Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902186

RESUMO

There is an increasing urgency in the search for new drugs to target high-grade cancers such as osteosarcomas (OS), as these have limited therapeutic options and poor prognostic outlook. Even though key molecular events leading to tumorigenesis are not well understood, it is widely agreed that OS tumours are Wnt-driven. ETC-159, a PORCN inhibitor that inhibits the extracellular secretion of Wnt, has recently progressed on to clinical trials. In vitro and in vivo murine and chick chorioallantoic membrane xenograft models were established to examine the effect of ETC-159 on OS. Consistent with our hypothesis, we noted that ETC-159 treatment not only resulted in markedly decreased ß-catenin staining in xenografts, but also increased tumour necrosis and a significant reduction in vascularity-a hereby yet undescribed phenotype following ETC-159 treatment. Through further understanding the mechanism of this new window of vulnerability, therapies can be developed to potentiate and maximize the effectiveness of ETC-159, further increasing its clinical utility for the treatment of OS.


Assuntos
Aciltransferases , Neoplasias Ósseas , Neovascularização Patológica , Osteossarcoma , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Aciltransferases/antagonistas & inibidores , beta Catenina/metabolismo , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/tratamento farmacológico , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Membrana/antagonistas & inibidores , Necrose , Osteossarcoma/irrigação sanguínea , Osteossarcoma/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico
2.
J Zhejiang Univ Sci B ; 22(11): 885-892, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34783219

RESUMO

Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. It is an aggressive tumor with a tendency to spread to the lung, which is the most common site of metastasis. Patients with advanced OS with metastases have poor prognoses despite the application of chemotherapy, thus highlighting the need for novel therapeutic targets. The tumor microenvironment (TME) of OS is confirmed to be essential for and supportive of tumor growth and dissemination. The immune component of the OS microenvironment is mainly composed of tumor-associated macrophages (TAMs). In OS, TAMs promote tumor growth and angiogenesis and upregulate the cancer stem cell-like phenotype. However, TAMs inhibit the metastasis of OS. Therefore, much attention has been paid to investigating the mechanism of TAMs in OS development and the progression of immunotherapy for OS. In this article, we aim to summarize the roles of TAMs in OS and the major findings on the application of TAMs in OS treatment.


Assuntos
Neoplasias Ósseas/imunologia , Osteossarcoma/imunologia , Macrófagos Associados a Tumor/fisiologia , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/patologia , Humanos , Metástase Neoplásica , Células-Tronco Neoplásicas/fisiologia , Neovascularização Patológica/etiologia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/patologia , Microambiente Tumoral/fisiologia
3.
Life Sci ; 256: 118011, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592723

RESUMO

Melatonin is recognized as an anti-angiogenic agent, but its function in the tumor microenvironment especially in osteosarcoma remains uncertain. Among the selected miRNAs, miR-205, miR-424, miR-140, miR-106, and miR-519 were upregulated by melatonin in osteosarcoma cells. The functional role of miR-424-5p in osteosarcoma was further analyzed using miR-424-5p mimic/inhibitor. VEGFA mRNA and protein expression were altered by miR-424-5p mimic/inhibitor transfection with and without melatonin treatment and it was further identified that the VEGFA 3'UTR is directly targeted by miR-424-5p using the luciferase reporter gene system. The conditioned medium from SaOS2 and MG63 cells treated with melatonin and/or transfected with miR-424-5p mimic/inhibitor was exposed to endothelial cells, and cell proliferation and migration was analyzed. MG-63 and SaOS2 cells are also transfected with miR-424-5p inhibitors and positioned on CAM vascular bed to study the angiogenic activity at both morphological and molecular level under melatonin treatment. Our observations demonstrate for the first time that, melatonin upregulated the expression of miR-424-5p in osteosarcoma inhibiting VEGFA. Furthermore, it suppresses tumor angiogenesis, modulating surrounding endothelial cell proliferation and migration as well as the morphology of blood vessels, and angiogenic growth factors. These findings suggest that melatonin could play a pivotal role in tumor suppression via miR-424-5p/VEGFA axis.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Melatonina/farmacologia , Osteossarcoma/tratamento farmacológico , Animais , Neoplasias Ósseas/irrigação sanguínea , Linhagem Celular Tumoral , Galinhas , Gema de Ovo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , MicroRNAs/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Osteossarcoma/irrigação sanguínea , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Am J Case Rep ; 21: e922257, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32439833

RESUMO

BACKGROUND Osteosarcoma is the most common type of malignant bone tumor arising from mesenchymal stem cell. When occurring on the proximal humerus, it is associated with poor outcomes; there are numerous neurovascular structures around proximal humerus. Unfortunately, the degree of vascular involvement in osteosarcoma is rarely evaluated and reported. Thus, we would like to highlight our case. CASE REPORT We reported a case of left proximal humerus osteosarcoma causing dead limb in a 14-year-old boy. The dead limb progressed in the span of 3 weeks. An emergency forequarter amputation (FQA) was conducted to prevent further complications such as septicemia and mortality. Two months after the surgery, the patient had improved quality of life. One year after, the patient had no local recurrence. However, there was a lung metastasis detected 9 months after the surgery. The patient died 13 months after the surgery. CONCLUSIONS Osteosarcoma of the proximal humerus can potentially compromise vascular structures. Early diagnosis and treatment are mandatory to prevent such complications.


Assuntos
Amputação Cirúrgica , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/cirurgia , Úmero/irrigação sanguínea , Úmero/cirurgia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/cirurgia , Adolescente , Evolução Fatal , Humanos , Neoplasias Pulmonares/secundário , Masculino , Qualidade de Vida
5.
Ultrasound Med Biol ; 45(11): 3028-3041, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31474384

RESUMO

Ultrasound and microbubbles have been found to improve the delivery of drugs and nanoparticles to tumor tissue. To obtain new knowledge on the influence of vascular parameters on extravasation and to elucidate the effect of acoustic pressure on extravasation and penetration of nanoscale particles into the extracellular matrix, real-time intravital multiphoton microscopy was performed during sonication of tumors growing in dorsal window chambers. The impact of vessel diameter, vessel structure and blood flow was characterized. Fluorescein isothiocyanate-dextran (2 MDa) was injected to visualize blood vessels. Mechanical indexes (MI) of 0.2-0.8 and in-house-made, nanoparticle-stabilized microbubbles or Sonovue were applied. The rate and extent of penetration into the extracellular matrix increased with increasing MI. However, to achieve extravasation, smaller vessels required MIs (0.8) higher than those of blood vessels with larger diameters. Ultrasound changed the blood flow rate and direction. Interestingly, the majority of extravasations occurred at vessel branching points.


Assuntos
Extravasamento de Materiais Terapêuticos e Diagnósticos , Nanopartículas/química , Osteossarcoma/irrigação sanguínea , Osteossarcoma/diagnóstico por imagem , Sonicação , Ultrassonografia/métodos , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Dextranos , Modelos Animais de Doenças , Fluoresceína-5-Isotiocianato/análogos & derivados , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microbolhas , Fosfolipídeos/química , Hexafluoreto de Enxofre/química
6.
Int J Oncol ; 55(1): 167-178, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31180533

RESUMO

Vascular endothelial growth inhibitor (VEGI; also referred to as TNFSF15 or TL1A) is involved in the modulation of vascular homeostasis. VEGI is known to operate via two receptors: Death receptor­3 (DR3) and decoy receptor­3 (DcR3). DR3, which is thus far the only known functional receptor for VEGI, contains a death domain and induces cell apoptosis. DcR3 is secreted as a soluble protein and antagonizes VEGI/DR3 interaction. Overexpression of DcR3 and downregulation of VEGI have been detected in a number of cancers. The aim of the present study was to investigate the effects of sodium valproate (VPA), a histone deacetylase inhibitor, in combination with hydralazine hydrochloride (Hy), a DNA methylation inhibitor, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Combination treatment with Hy and VPA synergistically induced the expression of VEGI and DR3 in both OS and HMVE cells, without inducing DcR3 secretion. In addition, it was observed that the combination of VPA and Hy significantly enhanced the inhibitory effect on vascular tube formation by VEGI/DR3 autocrine and paracrine pathways. Furthermore, the VEGI/VEGF­A immune complex was pulled down by immunoprecipitation. Taken together, these findings suggest that DNA methyltransferase and histone deacetylase inhibitors not only have the potential to induce the re­expression of tumor suppressor genes in cancer cells, but also exert anti­angiogenic effects, via enhancement of the VEGI/DR3 pathway and VEGI/VEGF­A interference.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Hidralazina/farmacologia , Osteossarcoma/tratamento farmacológico , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/biossíntese , Ácido Valproico/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/genética , Osteossarcoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/biossíntese , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Transcrição Gênica/efeitos dos fármacos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
7.
J Cell Biochem ; 120(8): 12473-12488, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30825232

RESUMO

Osteosarcoma (OS) is the most common highly malignant bone tumor in teens. Vasculogenic mimicry (VM) is defined as de novo extracellular matrix-rich vascular-like networks formed by highly aggressive tumor cells. We previously reported the presence of VM and it is an unfavorable prognostic factor in OS patients. Long noncoding RNAs (lncRNAs) are aberrantly expressed in OS and involved in cancer cell VM. However, lncRNAs in VM formation of OS have not been investigated. We, therefore, profiled the expression of lncRNAs in highly aggressive OS cell line 143B compared with its parental poorly aggressive cell line HOS. The differentially expressed (DE) lncRNAs and messenger RNA (mRNAs) were subjected to constructed lncRNA-mRNA coexpressed network. The top-ranked hub gene lncRNA n340532 knockdown 143B cells were used for in vitro and in vivo VM assays. The annotation of DE lncRNAs was performed according to the coexpressed mRNAs by Gene Ontology and pathway analysis. A total of 1360 DE lncRNAs and 1353 DE mRNAs were screened out. lncRNA MALAT1 and FTX, which have known functions related to VM formation and tumorigenesis were identified in our data. The coexpression network composed of 226 lncRNAs and 118 mRNAs in which lncRNA n340532 had the highest degree number. lncRNA n340532 knockdown reduced VM formation in vitro. The suppression of n340532 also exhibited potent anti-VM and antimetastasis effect in vivo, suggesting its potential role in OS VM and metastasis. Furthermore, n340532 coexpressed with 10 upregulation mRNAs and 3 downregulation mRNAs. The enriched transforming growth factor-ß signaling pathway, angiogenesis and so forth were targeted by those coexpressed mRNAs, implying n340532 may facilitate VM formation in OS through these pathways and gene functions. Our findings provide evidence for the potential role of lncRNAs in VM formation of OS that could be used in the clinic for anti-VM therapy in OS.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/irrigação sanguínea , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Osteossarcoma/irrigação sanguínea , RNA Longo não Codificante/genética , Animais , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proliferação de Células , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Res Vet Sci ; 122: 1-6, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30439557

RESUMO

Combretastatin A-4 phosphate (CA4P) induces tumor necrosis by selectively inhibiting tumor blood flow. However, the detailed mechanisms by which CA4P selectively disrupts tumor blood vessels are not well understood. Our previous study indicated that the selective blocking effect of CA4P might be related to a vascular endothelial cadherin (VE-cadherin) dysfunction in the tumor vasculature. In this study, we evaluated the vascular disrupting effect of CA4P on canine osteosarcomas xenografted into mice, focusing on VE-cadherin. Even though 30 mg/kg CA4P only partially inhibited blood flow in the xenografted tumor, a combination of an anti-VE-cadherin neutralizing antibody and 30 mg/kg CA4P inhibited most of the tumor blood flow. In addition, the combination of antibody and drug significantly inhibited tumor growth compared to the control. These results strongly suggested a relationship between the expression of VE-cadherin in tumor blood vessels and the selective blocking mechanisms of CA4P.


Assuntos
Antígenos CD/metabolismo , Bibenzilas/farmacologia , Caderinas/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Osteossarcoma/irrigação sanguínea , Osteossarcoma/tratamento farmacológico , Animais , Antígenos CD/genética , Caderinas/genética , Doenças do Cão/metabolismo , Cães , Endotélio Vascular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Neovascularização Patológica/patologia
9.
Eur J Radiol ; 105: 49-55, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30017298

RESUMO

PURPOSE: To evaluate the frequency of tumor thrombus in the large veins draining primary pelvic osteosarcoma on early cross-sectional imaging studies and its effect on patient survival. MATERIALS AND METHODS: Our retrospective study included all patients with primary pelvic osteosarcoma treated at our facility between January 2000 and May 2014, who were ≤ 45 years of age, and had adequate imaging studies and clinical follow up. Four radiologists evaluated for tumor in the large draining veins on initial CT, MRI and PET/CTs. A consensus evaluation by the four radiologists together with findings on operative reports, pathology reports or follow-up imaging was used as the reference standard. RESULTS: Thirty-nine patients with primary pelvic osteosarcoma met final inclusion criteria. Tumor thrombus was identified in the large draining veins in 10 of the 22 (45%) patients who underwent tumor resection and 10 of the 17 (59%) who did not. In the 22 patients who underwent tumor resection, tumor thrombus was significantly associated with worse overall survival (p = 0.03). CONCLUSIONS: Tumor thrombus in the large draining veins is identified in a significant proportion of initial imaging studies in patients with pelvic osteosarcoma, and is associated with worse overall survival in patients who undergo tumor resection.


Assuntos
Neoplasias Ósseas/irrigação sanguínea , Osteossarcoma/irrigação sanguínea , Ossos Pélvicos , Tromboflebite/patologia , Adolescente , Adulto , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Criança , Estudos Transversais , Feminino , Humanos , Angiografia por Ressonância Magnética/métodos , Angiografia por Ressonância Magnética/mortalidade , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Imagem Multimodal/mortalidade , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/mortalidade , Estudos Retrospectivos , Análise de Sobrevida , Tromboflebite/mortalidade , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/mortalidade , Veias , Adulto Jovem
10.
BMC Cancer ; 18(1): 536, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739381

RESUMO

BACKGROUND: Osteosarcoma is the most common primary bone cancer in children and young adults. It is highly aggressive and patients that present with metastasis have a poor prognosis. Angiopoietin-like 4 (ANGPTL4) drives the progression and metastasis of many solid tumours, but has not been described in osteosarcoma tissue. ANGPTL4 also enhances osteoclast activity, which is required for osteosarcoma growth in bone. We therefore investigated the expression and function of ANGPTL4 in human osteosarcoma tissue and cell lines. METHODS: Expression of ANGPTL4 in osteosarcoma tissue microarrays was determined by immunohistochemistry. Hypoxic secretion of ANGPTL4 was tested by ELISA and Western blot. Regulation of ANGPTL4 by hypoxia-inducible factor (HIF) was investigated using isoform specific HIF siRNA (HIF-1α, HIF-2α). Effects of ANGPTL4 on cell proliferation, migration (scratch wound assay), colony formation and osteoblastogenesis were assessed using exogenous ANGPTL4 or cells stably transfected with ANGPTL4. Osteoclastogenic differentiation of CD14+ monocytes was assessed by staining for tartrate-resistant acid phosphatase (TRAP), bone resorption was assessed by lacunar resorption of dentine. RESULTS: ANGPTL4 was immunohistochemically detectable in 76/109 cases. ANGPTL4 was induced by hypoxia in 6 osteosarcoma cell lines, under the control of the HIF-1α transcription factor. MG-63 cells transfected with an ANGPTL4 over-expression plasmid exhibited increased proliferation and migration capacity and promoted osteoclastogenesis and osteoclast-mediated bone resorption. Individually the full-length form of ANGPTL4 could increase MG-63 cell proliferation, whereas N-terminal ANGPTL4 mediated the other pro-tumourigenic phenotypes. CONCLUSIONS: This study describes a role(s) for ANGPTL4 in osteosarcoma and identifies ANGPTL4 as a treatment target that could potentially reduce tumour progression, inhibit angiogenesis, reduce bone destruction and prevent metastatic events.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteogênese/genética , Osteossarcoma/patologia , Proteína 4 Semelhante a Angiopoietina/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Carcinogênese/genética , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Osteoclastos/fisiologia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/genética , RNA Interferente Pequeno/metabolismo , Análise Serial de Tecidos
11.
Sci Rep ; 8(1): 5415, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615744

RESUMO

There is increasing evidence that the complement system is activated in various cancer tissues. Besides being involved in innate immunity against pathogens, the complement system also participates in inflammation and the modulation of tumor microenvironment. Recent studies suggest that complement activation promotes tumor progression in various ways. Among some cancer cell lines, we found that human bone osteosarcoma epithelial cells (U2-OS) can activate the alternative pathway of the complement system by pooled normal human serum. Interestingly, U2-OS cells showed less expression of complement regulatory proteins, compared to other cancer cell lines. Furthermore, the activated complement system enhanced the production of growth factors, which promoted angiogenesis of human endothelial cells. Our results demonstrated a direct linkage between the complement system and angiogenesis using the in vitro model, which suggest the complement system and related mechanisms might be potential targets for cancer treatment.


Assuntos
Neoplasias Ósseas/patologia , Proteínas do Sistema Complemento/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Neovascularização Patológica/metabolismo , Osteossarcoma/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Osteossarcoma/irrigação sanguínea , Osteossarcoma/metabolismo , Fosforilação
12.
Anticancer Res ; 38(1): 159-164, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277768

RESUMO

BACKGROUND: We previously developed a color-coded imaging model that can quantify the length of nascent blood vessels using Gelfoam® implanted in nestin-driven green fluorescent protein (ND-GFP) nude mice. In this model, nascent blood vessels selectively express GFP. We also previously showed that osteosarcoma cells promote angiogenesis in this assay. We have also previously demonstrated the tumor-targeting bacteria Salmonella typhimurium A1-R (S. typhimurium A1-R) can inhibit or regress all tested tumor types in mouse models. The aim of the present study was to determine if S. typhimurium A1-R could inhibit osteosarcoma angiogenesis in the in vivo Gelfoam® color-coded imaging assay. MATERIALS AND METHODS: Gelfoam® was implanted subcutaneously in ND-GFP nude mice. Skin flaps were made 7 days after implantation and 143B-RFP human osteosarcoma cells expressing red fluorescent protein (RFP) were injected into the implanted Gelfoam. After establishment of tumors in the Gelfoam®, control-group mice were treated with phosphate buffered saline via tail-vein injection (iv) and the experimental group was treated with S. typhimurium A1-R iv Skin flaps were made at day 7, 14, 21, and 28 after implantation of the Gelfoam® to allow imaging of vascularization in the Gelfoam® using a variable-magnification small-animal imaging system and confocal fluorescence microscopy. RESULTS: Nascent blood vessels expressing ND-GFP extended into the Gelfoam® over time in both groups. However, the extent of nascent blood-vessel growth was significantly inhibited by S. typhimurium A1-R treatment by day 28. CONCLUSION: The present results indicate S. typhimurium A1-R has potential for anti-angiogenic targeted therapy of osteosarcoma.


Assuntos
Neoplasias Ósseas/terapia , Neovascularização Patológica/terapia , Osteossarcoma/terapia , Salmonella typhimurium , Animais , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Nus , Camundongos Transgênicos , Osteossarcoma/irrigação sanguínea , Osteossarcoma/patologia
13.
Biomaterials ; 149: 29-40, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28988062

RESUMO

Cancer stem cells (CSCs) are believed to have a critical role in tumorigenesis, metastasis, therapeutic resistance or recurrence. Therefore, strategies designed to specifically target and eliminate CSCs have become one of the most promising and desirable ways for tumor treatment. Osteosarcoma stem cells (OSCs), the CSCs in osteosarcoma (OS), are critically associated with OS progression. Here, we show that single-walled carbon nanotubes (SWCNTs), including unmodified SWCNT (SWCNT-Raw) and SWCNT-COOH, have the ability to specifically inhibit the process of TGFß1-induced OS cells dedifferentiation, prevent the stem cell phenotypes acquisition in OS cells and reduce the OSC viability under conditions which mimic the OS microenvironment. Concurrently, SWCNT treatment significantly down-regulates the expression of OSC markers in OS, and markedly reduces the tumor microvessel density and tumor growth. Furthermore, we found that SWCNT could suppress the TGFß1-induced activation of TGFß type I receptor and downstream signaling, which are key for the OSC formation and maintenance. Our results reveal an unexpected function of SWCNT in negative modulation of OSCs, and provide significant implications for the potential CSCs-targeted therapeutic applications of SWCNT.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Nanotubos de Carbono/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Desdiferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Tamanho da Partícula , Transdução de Sinais , Microambiente Tumoral
14.
Exp Cell Res ; 360(2): 138-145, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28867479

RESUMO

Angiogenesis is now well known for being involved in tumor progression, aggressiveness, emergence of metastases, and also resistance to cancer therapies. In this study, to better mimic tumor angiogenesis encountered in vivo, we used 3D culture of osteosarcoma cells (MG-63) that we deposited on 2D endothelial cells (HUVEC) grown in monolayer. We report that endothelial cells combined with tumor cells were able to form a well-organized network, and that tubule-like structures corresponding to new vessels infiltrate tumor spheroids. These vessels presented a lumen and expressed specific markers as CD31 and collagen IV. The combination of 2D endothelial cells and 3D microtissues of tumor cells also increased expression of angiogenic factors as VEGF, CXCR4 and ICAM1. The cell environment is the key point to develop tumor vascularization in vitro and to be closer to tumor encountered in vivo.


Assuntos
Neoplasias Ósseas/patologia , Técnicas de Cultura de Células/métodos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Neovascularização Patológica/patologia , Osteossarcoma/patologia , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/genética , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Neovascularização Patológica/genética , Osteossarcoma/irrigação sanguínea , Osteossarcoma/genética , Alicerces Teciduais/química
15.
Mar Drugs ; 15(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632184

RESUMO

The marine origin polysaccharide fucoidan combines multiple biological activities. As demonstrated by various studies in vitro and in vivo, fucoidans show anti-viral, anti-tumor, anti-oxidant, anti-inflammatory and anti-coagulant properties, although the detailed molecular action remains to be elucidated. The aim of the present study is to assess the impact of crude fucoidan extracts, on the formation of vascular structures in co-culture models relevant for bone vascularization during bone repair and for vascularization processes in osteosarcoma. The co-cultures consisted of bone marrow derived mesenchymal stem cells, respectively the osteosarcoma cell line MG63, and human blood derived outgrowth endothelial cells (OEC). The concentration dependent effects on the metabolic activity on endothelial cells and osteoblast cells were first assessed using monocultures of OEC, MSC and MG63 suggesting a concentration of 100 µg/mL as a suitable concentration for further experiments. In co-cultures fucoidan significantly reduced angiogenesis in MSC/OEC but also in MG63/OEC co-cultures suggesting a potential application of fucoidan to lower the vascularization in bone tumors such as osteosarcoma. This was associated with a decrease in VEGF (vascular endothelial growth factor) and SDF-1 (stromal derived factor-1) on the protein level, both related to the control of angiogenesis and furthermore discussed as crucial factors in osteosarcoma progression and metastasis. In terms of bone formation, fucoidan slightly lowered on the calcification process in MSC monocultures and MSC/OEC co-cultures. In summary, these data suggest the suitability of lower fucoidan doses to limit angiogenesis for instance in osteosarcoma.


Assuntos
Neoplasias Ósseas/irrigação sanguínea , Regeneração Óssea/efeitos dos fármacos , Quimiocina CXCL12/análise , Neovascularização Patológica/prevenção & controle , Osteossarcoma/irrigação sanguínea , Polissacarídeos/farmacologia , Fator A de Crescimento do Endotélio Vascular/análise , Neoplasias Ósseas/tratamento farmacológico , Células Cultivadas , DNA/análise , Células Endoteliais/fisiologia , Humanos , Osteossarcoma/tratamento farmacológico
16.
Cell Death Dis ; 8(4): e2750, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406476

RESUMO

In recent years, much research has focused on the role of angiogenesis in osteosarcoma, which occurs predominantly in adolescents and young adults. The vascular endothelial growth factor-A (VEGF-A) pathway is the key regulator of angiogenesis and in osteosarcoma. VEGF-A expression has been recognized as a prognostic marker in angiogenesis. Aberrant WNT1-inducible signaling pathway protein-1 (WISP-1) expression is associated with various cancers. However, the function of WISP-1 in osteosarcoma angiogenesis is poorly understood. We demonstrate a positive correlation between WISP-1 and VEGF-A expression in human osteosarcoma. Moreover, we show that WISP-1 promotes VEGF-A expression in human osteosarcoma cells, subsequently inducing human endothelial progenitor cell (EPC) migration and tube formation. The focal adhesion kinase (FAK), Jun amino-terminal kinase (JNK), and hypoxia-inducible factor (HIF)-1α signaling pathways were activated after WISP-1 stimulation, while FAK, JNK, and HIF-1α inhibitors or small interfering RNA (siRNA) abolished WISP-1-induced VEGF-A expression and angiogenesis. In vitro and in vivo studies revealed down-regulation of microRNA-381 (miR-381) in WISP-1-induced VEGF-A expression and angiogenesis. Our findings reveal that WISP-1 enhances VEGF-A expression and angiogenesis through the FAK/JNK/HIF-1α signaling pathways, as well as via down-regulation of miR-381 expression. WISP-1 may be a promising target in osteosarcoma angiogenesis.


Assuntos
Neoplasias Ósseas , Proteínas de Sinalização Intercelular CCN/metabolismo , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica , Osteossarcoma , Proteínas Proto-Oncogênicas/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adolescente , Adulto , Animais , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Embrião de Galinha , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Masculino , MicroRNAs/biossíntese , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/metabolismo , Osteossarcoma/patologia , RNA Neoplásico/biossíntese , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/patologia
17.
Anticancer Drugs ; 28(5): 514-521, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28225457

RESUMO

GTPase RhoA and its downstream Rho-associated coiled-coil-containing protein kinases (ROCKs) are frequently overexpressed in human cancers. Inhibition of the RhoA/ROCK pathway blocks angiogenesis mediated by the vascular endothelial growth factor, which led us to investigate the role of this pathway in vasculogenic mimicry (VM) - a process by which aggressive cancer cells form vessel-like structures that provide adequate blood supply for tumor growth. We showed that the expression of RhoA and its effector kinases ROCK1/2 was much higher in human osteosarcoma (OS) tissues and the human OS cell line U2OS than in nontumorous tissues and cell line hFOB 1.19 using western blot analysis and real-time PCR. Inhibition of the RhoA/ROCK signaling pathway by the pharmacological inhibitor fasudil reduced vascular-like channels of U2OS cells in Matrigel. Furthermore, we used rhodamine-phalloidin immunofluorescence, wound healing assay, and transwell migration assay to examine the effect of fasudil on tumor cell plasticity and motility, both of which play key roles in VM formation. Finally, we explored the underlying mechanisms of fasudil-induced VM destruction. In this context, we showed that the RhoA/ROCK signaling pathway is a novel regulator in VM of U2OS OS cells and suggest that fasudil in conjunction with established treatments may present a novel therapeutic strategy for OS.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Quinases Associadas a rho/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/patologia , Imunofluorescência , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/biossíntese , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/biossíntese , Proteína rhoA de Ligação ao GTP/metabolismo
18.
Biochem Biophys Res Commun ; 482(4): 987-993, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27908732

RESUMO

Osteosarcoma (OS) has become one of the most common primary malignant tumors in the children and adolescents with a poor prognosis owing to its high malignant and metastatic potential. Although increasing evidence indicates that miR-451 could inhibit the growth and metastasis of OS, its effect on angiogenesis in OS is still very poor. What is more, the mechanism by which miR-451 affects the OS has not been fully elucidated. In the present study, miR-451 was reduced in human osteosarcoma tissues compared with the adjacent bone tissues, and the introduction of miR-451 dramatically inhibited the growth, migration and angiogenesis in OS. Additionally, it was suggested that IL 6R is a direct target gene of miR-451. Silencing of IL 6R suppressed the growth, migration and angiogenesis of OS, which was consistent with the effect of overexpression of miR-451. In conclusion, our data demonstrate that miR-451 may function as a potential suppressor of tumor growth, migration and angiogenesis in OS via down-regulating IL 6R, suggesting a promising therapeutic avenue for managing OS.


Assuntos
Neoplasias Ósseas/genética , Osso e Ossos/patologia , MicroRNAs/genética , Neovascularização Patológica/genética , Osteossarcoma/genética , Receptores de Interleucina-6/genética , Animais , Sequência de Bases , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/patologia , Osso e Ossos/irrigação sanguínea , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/patologia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/patologia
19.
Oncotarget ; 7(34): 54474-54487, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27323409

RESUMO

The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88-92 is the minimal sequence required to induce cell motility and angiogenesis by interacting with the formyl peptide receptor type 1 (FPR1). In this study, we present evidence that the cyclization of the uPAR88-92 sequence generates a new potent inhibitor of migration, and extracellular matrix invasion of human osteosarcoma and chondrosarcoma cells expressing comparable levels of FPR1 on cell surface. In vitro, the cyclized peptide [SRSRY] prevents formation of capillary-like tubes by endothelial cells co-cultured with chondrosarcoma cells and trans-endothelial migration of osteosarcoma and chondrosarcoma cells. When chondrosarcoma cells were subcutaneously injected in nude mice, tumor size, intra-tumoral microvessel density and circulating tumor cells in blood samples collected before the sacrifice, were significantly reduced in animals treated daily with i.p-administration of 6 mg/Kg [SRSRY] as compared to animals treated with vehicle only. Our findings indicate that [SRSRY] prevents three key events occurring during the metastatic process of osteosarcoma and chondrosarcoma cells: the extracellular matrix invasion, the formation of a capillary network and the entry into bloodstream.


Assuntos
Neoplasias Ósseas/irrigação sanguínea , Condrossarcoma/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Osteossarcoma/irrigação sanguínea , Peptídeos Cíclicos/uso terapêutico , Receptores de Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico , Animais , Linhagem Celular Tumoral , Movimento Celular , Condrossarcoma/patologia , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Osteossarcoma/patologia , Receptores de Formil Peptídeo/fisiologia
20.
Int J Exp Pathol ; 97(1): 86-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27028305

RESUMO

Periostin (PN), originally named as osteoblast-specific factor-2 (OSF-2), has been involved in regulating adhesion and differentiation of osteoblasts. Recently many studies have shown that high-level expression of PN is correlated significantly with tumour angiogenesis and prognosis in many kinds of human cancer. However, whether and how periostin expression influences prognosis in osteosarcoma remains unknown. This study aimed to examine the expression of PN in patients with osteosarcoma and explore the relationship of PN expression with clinicopathologic factors, tumour angiogenesis and prognosis. Immunohistochemistry was performed to determine the expression of PN in osteosarcoma and osteochondroma respectively. Vascular endothelial growth factor (VEGF) and CD34 were also examined in tissues from the osteosarcoma patients mentioned above. The results showed that PN expression was significantly (P < 0.05) higher in osteosarcoma (80.9%) than in osteochondroma (14.7%). Increased PN protein expression was associated with histological subtype (P = 0.000), Enneking stage (P = 0.027) and tumour size (P = 0.009). The result also showed that high expression of PN correlated with VEGF expression (r = 0.285; P = 0.019) and that tumours with PN-positive expression significantly had higher microvessal density (44.6 ± 13.7 vs. 20.6 ± 6.5; P = 0.000) compared to those in normal bone tissues. Additionally, the expression of PN was found to be an independent prognostic factor in osteosarcoma patients. In conclusion, our findings suggest that PN may have an important role in tumour progression and may be used as a prognostic biomarker for patients with osteosarcoma.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Moléculas de Adesão Celular/metabolismo , Neovascularização Patológica , Osteossarcoma/diagnóstico , Osteossarcoma/metabolismo , Adolescente , Adulto , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/diagnóstico , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Osteossarcoma/irrigação sanguínea , Osteossarcoma/patologia , Prognóstico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA