molecular screening of RBLs and parental varieties to cold tolerance was carried out using markers RM24545, RM1377, RM231 and RM569 associated with QTLs (qPSST-3, qPSST-7, qPSST-9). It was discovered that the presence of three QTLs characterizes the cold resistance of studied genotypes, and the absence of one of them leads to cold sensitivity. As a result, 21 cold-resistant out of the 28 studied RBLs were identified. These cold resistant 21 RBLs were further tested to blast resistance using markers Pi-ta, Pita3, Z56592, 195R-1, NMSMPi9-1, TRS26, Pikh MAS, MSM6, 9871.T7E2b, RM224 and RM1233. It was revealed that 16 RBLs from 21 studied lines contain 5-6 blast resistance genes. In accordance with the blast resistance strategy, the presence of 5 or more genes ensures the formation of stable resistance to Magnaporthe oryzae. Thus, 16 lines resistant to multiple stresses, such as cold and blast disease were developed. It should be noted that 6 of these selected lines are high-yielding, which is very important in rice breeding program. These RBLs can be used in breeding process as starting lines, germplasm exchange as a source of resistant genes for the development of new rice varieties resistant to multiple stress factors.


Assuntos
Oryza , Melhoramento Vegetal , Estresse Fisiológico , Oryza/genética , Oryza/microbiologia , Oryza/fisiologia , Estresse Fisiológico/genética , Resistência à Doença/genética , Locos de Características Quantitativas/genética , Genótipo , Marcadores Genéticos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Temperatura Baixa
6.
Nat Commun ; 15(1): 4049, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744925

RESUMO

Nanopore direct RNA sequencing (DRS) has emerged as a powerful tool for RNA modification identification. However, concurrently detecting multiple types of modifications in a single DRS sample remains a challenge. Here, we develop TandemMod, a transferable deep learning framework capable of detecting multiple types of RNA modifications in single DRS data. To train high-performance TandemMod models, we generate in vitro epitranscriptome datasets from cDNA libraries, containing thousands of transcripts labeled with various types of RNA modifications. We validate the performance of TandemMod on both in vitro transcripts and in vivo human cell lines, confirming its high accuracy for profiling m6A and m5C modification sites. Furthermore, we perform transfer learning for identifying other modifications such as m7G, Ψ, and inosine, significantly reducing training data size and running time without compromising performance. Finally, we apply TandemMod to identify 3 types of RNA modifications in rice grown in different environments, demonstrating its applicability across species and conditions. In summary, we provide a resource with ground-truth labels that can serve as benchmark datasets for nanopore-based modification identification methods, and TandemMod for identifying diverse RNA modifications using a single DRS sample.


Assuntos
Oryza , Análise de Sequência de RNA , Humanos , Análise de Sequência de RNA/métodos , Oryza/genética , Processamento Pós-Transcricional do RNA , Nanoporos , RNA/genética , RNA/metabolismo , Sequenciamento por Nanoporos/métodos , Aprendizado Profundo , Inosina/metabolismo , Inosina/genética , Transcriptoma/genética
7.
PeerJ ; 12: e17255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708347

RESUMO

Studies on Oryza sativa (rice) are crucial for improving agricultural productivity and ensuring global sustenance security, especially considering the increasing drought and heat stress caused by extreme climate change. Currently, the genes and mechanisms underlying drought and heat resistance in rice are not fully understood, and the scope for enhancing the development of new strains remains considerable. To accurately identify the key genes related to drought and heat stress responses in rice, multiple datasets from the Gene Expression Omnibus (GEO) database were integrated in this study. A co-expression network was constructed using a Weighted Correlation Network Analysis (WGCNA) algorithm. We further distinguished the core network and intersected it with differentially expressed genes and multiple expression datasets for screening. Differences in gene expression levels were verified using quantitative real-time polymerase chain reaction (PCR). OsDjC53, MBF1C, BAG6, HSP23.2, and HSP21.9 were found to be associated with the heat stress response, and it is also possible that UGT83A1 and OsCPn60a1, although not directly related, are affected by drought stress. This study offers significant insights into the molecular mechanisms underlying stress responses in rice, which could promote the development of stress-tolerant rice breeds.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Oryza , Oryza/genética , Oryza/metabolismo , Resposta ao Choque Térmico/genética , Redes Reguladoras de Genes/genética , Perfilação da Expressão Gênica/métodos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
8.
Theor Appl Genet ; 137(6): 122, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713254

RESUMO

KEY MESSAGE: By deploying a multi-omics approach, we unraveled the mechanisms that might help rice to combat Yellow Stem Borer infestation, thus providing insights and scope for developing YSB resistant rice varieties. Yellow Stem Borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate sources of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. In this study, by using bulk-segregant analysis in combination with next-generation sequencing, Quantitative Trait Loci (QTL) intervals in five rice chromosomes were mapped that could be associated with YSB resistance at the vegetative phase in a resistant rice line named SM92. Further, multiple SNP markers that showed significant association with YSB resistance in rice chromosomes 1, 5, 10, and 12 were developed. RNA-sequencing of the susceptible and resistant lines revealed several genes present in the candidate QTL intervals to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB resistance. Taken together, our study provides deeper insights into rice-YSB interaction and enhances the understanding of YSB resistance mechanism. Importantly, a promising breeding line and markers for YSB resistance have been developed that can potentially aid in marker-assisted breeding of YSB resistance among elite rice cultivars.


Assuntos
Mapeamento Cromossômico , Mariposas , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/parasitologia , Oryza/imunologia , Animais , Mariposas/fisiologia , Polimorfismo de Nucleotídeo Único , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Genômica/métodos , Fenótipo , Multiômica
9.
Planta ; 259(6): 149, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724681

RESUMO

MAIN CONCLUSION: The rice SnRK2 members SAPK4, SAPK5, SAPK7 and SAPK10 are positive regulators involved in the regulation of rice flowering, while other single mutants exhibited no effect on rice flowering. The rice SnRK2 family, comprising 10 members known as SAPK (SnRK2-Associated Protein Kinase), is pivotal in the abscisic acid (ABA) pathway and crucial for various biological processes, such as drought resistance and salt tolerance. Additionally, these members have been implicated in the regulation of rice heading date, a key trait influencing planting area and yield. In this study, we utilized gene editing technology to create mutants in the Songjing 2 (SJ2) background, enabling a comprehensive analyze the role of each SAPK member in rice flowering. We found that SAPK1, SAPK2, and SAPK3 may not directly participate in the regulatory network of rice heading date, while SAPK4, SAPK5, and SAPK7 play positive roles in rice flowering regulation. Notably, polygene deletion resulted in an additive effect on delaying flowering. Our findings corroborate the previous studies indicating the positive regulatory role of SAPK10 in rice flowering, as evidenced by delayed flowering observed in sapk9/10 double mutants. Moving forward, our future research will focus on analyzing the molecular mechanisms underlying SAPKs involvement in rice flowering regulation, aiming to enhance our understanding of the rice heading date relationship network and lay a theoretical foundation for breeding efforts to alter rice ripening dates.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Oryza/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Edição de Genes , Estresse Fisiológico/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ácido Abscísico/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Mol Biol Rep ; 51(1): 619, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709339

RESUMO

BACKGROUND: Rice blast and bacterial leaf blight (BLB) are the most limiting factors for rice production in the world which cause yield losses typically ranging from 20 to 30% and can be as high as 50% in some areas of Asia especially India under severe infection conditions. METHODS AND RESULTS: An improved line of Tellahamsa, TH-625-491 having two BLB resistance genes (xa13 and Xa21) and two blast resistance genes (Pi54 and Pi1) with 95% Tellahamsa genome was used in the present study. TH-625-491 was validated for all four target genes and was used for backcrossing with Tellahamsa. Seventeen IBC1F1 plants heterozygous for all four target genes, 19 IBC1F2 plants homozygous for four, three and two gene combinations and 19 IBC1F2:3 plants also homozygous for four, three and two gene combinations were observed. Among seventeen IBC1F1 plants, IBC1F1-62 plant recorded highest recurrent parent genome (97.5%) covering 75 polymorphic markers. Out of the total of 920 IBC1F2 plants screened, 19 homozygous plants were homozygous for four, three and two target genes along with bacterial blight resistance. Background analysis was done in all 19 homozygous IBC1F2 plants possessing BLB resistance (possessing xa13, Xa21, Pi54 and Pi1 in different combinations) with five parental polymorphic SSR markers. IBC1F2-62-515 recovered 98.5% recurrent parent genome. The four, three and two gene pyramided lines of Tellahamsa exhibited varying resistance to blast. CONCLUSIONS: Results show that there might be presence of antagonistic effect between bacterial blight and blast resistance genes since the lines with Pi54 and Pi1 combination are showing better resistance than the combinations with both bacterial blight and blast resistance genes.


Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Oryza/genética , Oryza/microbiologia , Genes de Plantas/genética , Xanthomonas/patogenicidade , Xanthomonas/fisiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Melhoramento Vegetal/métodos
11.
Mol Biol Rep ; 51(1): 626, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717621

RESUMO

BACKGROUND: Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases of rice leading to huge yield losses in Southeast Asia. The recessive resistance gene xa-45(t) from Oryza glaberrima IRGC102600B, mapped on rice chromosome 8, spans 80 Kb with 9 candidate genes on Nipponbare reference genome IRGSP-1.0. The xa-45(t) gene provides durable resistance against all the ten Xanthomonas pathotypes of Northern India, thus aiding in the expansion of recessive bacterial blight resistance gene pool. Punjab Rice PR127, carrying xa-45(t), was released for wider use in breeding programs. This study aims to precisely locate the target gene among the 9 candidates conferring resistance to bacterial blight disease. METHODS AND RESULTS: Sanger sequencing of all nine candidate genes revealed seven SNPs and an Indel between the susceptible parent Pusa 44 and the resistant introgression line IL274. The genotyping with polymorphic markers identified three recombinant breakpoints for LOC_Os08g42370, and LOC_Os08g42400, 15 recombinants for LOC_Os08g423420 and 26 for LOC_Os08g42440 out of 190 individuals. Relative expression analysis across six time intervals (0, 8, 24, 48, 72, and 96 h) after bacterial blight infection showed over expression of LOC_Os08g42410-specific transcripts in IL274 compared to Pusa 44, with a significant 4.46-fold increase observed at 72 h post-inoculation. CONCLUSIONS: The Indel marker at the locus LOC_Os08g42410 was found co-segregating with the phenotype, suggesting its candidacy towards xa-45(t). The transcript abundance assay provides strong evidence for the involvement of LOC_Os08g42410 in the resistance conferred by the bacterial blight gene xa-45(t).


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Genes de Plantas , Genes Recessivos , Oryza , Doenças das Plantas , Xanthomonas , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Oryza/genética , Oryza/microbiologia , Xanthomonas/patogenicidade , Mapeamento Cromossômico/métodos , Genes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Cromossomos de Plantas/genética , Genótipo , Regulação da Expressão Gênica de Plantas/genética
12.
Planta ; 259(6): 148, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717679

RESUMO

MAIN CONCLUSION: Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Mutação , Nitrogênio , Oryza , Proteínas de Plantas , Raízes de Plantas , Fatores de Transcrição , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/efeitos dos fármacos , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos dos fármacos
13.
BMC Plant Biol ; 24(1): 360, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698342

RESUMO

BACKGROUND: Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS: Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION: Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.


Assuntos
Cádmio , Oryza , Proteínas de Plantas , Proteômica , Plântula , Selênio , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Selênio/farmacologia , Cádmio/toxicidade , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Perfilação da Expressão Gênica , Transcriptoma , Genes de Plantas
14.
Planta ; 259(6): 141, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695915

RESUMO

MAIN CONCLUSION: This review highlights the roles of phloem in the long-distance transport and accumulation of As in rice plants, facilitating the formulation of new strategies to reduce the grain As content. Rice is a staple diet for a significant proportion of the global population. As toxicity is a major issue affecting the rice productivity and quality worldwide. Phloem tissues of rice plants play vital roles in As speciation, long-distance transport, and unloading, thereby controlling the As accumulation in rice grains. Phloem transport accounts for a significant proportion of As transport to grains, ranging from 54 to 100% depending on the species [inorganic arsenate (As(V)), arsenite (As(III)), or organic dimethylarsinic acid (DMA(V)]. However, the specific mechanism of As transport through phloem leading to its accumulation in grains remains unknown. Therefore, understanding the molecular mechanism of phloem-mediated As transport is necessary to determine the roles of phloem in long-distance As transport and subsequently reduce the grain As content via biotechnological interventions. This review discusses the roles of phloem tissues in the long-distance transport and accumulation of As in rice grains. This review also highlights the biotechnological approaches using critical genetic factors involved in nodal accumulation, vacuolar sequestration, and cellular efflux of As in phloem- or phloem-associated tissues. Furthermore, the limitations of existing transgenic techniques are outlined to facilitate the formulation of novel strategies for the development of rice with reduced grain As content.


Assuntos
Arsênio , Oryza , Floema , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Floema/metabolismo , Arsênio/metabolismo , Transporte Biológico , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento
15.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739785

RESUMO

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Assuntos
Meiose , RNA de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Meiose/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Oryza/genética , Oryza/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(21): e2316497121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739807

RESUMO

Decreased production of crops due to climate change has been predicted scientifically. While climate-resilient crops are necessary to ensure food security and support sustainable agriculture, predicting crop growth under future global warming is challenging. Therefore, we aimed to assess the impact of realistic global warming conditions on rice cultivation. We developed a crop evaluation platform, the agro-environment (AE) emulator, which generates diverse environments by implementing the complexity of natural environmental fluctuations in customized, fully artificial lighting growth chambers. We confirmed that the environmental responsiveness of rice obtained in the fluctuation of artificial environments is similar to those exhibited in natural environments by validating our AE emulator using publicly available meteorological data from multiple years at the same location and multiple locations in the same year. Based on the representative concentration pathway, real-time emulation of severe global warming unveiled dramatic advances in the rice life cycle, accompanied by a 35% decrease in grain yield and an 85% increase in quality deterioration, which is higher than the recently reported projections. The transcriptome dynamism showed that increasing temperature and CO2 concentrations synergistically changed the expression of various genes and strengthened the induction of flowering, heat stress adaptation, and CO2 response genes. The predicted severe global warming greatly alters rice environmental adaptability and negatively impacts rice production. Our findings offer innovative applications of artificial environments and insights for enhancing varietal potential and cultivation methods in the future.


Assuntos
Aquecimento Global , Oryza , Oryza/crescimento & desenvolvimento , Oryza/genética , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Agricultura/métodos , Regulação da Expressão Gênica de Plantas , Temperatura , Transcriptoma
17.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732268

RESUMO

Rice (Oryza sativa) is one of the most important staple foods worldwide. However, rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, seriously affects the yield and quality of rice. Calmodulin-binding transcriptional activators (CAMTAs) play vital roles in the response to biotic stresses. In this study, we showed that OsCAMTA3 and CAMTA PROTEIN LIKE (OsCAMTAPL), an OsCAMTA3 homolog that lacks the DNA-binding domain, functioned together in negatively regulating disease resistance in rice. OsCAMTA3 associated with OsCAMTAPL. The oscamta3 and oscamtapl mutants showed enhanced resistance compared to wild-type plants, and oscamta3/pl double mutants showed more robust resistance to M. oryzae than oscamta3 or oscamtapl. An RNA-Seq analysis revealed that 59 and 73 genes, respectively, were differentially expressed in wild-type plants and oscamta3 before and after inoculation with M. oryzae, including OsALDH2B1, an acetaldehyde dehydrogenase that negatively regulates plant immunity. OsCAMTA3 could directly bind to the promoter of OsALDH2B1, and OsALDH2B1 expression was decreased in oscamta3, oscamtapl, and oscamta3/pl mutants. In conclusion, OsCAMTA3 associates with OsCAMTAPL to regulate disease resistance by binding and activating the expression of OsALDH2B1 in rice, which reveals a strategy by which rice controls rice blast disease and provides important genes for resistance breeding holding a certain positive impact on ensuring food security.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Ascomicetos/patogenicidade , Regiões Promotoras Genéticas , Magnaporthe/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Mutação
18.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38736249

RESUMO

Phenotypic mutants are valuable resources for elucidating the function of genes responsible for their expression. This study examined mutant rice strains expressing three traits: spotted leaf 6 (spl6), lax panicle (lax), and liguleless (lg). In the mutant, the spl6 phenotype was a genetically programmed lesion-mimicking mutation (LMM) that displayed spontaneously scattered spots across the leaf surface. In the lg trait, the plant lacked a collar region, and there were no auricles and ligules at the junction of the leaf blade and leaf sheath. The lax panicle trait manifested as sparely arranged spikelets resulting from the terminal spikelet with no lateral spikelets, which caused a drastic reduction of the total seed number in the mutant. All three mutant genes were genetically recessive and had nuclear gene regulation. The dihybrid segregation of the lg gene was classified independently according to the Mendelian 9:3:3:1 dihybrid segregation ratio in the F2 generation, suggesting that the lg gene is not linked to the same chromosome as the lax and spl6 genes. On the other hand, spl6 and lax were not assorted independently, indicating that they are closely linked on chromosome 1 in rice. Additional linkage analysis from the recombination of spl6 and lax genes reconfirmed that the two genes were ~9.4 cM away from each other. The individual single-gene mutant plant from one plant with a three-gene mutation (spl6, lax, and lg) was isolated and characterized, which will be a crucial resource for the gene cloning and molecular characterization of these genes.


Assuntos
Genes de Plantas , Ligação Genética , Mutação , Oryza , Fenótipo , Oryza/genética , Oryza/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas
19.
J Hazard Mater ; 471: 134325, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643573

RESUMO

Arsenic (As) contamination in rice poses a significant threat to human health due to its toxicity and widespread consumption. Identifying and manipulating key genes governing As accumulation in rice is crucial for reducing this threat. The large NIP gene family of aquaporins in rice presents a promising target due to functional redundancy, potentially allowing for gene manipulation without compromising plant growth. This study aimed to utilize genome editing to generate knock-out (KO) lines of genes of NIP family (OsLsi1, OsNIP3;1) and an anion transporter family (OsLsi2), in order to assess their impact on As accumulation and stress tolerance in rice. KO lines were created using CRISPR/Cas9 technology, and the As accumulation patterns, physiological performance, and grain yield were compared against wild-type (WT) under As-treated conditions. KO lines exhibited significantly reduced As accumulation in grain compared to WT. Notably, Osnip3;1 KO line displayed reduced As in xylem sap (71-74%) and grain (32-46%) upon treatment. Additionally, these lines demonstrated improved silicon (23%) uptake, photosynthetic pigment concentrations (Chl a: 77%; Chl b: 79%, Total Chl: 79% & Carotenoid: 49%) overall physiological and agronomical performance under As stress compared to WT. This study successfully utilized genome editing for the first time to identify OsNIP3;1 as a potential target for manipulating As accumulation in rice without compromising grain yield or plant vigor.


Assuntos
Arsênio , Sistemas CRISPR-Cas , Edição de Genes , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Arsênio/metabolismo , Arsênio/toxicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Técnicas de Inativação de Genes , Silício/metabolismo , Plantas Geneticamente Modificadas/genética , Clorofila/metabolismo
20.
Plant Physiol Biochem ; 210: 108605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593487

RESUMO

Under a changing climate, nanotechnological interventions for climate resilience in crops are critical to maintaining food security. Prior research has documented the affirmative response of nano zinc sulfide (nZnS) on physiological traits of fungal-infested rice seeds. Here, we propose an application of trigolic formulated zinc sulfide nanoparticles (ZnS-T NPs) on rice seeds as nanobiostimulant to improve physiological parameters by triggering antioxidative defense system, whose mechanism was investigated at transcriptional level by differential expression of genes in germinated seedlings. Nanopriming of healthy rice seeds with ZnS-T NPs (50 µg/ml), considerably intensified the seed vitality factors, including germination percentage, seedling length, dry weight and overall vigor index. Differential activation of antioxidant enzymes, viz. SOD (35.47%), APX (33.80%) and CAT (45.94%), in ZnS-T NPs treated seedlings reduced the probability of redox imbalance and promoted the vitality of rice seedlings. In gene expression profiling by reverse transcription quantitative real time PCR (qRT-PCR), the notable up-regulation of target antioxidant genes (CuZn SOD, APX and CAT) and plant growth specific genes (CKX and GRF) in ZnS-T NPs treated rice seedlings substantiates their molecular role in stimulating both antioxidant defenses and plant growth mechanisms. The improved physiological quality parameters of ZnS-T NPs treated rice seeds under pot house conditions corresponded well with in vitro findings, which validated the beneficial boosted impact of ZnS-T NPs on rice seed development. Inclusively, the study on ZnS-T NPs offers fresh perspectives into biochemical and molecular reactions of rice, potentially positioning them as nanobiostimulant capable of eliciting broad-spectrum immune and growth-enhancing responses.


Assuntos
Antioxidantes , Nanopartículas , Oryza , Sementes , Sulfetos , Compostos de Zinco , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/genética , Antioxidantes/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sulfetos/farmacologia , Compostos de Zinco/farmacologia , Nanopartículas/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA