Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.338
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Drug Dev Res ; 85(3): e22195, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704831

RESUMO

We investigated the angiogenesis-modulating ability of noscapine in vitro using osteosarcoma cell line (MG-63) and in vivo using a zebrafish model. MTT assay and the scratch wound healing assay were performed on the osteosarcoma cell line (MG-63) to analyze the cytotoxic effect and antimigrative ability of noscapine, respectively. We also observed the antiangiogenic ability of noscapine on zebrafish embryos by analyzing the blood vessels namely the dorsal aorta, and intersegmental vessels development at 24, 48, and 72 h postfertilization. Real-time polymerase chain reaction was used to analyze the hypoxia signaling molecules' gene expression in MG-63 cells and zebrafish embryos. The findings from the scratch wound healing demonstrated that noscapine stopped MG-63 cancer cells from migrating under both hypoxia and normoxia. Blood vessel development and the heart rate in zebrafish embryos were significantly reduced by noscapine under both hypoxia and normoxia which showed the hemodynamics impact of noscapine. Noscapine also downregulated the cobalt chloride (CoCl2) induced hypoxic signaling molecules' gene expression in MG-63 cells and zebrafish embryos. Therefore, noscapine may prevent MG-63 cancer cells from proliferating and migrating, as well as decrease the formation of new vessels and the production of growth factors linked to angiogenesis in vivo under both normoxic and hypoxic conditions.


Assuntos
Hemodinâmica , Neovascularização Patológica , Noscapina , Peixe-Zebra , Animais , Humanos , Noscapina/farmacologia , Linhagem Celular Tumoral , Hemodinâmica/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Hipóxia , Movimento Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Angiogênese
2.
Folia Med (Plovdiv) ; 66(2): 196-202, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38690814

RESUMO

INTRODUCTION: Osteosarcoma (OS) and Ewing sarcoma (ES) represent the pediatric population's most common malignant bone tumors. 18-Fluorodeoxyglucose positron emission tomography has been shown to be effective in both the diagnostic and staging phases of cancer treatment. In recent years, some studies have also explored the possibility that FDG-PET could have a prognostic role.


Assuntos
Neoplasias Ósseas , Fluordesoxiglucose F18 , Osteossarcoma , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Sarcoma de Ewing , Humanos , Sarcoma de Ewing/diagnóstico por imagem , Sarcoma de Ewing/patologia , Sarcoma de Ewing/tratamento farmacológico , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/patologia , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Necrose , Prognóstico
3.
Sci Rep ; 14(1): 11056, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744935

RESUMO

Osteosarcoma is the most common malignant bone cancer in pediatric patients. Patients who respond poorly to chemotherapy experience worse clinical outcomes with a high mortality rate. The major challenge is the lack of effective drugs for these patients. To introduce new drugs for clinical approval, preclinical studies based on in vitro models must demonstrate the potency of the tested drugs, enabling the drugs to enter phase 1 clinical trials. Patient-derived cell culture is a promising testing platform for in vitro studies, as they more accurately recapitulate cancer states and genetic profiles compared to cell lines. In the present study, we established patient-derived osteosarcoma cells (PDC) from a patient who had previously been diagnosed with retinoblastoma. We identified a new variant of a germline mutation in the RB1 gene in the tissue of the patient. The biological effects of this PDC were studied to observe whether the cryopreserved PDC retained a feature of fresh PDC. The cryopreserved PDC preserved the key biological effects, including cell growth, invasive capability, migration, and mineralization, that define the conserved phenotypes compared to fresh PDC. From whole genome sequencing analysis of osteosarcoma tissue and patient-derived cells, we found that cryopreserved PDC was a minor population in the origin tissue and was selectively grown under the culture conditions. The cryopreserved PDC has a high resistance to conventional chemotherapy. This study demonstrated that the established cryopreserved PDC has the aggressive characteristics of osteosarcoma, in particular the chemoresistance phenotype that might be used for further investigation in the chemoresistant mechanism of osteosarcoma. In conclusion, the approach we applied for primary cell culture might be a promising method to generate in vitro models for functional testing of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Retinoblastoma , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/tratamento farmacológico , Retinoblastoma/genética , Retinoblastoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Ligação a Retinoblastoma/genética , Proliferação de Células , Mutação em Linhagem Germinativa , Criopreservação , Masculino , Perfilação da Expressão Gênica , Movimento Celular/genética
4.
Jt Dis Relat Surg ; 35(2): 443-447, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38727127

RESUMO

While the usual etiology of slipped capital femoral epiphysis (SCFE) is idiopathic, there are many other factors that increase the predisposition to slippage. Chemotherapy can be one of them. In this article, we report a rare case of acute SCFE after tumor prosthesis implantation in a patient who received chemotherapy. A 10-year-old girl with osteosarcoma of the right distal femur underwent (neo-) adjuvant chemotherapy, wide tumor resection, and reconstruction using a growing tumor prosthesis and a short non-cemented femoral stem. Half a year after implantation, she developed aseptic loosening. Revision surgery was performed using a hydroxyapatite (HA)-coated cementless femoral stem. Postoperative plain radiographs revealed SCFE that was treated by closed reduction and screw fixation. The patient recovered without complications, and unaffected hip showed no radiographic signs of slippage on follow-up. The forces of implanting a tumor prosthesis, particularly with a non-cemented stem, can increase the risk of an acute SCFE. The controversy over prophylactic pinning of the uninvolved hip in chemotherapy-associated SCFE is unresolved. Pinning can be considered only in the presence of abnormal prodromal radiological findings.


Assuntos
Neoplasias Ósseas , Neoplasias Femorais , Osteossarcoma , Escorregamento das Epífises Proximais do Fêmur , Humanos , Feminino , Criança , Escorregamento das Epífises Proximais do Fêmur/cirurgia , Escorregamento das Epífises Proximais do Fêmur/diagnóstico por imagem , Neoplasias Femorais/cirurgia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/cirurgia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/cirurgia , Reoperação , Falha de Prótese , Radiografia , Desenho de Prótese , Quimioterapia Adjuvante/efeitos adversos , Resultado do Tratamento
5.
Clin Transl Med ; 14(5): e1670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689429

RESUMO

BACKGROUND: Treatment for osteosarcoma, a paediatric bone cancer with no therapeutic advances in over three decades, is limited by a lack of targeted therapies. Osteosarcoma frequently metastasises to the lungs, and only 20% of patients survive 5 years after the diagnosis of metastatic disease. We found that WNT5B is the most abundant WNT expressed in osteosarcoma tumours and its expression correlates with metastasis, histologic subtype and reduced survival. METHODS: Using tumor-spheroids to model cancer stem-like cells, we performed qPCR, immunoblotting, and immunofluorescence to monitor changes in gene and protein expression. Additionally, we measured sphere size, migration and forming efficiency to monitor phenotypic changes. Therefore, we characterised WNT5B's relevance to cancer stem-like cells, metastasis, and chemoresistance and evaluated its potential as a therapeutic target. RESULTS: In osteosarcoma cell lines and patient-derived spheres, WNT5B is enriched in stem cells and induces the expression of the stemness gene SOX2. WNT5B promotes sphere size, sphere-forming efficiency, and cell proliferation, migration, and chemoresistance to methotrexate (but not cisplatin or doxorubicin) in spheres formed from conventional cell lines and patient-derived xenografts. In vivo, WNT5B increased osteosarcoma lung and liver metastasis and inhibited the glycosaminoglycan hyaluronic acid via upregulation of hyaluronidase 1 (HYAL1), leading to changes in the tumour microenvironment. Further, we identified that WNT5B mRNA and protein correlate with the receptor ROR1 in primary tumours. Targeting WNT5B through inhibition of WNT/ROR1 signalling with an antibody to ROR1 reduced stemness properties, including chemoresistance, sphere size and SOX2 expression. CONCLUSIONS: Together, these data define WNT5B's role in driving osteosarcoma cancer stem cell expansion and methotrexate resistance and provide evidence that the WNT5B pathway is a promising candidate for treating osteosarcoma patients. KEY POINTS: WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2. WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo. The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis. Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Osteossarcoma , Proteínas Wnt , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Animais , Camundongos , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Metástase Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral
6.
Oncol Res ; 32(5): 899-910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686047

RESUMO

Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis. Since there is no permanent therapy for this condition, it is necessary to develop a cure. Therefore, this investigation was carried out to assess the impacts and biological functions of hydroxysafflor yellow A (HYSA) in osteosarcoma cell lines (MG63). In this investigational study, MG63 cells were utilized. Microarray experiments, quantitative polymerase chain reaction (qPCR), immunofluorescent staining, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose consumption, lactate production, and ATP levels, proliferation assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, and Western blot were performed. In MG63 cells, HYSA lowered cell proliferation and metastasis rates, suppressed EDU cell number, and enhanced caspase-3/9 activity levels. HYSA reduced the Warburg effect and induced ferroptosis (FPT) in MG63 cells. Inhibiting ferroptosis diminished HYSA's anti-cancer activities in MG63 cells. The stimulation of the HIF-1α/SLC7A11 pathway decreased HYSA's anti-cancer activities in MG63 cells. HIF-1α is one target spot for HYSA in a model of osteosarcoma cancer (OC). HYSA altered HIF-1α's thermophoretic activity; following binding with HYSA, HIF-1α's melting point increased from ~55°C to ~60°C. HYSA significantly enhanced the thermal stability of exogenous WT HIF-1α while not affecting Mut HIF-1α, suggesting that ARG-311, GLY-312, GLN-347, and GLN-387 may be involved in the interaction between HIF-1α and HYSA. Conclusively, our study revealed that HYSA induced FPT and reduced the Warburg effect of OC through mitochondrial damage by HIF-1α/HK2/SLC7A11 pathway. HYSA is a possible therapeutic option for OC or other cancers.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Chalcona , Ferroptose , Osteossarcoma , Quinonas , Humanos , Sistema y+ de Transporte de Aminoácidos/efeitos dos fármacos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/farmacologia , Chalcona/análogos & derivados , Ferroptose/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/tratamento farmacológico , Quinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Hexoquinase/efeitos dos fármacos , Hexoquinase/metabolismo
7.
J Cell Physiol ; 239(5): e31256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591855

RESUMO

Osteosarcoma (OS) cancer treatments include systemic chemotherapy and surgical resection. In the last years, novel treatment approaches have been proposed, which employ a drug-delivery system to prevent offside effects and improves treatment efficacy. Locally delivering anticancer compounds improves on high local concentrations with more efficient tumour-killing effect, reduced drugs resistance and confined systemic effects. Here, the synthesis of injectable strontium-doped calcium phosphate (SrCPC) scaffold was proposed as drug delivery system to combine bone tissue regeneration and anticancer treatment by controlled release of methotrexate (MTX) and doxorubicin (DOX), coded as SrCPC-MTX and SrCPC-DOX, respectively. The drug-loaded cements were tested in an in vitro model of human OS cell line SAOS-2, engineered OS cell line (SAOS-2-eGFP) and U2-OS. The ability of doped scaffolds to induce OS cell death and apoptosis was assessed analysing cell proliferation and Caspase-3/7 activities, respectively. To determine if OS cells grown on doped-scaffolds change their migratory ability and invasiveness, a wound-healing assay was performed. In addition, the osteogenic potential of SrCPC material was evaluated using human adipose derived-mesenchymal stem cells. Osteogenic markers such as (i) the mineral matrix deposition was analysed by alizarin red staining; (ii) the osteocalcin (OCN) protein expression was investigated by enzyme-linked immunosorbent assay test, and (iii) the osteogenic process was studied by real-time polymerase chain reaction array. The delivery system induced cell-killing cytotoxic effects and apoptosis in OS cell lines up to Day 7. SrCPC demonstrates a good cytocompatibility and it induced upregulation of osteogenic genes involved in the skeletal development pathway, together with OCN protein expression and mineral matrix deposition. The proposed approach, based on the local, sustained release of anticancer drugs from nanostructured biomimetic drug-loaded cements is promising for future therapies aiming to combine bone regeneration and anticancer local therapy.


Assuntos
Apoptose , Neoplasias Ósseas , Fosfatos de Cálcio , Osteogênese , Osteossarcoma , Alicerces Teciduais , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Alicerces Teciduais/química , Linhagem Celular Tumoral , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Osteogênese/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Doxorrubicina/farmacologia , Proliferação de Células/efeitos dos fármacos , Estrôncio/farmacologia , Estrôncio/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Movimento Celular/efeitos dos fármacos
8.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612399

RESUMO

Osteosarcoma, which has poor prognosis after metastasis, is the most common type of bone cancer in children and adolescents. Therefore, plant-derived bioactive compounds are being actively developed for cancer therapy. Artemisia apiacea Hance ex Walp. is a traditional medicinal plant native to Eastern Asia, including China, Japan, and Korea. Vitexicarpin (Vitex), derived from A. apiacea, has demonstrated analgesic, anti-inflammatory, antitumour, and immunoregulatory properties; however, there are no published studies on Vitex isolated from the aerial parts of A. apiacea. Thus, this study aimed to evaluate the antitumour activity of Vitex against human osteosarcoma cells. In the present study, Vitex (>99% purity) isolated from A. apiacea induced significant cell death in human osteosarcoma MG63 cells in a dose- and time-dependent manner; cell death was mediated by apoptosis, as evidenced by the appearance of cleaved-PARP, cleaved-caspase 3, anti-apoptotic proteins (Survivin and Bcl-2), pro-apoptotic proteins (Bax), and cell cycle-related proteins (Cyclin D1, Cdk4, and Cdk6). Additionally, a human phosphokinase array proteome profiler revealed that Vitex suppressed AKT-dependent downstream kinases. Further, Vitex reduced the phosphorylation of PRAS40, which is associated with autophagy and metastasis, induced autophagosome formation, and suppressed programmed cell death and necroptosis. Furthermore, Vitex induced antimetastatic activity by suppressing the migration and invasion of MMP13, which is the primary protease that degrades type I collagen for tumour-induced osteolysis in bone tissues and preferential metastasis sites. Taken together, our results suggest that Vitex is an attractive target for treating human osteosarcoma.


Assuntos
Neoplasias Ósseas , Flavonoides , Osteossarcoma , Humanos , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt
9.
Oncol Res ; 32(4): 691-702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560565

RESUMO

Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis. Immunotherapy has shown great potential in the treatment of osteosarcoma. However, the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment. The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment. Here, we prepared a dual pH-sensitive nanocarrier, loaded with the photosensitizer Chlorin e6 (Ce6) and CD47 monoclonal antibodies (aCD47), to deliver synergistic photodynamic and immunotherapy of osteosarcoma. On laser irradiation, Ce6 can generate reactive oxygen species (ROS) to kill cancer cells directly and induces immunogenic tumor cell death (ICD), which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47. Moreover, both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages, promote antigen presentation, and eventually induce T lymphocyte-mediated antitumor immunity. Overall, the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma, which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Clorofilídeos , Nanopartículas , Neoplasias , Osteossarcoma , Fotoquimioterapia , Humanos , Antígeno CD47 , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Imunoterapia , Neoplasias Ósseas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Microambiente Tumoral
10.
J Nanobiotechnology ; 22(1): 141, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561739

RESUMO

Osteosarcoma (OS) is an aggressive bone tumor with strong invasiveness, rapid metastasis, and dreadful mortality. Chemotherapy is a commonly used approach for OS treatment but is limited by the development of drug resistance and long-term adverse effects. To date, OS still lacks the curative treatment. Herein, we fabricated pyrite-based nanoparticles (FeS2@CP NPs) as synergetic therapeutic platform by integrating photothermal therapy (PTT) and chemo-dynamic therapy (CDT) into one system. The synthetic FeS2@CP NPs showed superior Fenton reaction catalytic activity. FeS2@CP NPs-based CDT efficaciously eradicated the tumor cells by initiating dual-effect of killing of apoptosis and ferroptosis. Furthermore, the generated heat from FeS2@CP under near-infrared region II (NIR-II) laser irradiation could not only inhibit tumor's growth, but also promote tumor cell apoptosis and ferroptosis by accelerating •OH production and GSH depletion. Finally, the photothermal/NIR II-enhanced CDT synergistic therapy showed excellent osteosarcoma treatment effects both in vitro and in vivo with negligible side effects. Overall, this work provided a high-performance and multifunctional Fenton catalyst for osteosarcoma synergistic therapy, which provided a pathway for the clinical application of PTT augmented CDT.


Assuntos
Neoplasias Ósseas , Nanopartículas , Neoplasias , Osteossarcoma , Sulfetos , Humanos , Terapia Fototérmica , Osteossarcoma/tratamento farmacológico , Ferro , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Peróxido de Hidrogênio
11.
Int J Biol Macromol ; 267(Pt 2): 130915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561118

RESUMO

BACKGROUND: Chemotherapy resistance of osteosarcoma (OS) is still the crux of poor clinical curative effect.E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin resistance in OS, which ultimately mediated DNA damage tolerance and led to a poor prognosis and chemotherapy response in patients. METHODS: In this study, doxorubicin was loaded in the process of Fe2+ and siRad18 forming nanoparticles(FSD) through coordination, chitosan modified with cell penetrating peptide (H6R6) was synthesized and coated on the surface of the NPs(FSD-CHR). FSD-CHR was then dispersed in thermosensitive hydrogel(PPP) for peritumoral injection of osteosarcoma in situ. Subsequently, the physicochemical properties and molecular biological characteristics of the drug delivery system were characterized. Finally, an osteosarcoma model was established to study the anti-tumor effects of multifunctional nanoparticles and the immunotherapy effect combined with αPD-L1. RESULTS: FSD-CHR has enhanced tumor tissue permeability, siRad18 can significantly reduce Dox-mediated DNA damage tolerance and enhance anti-tumor effects, and iron-based NPs show enhanced ROS upregulation. FSD-CHR@PPP showed significant inhibition of osteosarcoma growth in vivo and a reduced incidence of lung metastasis. In addition, siRad18 was unexpectedly found to enhance Dox-mediated immunogenic cell death (ICD).FSD-CHR@PPP combined with PD-L1 blocking significantly enhanced anti-tumor effects due to decreased PD-L1 enrichment. CONCLUSION: Hydrogel encapsulation of permeable nanoparticles provides an effective strategy for doxorubicin-resistant OS, showing that gene therapy blocking DNA damage tolerance can enhance treatment response to chemotherapy and appears to enhance the effect of ICD inducers to activate the immune system.


Assuntos
Peptídeos Penetradores de Células , Quitosana , Doxorrubicina , Terapia Genética , Hidrogéis , Nanopartículas , Osteossarcoma , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/genética , Quitosana/química , Hidrogéis/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Humanos , Camundongos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Nanopartículas/química , Linhagem Celular Tumoral , Terapia Genética/métodos , Permeabilidade , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Temperatura
12.
Mol Ther ; 32(5): 1219-1237, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449313

RESUMO

Bone cancer is common and severe. Both primary (e.g., osteosarcoma, Ewing sarcoma) and secondary (e.g., metastatic) bone cancers lead to significant health problems and death. Currently, treatments such as chemotherapy, hormone therapy, and radiation therapy are used to treat bone cancer, but they often only shrink or slow tumor growth and do not eliminate cancer completely. The bone microenvironment contributes unique signals that influence cancer growth, immunogenicity, and metastasis. Traditional cancer therapies have limited effectiveness due to off-target effects and poor distribution on bones. As a result, therapies with improved specificity and efficacy for treating bone tumors are highly needed. One of the most promising strategies involves the targeted delivery of pharmaceutical agents to the site of bone cancer by introduction of bone-targeting moieties, such as bisphosphonates or oligopeptides. These moieties have high affinities to the bone hydroxyapatite matrix, a structure found exclusively in skeletal tissue, and can enhance the targeting ability and efficacy of anticancer drugs when combating bone tumors. This review focuses on the engineering of small molecules and proteins with bone-targeting moieties for the treatment of bone tumors.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Humanos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/terapia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Difosfonatos/uso terapêutico , Difosfonatos/farmacologia , Difosfonatos/química , Sistemas de Liberação de Medicamentos/métodos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/terapia , Terapia de Alvo Molecular/métodos , Microambiente Tumoral/efeitos dos fármacos
13.
Pediatr Blood Cancer ; 71(6): e30938, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520670

RESUMO

PURPOSE: Pepinemab, a humanized IgG4 monoclonal antibody, targets the SEMA4D (CD100) antigen to inhibit binding to its high-affinity receptors (plexin B1/PLXNB1, plexin B2/PLXNB2) and low-affinity receptor (CD72). SEMA4D blockade leads to increased cytotoxic T-cell infiltration, delayed tumor growth, and durable tumor rejection in murine tumor models. Pepinemab was well tolerated and improved T cell infiltration in clinical studies in adults with refractory tumors. SEMA4D was identified as a strong candidate proto-oncogene in a model of osteosarcoma. Based on these preclinical and clinical data, we conducted a phase 1/2 study to determine the recommended phase 2 dose (RP2D), pharmacokinetics, pharmacodynamics, and immunogenicity, of pepinemab in pediatric patients with recurrent/refractory solid tumors, and activity in osteosarcoma. EXPERIMENTAL DESIGN: Pepinemab was administered intravenously on Days 1 and 15 of a 28-day cycle at 20 mg/kg, the adult RP2D. Part A (phase 1) used a Rolling 6 design; Part B (phase 2) used a Simon 2-stage design in patients with osteosarcoma. Pharmacokinetics and target saturation were evaluated in peripheral blood. RESULTS: Pepinemab (20 mg/kg) was well tolerated and no dose-limiting toxicities were observed during Part A. There were no objective responses. Two patients with osteosarcoma achieved disease control and prolonged stable disease. Pepinemab pharmacokinetics were similar to adults. CONCLUSIONS: Pepinemab (20 mg/kg) is safe, well tolerated and resulted in adequate and sustained target saturation in pediatric patients. Encouraging disease control in two patients with osteosarcoma warrants further investigation with novel combination strategies to modulate the tumor microenvironment and antitumor immune response. CLINICAL TRIAL REGISTRY: This trial is registered as NCT03320330 at Clinicaltrials.gov. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Assuntos
Recidiva Local de Neoplasia , Neoplasias , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Adulto Jovem , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Resistencia a Medicamentos Antineoplásicos , Dose Máxima Tolerável , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia
14.
Chem Biodivers ; 21(5): e202301833, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456582

RESUMO

Hispidin was initially discovered in basidiomycete Inonotus hispidus (Bull.) P. Karst and this extraordinary compound possesses immense potency and can be extracted from the wild mushroom through specialized bioreactor cultivation techniques. In our study, we isolated it from Inonotus hispidus (Bull.) P. Karst., with a yield of 3.6 %. We identified and characterized hispidin through the implementation of spectroscopic techniques such as FTIR, NMR, and MS. Additionally, we utilized Thermogravimetric Analysis for thermal characterization of the compound. Computational studies based on DFT were performed to investigate the molecular structure, electronic properties, and chemical reactivity of hispidin. PASS analysis for hispidin demonstrated that 19 of them are anti-neoplastic activities. The Pharmacology prediction of hispidin confirm that it is not toxic, non-carcinogenesis with a good human intestinal absorption. The effect of hispidin on the viability of bone cancer cells was evaluated by MTT assay. The results showed that hispidin significantly reduced SaoS2 cell viability in a dose-dependent manner. Molecular docking was carried out using five targets related to bone cancer to determine the interactions between hispidin and the studied proteins. The results demonstrate that hispidin is a good inhibitor for the five targets. Dynamic simulation shows a good stability of the complex hispidin-protein.


Assuntos
Antineoplásicos , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Osteossarcoma , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Piranos/farmacologia , Piranos/química , Piranos/isolamento & purificação , Relação Dose-Resposta a Droga , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Relação Estrutura-Atividade
15.
Aging (Albany NY) ; 16(5): 4579-4590, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428404

RESUMO

Osteosarcoma is a cancer originating in the bone cells, specifically in the osteoblasts. Previous studies mainly focused on particular molecules but the whole pathway network. We comprehensively analyzed the enrichment score of each signal pathway and identified a novel classification by 20 machine learning algorithms. Furthermore, differences in tumor immune infiltration cells and drug sensitivity were compared in low and high groups. We identified a model consisting of four signaling pathways that predict the prognosis and the immune status of the tumor microenvironment and drug sensitivity in osteosarcoma patients. The novel classification may be used in clinical applications to predict prognosis and drug sensitivity.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteoblastos , Prognóstico , Algoritmos , Microambiente Tumoral/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética
16.
Inorg Chem ; 63(11): 4925-4938, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38442008

RESUMO

Osteosarcoma cancers are becoming more common in children and young adults, and existing treatments have low efficacy and a very high mortality rate, making it pressing to search for new chemotherapies with high efficacy and high selectivity index. Copper complexes have shown promise in the treatment of osteosarcoma. Here, we report the synthesis, characterization, and anticancer activity of [Cu(N-N-Fur)(NO3)(H2O)] complex where N-N-Fur is (E)-N'-(2-hydroxy-3-methoxybenzylidene)furan-2-carbohydrazide. The [Cu(N-N-Fur)(NO3)(H2O)] complex was characterized via X-ray diffraction and electron spin resonance (ESR), displaying a copper center in a nearly squared pyramid environment with the nitrate ligand acting as a fifth ligand in the coordination sphere. We observed that [Cu(N-N-Fur)(NO3)(H2O)] binds to DNA in an intercalative manner. Anticancer activity on the MG-63 cell line was evaluated in osteosarcoma monolayer (IC50 2D: 1.1 ± 0.1 µM) and spheroids (IC50 3D: 16.3 ± 3.1 µM). Selectivity assays using nontumoral fibroblast (L929 cell line) showed that [Cu(N-N-Fur)(NO3)(H2O)] has selectivity index value of 2.3 compared to cis-diamminedichloroplatinum(II) (CDDP) (SI = 0.3). Additionally, flow cytometry studies demonstrated that [Cu(N-N-Fur)(NO3)(H2O)] inhibits cell proliferation and conveys cells to apoptosis. Cell viability studies of MG-63 spheroids (IC50 = 16.3 ± 3.1 µM) showed that its IC50 value is 4 times lower than for CDDP (IC50 = 65 ± 6 µM). Besides, we found that cell death events mainly occurred in the center region of the spheroids, indicating efficient transport to the microtumor. Lastly, the complex showed dose-dependent reductions in spheroid cell migration from 7.5 to 20 µM, indicating both anticancer and antimetastatic effects.


Assuntos
Nativos do Alasca , Neoplasias Ósseas , Osteossarcoma , Criança , Adulto Jovem , Humanos , Cobre/farmacologia , Ligantes , Osteossarcoma/tratamento farmacológico , Cisplatino
17.
J Immunother Cancer ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38519053

RESUMO

BACKGROUND: The survival benefit observed in children with neuroblastoma (NB) and minimal residual disease who received treatment with anti-GD2 monoclonal antibodies prompted our investigation into the safety and potential clinical benefits of anti-CD3×anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs). Preclinical studies demonstrated the high cytotoxicity of GD2BATs against GD2+cell lines, leading to the initiation of a phase I/II study in recurrent/refractory patients. METHODS: The 3+3 dose escalation phase I study (NCT02173093) encompassed nine evaluable patients with NB (n=5), osteosarcoma (n=3), and desmoplastic small round cell tumors (n=1). Patients received twice-weekly infusions of GD2BATs at 40, 80, or 160×106 GD2BATs/kg/infusion complemented by daily interleukin-2 (300,000 IU/m2) and twice-weekly granulocyte macrophage colony-stimulating factor (250 µg/m2). The phase II segment focused on patients with NB at the dose 3 level of 160×106 GD2BATs/kg/infusion. RESULTS: Of the 12 patients enrolled, 9 completed therapy in phase I with no dose-limiting toxicities. Mild and manageable cytokine release syndrome occurred in all patients, presenting as grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody-associated pain was minimal. Median overall survival (OS) for phase I and the limited phase II was 18.0 and 31.2 months, respectively, with a combined OS of 21.1 months. A phase I NB patient had a complete bone marrow response with overall stable disease. In phase II, 10 of 12 patients were evaluable: 1 achieved partial response, and 3 showed clinical benefit with prolonged stable disease. Over 50% of evaluable patients exhibited augmented immune responses to GD2+targets post-GD2BATs, as indicated by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. CONCLUSIONS: This study demonstrated the safety of GD2BATs up to 160×106 cells/kg/infusion. Coupled with evidence of post-treatment endogenous immune responses, our findings support further investigation of GD2BATs in larger phase II clinical trials.


Assuntos
Antineoplásicos , Neuroblastoma , Osteossarcoma , Criança , Humanos , Linfócitos T/patologia , Neuroblastoma/patologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Osteossarcoma/tratamento farmacológico
18.
J Tradit Chin Med ; 44(2): 251-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504531

RESUMO

OBJECTIVE: To investigate the synergistic effects of polyphyllin I (PPI) combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the growth of osteosarcoma cells through downregulating the Wnt/ß-catenin signaling pathway. METHODS: Cell viability, apoptosis and cell cycle distribution were examined using cell counting kit-8 and flow cytometry assays. The morphology of cancer cells was observed with inverted phase contrast microscope. The migration and invasion abilities were examined by xCELLigence real time cell analysis DP system and transwell assays. The expressions of poly (adenosine diphosphate-ribose) polymerase, C-Myc, Cyclin B1, cyclin-dependent kinases 1, N-cadherin, Vimentin, Active-ß-catenin, ß-catenin, p-glycogen synthase kinase 3ß (GSK-3ß) and GSK-3ß were determined by Western blotting assay. RESULTS: PPI sensitized TRAIL-induced decrease of viability, migration and invasion, as well as increase of apoptosis and cell cycle arrest of MG-63 and U-2 OS osteosarcoma cells. The synergistic effect of PPI with TRAIL in inhibiting the growth of osteosarcoma cells was at least partially realized through the inactivation of Wnt/ß-catenin signaling pathway. CONCLUSION: The combination of PPI and TRAIL is potentially a novel treatment strategy of osteosarcoma.


Assuntos
Neoplasias Ósseas , Diosgenina/análogos & derivados , Osteossarcoma , Humanos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Ligantes , Linhagem Celular Tumoral , Proliferação de Células , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ciclo Celular , Apoptose , Fator de Necrose Tumoral alfa/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Movimento Celular
19.
J Nanobiotechnology ; 22(1): 89, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433190

RESUMO

Despite advances in surgery and chemotherapy, the survival of patients with osteosarcoma (OS) has not been fundamentally improved over the last two decades. Microvesicles (MVs) have a high cargo-loading capacity and are emerging as a promising drug delivery nanoplatform. The aim of this study was to develop MVs as specifically designed vehicles to enable OS-specific targeting and efficient treatment of OS. Herein, we designed and constructed a nanoplatform (YSA-SPION-MV/MTX) consisting of methotrexate (MTX)-loaded MVs coated with surface-carboxyl Fe3O4 superparamagnetic nanoparticles (SPIONs) conjugated with ephrin alpha 2 (EphA2)-targeted peptides (YSAYPDSVPMMS, YSA). YSA-SPION-MV/MTX showed an effective targeting effect on OS cells, which was depended on the binding of the YSA peptide to EphA2. In the orthotopic OS mouse model, YSA-SPION-MV/MTX effectively delivered drugs to tumor sites with specific targeting, resulting in superior anti-tumor activity compared to MTX or MV/MTX. And YSA-SPION-MV/MTX also reduced the side effects of high-dose MTX. Taken together, this strategy opens up a new avenue for OS therapy. And we expect this MV-based therapy to serve as a promising platform for the next generation of precision cancer nanomedicines.


Assuntos
Neoplasias Ósseas , Micropartículas Derivadas de Células , Osteossarcoma , Animais , Humanos , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Efrinas , Metotrexato/administração & dosagem , Metotrexato/uso terapêutico , Osteossarcoma/tratamento farmacológico
20.
Drug Dev Res ; 85(2): e22167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444106

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor and is prevalent in children, adolescents, and elderly individuals. It has the characteristics of high invasion and metastasis. Neoadjuvant chemotherapy combined with surgical resection is the most commonly used treatment for OS. However, the efficacy of OS is considerably diminished by chemotherapy resistance. In recent years, noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are hot topics in the field of chemotherapy resistance research. Several studies have demonstrated that ncRNAs are substantially associated with chemoresistance in OS. Thus, the present study overviews the abnormally expressed ncRNAs in OS and the molecular mechanisms involved in chemoresistance, with an emphasis on their function in promoting or inhibiting chemoresistance. ncRNAs are expected to become potential therapeutic targets for overcoming drug resistance and predictive biomarkers in OS, which are of great significance for enhancing the therapeutic effect and improving the prognosis.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Adolescente , Criança , Idoso , Humanos , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/genética , RNA não Traduzido/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA