Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.353
Filtrar
1.
Mikrochim Acta ; 191(5): 296, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702534

RESUMO

A covalent organic framework-based strategy was designed for label-free colorimetric detection of pesticides. Covalent organic framework-based nanoenzyme with excellent oxidase-like catalytic activity was synthesized. Unlike other artificial enzymes, porphyrin-based covalent organic framework (p-COF) as the oxidase mimic showed highly catalytic chromogenic activity and good affinity toward TMB without the presence of H2O2, which can be used as substitute for peroxidase mimics and H2O2 system in the colorimetric reaction. Based on the fact that the pesticide-aptamer complex can inhibit the oxidase activity of p-COF and reduced the absorbance at 650 nm in UV-Vis spectrum, a label-free and facile colorimetric detection of pesticides was designed and fabricated. Under the optimized conditions, the COF-based colorimetric probe for pesticide detection displayed high sensitivity and selectivity. Taking fipronil for example the limit of detection was 2.7 ng/mL and the linear range was 5 -500,000 ng/mL. The strategy was successfully applied to the detection of pesticides with good recovery , which was in accordance with that of HPLC-MS/MS. The COF-based colorimetric detection was free of complicated modification H2O2, which guaranteed the accuracy and reliability of measurements. The COF-based sensing strategy is a potential candidate for the sensitive detection of pesticides of interests.


Assuntos
Colorimetria , Limite de Detecção , Estruturas Metalorgânicas , Praguicidas , Porfirinas , Colorimetria/métodos , Praguicidas/análise , Estruturas Metalorgânicas/química , Porfirinas/química , Peróxido de Hidrogênio/química , Oxirredutases/química , Aptâmeros de Nucleotídeos/química
2.
Protein Sci ; 33(6): e4997, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723110

RESUMO

Rieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPADO PDB ID 7Q05) is a structurally characterized heterohexameric α3ß3 RO that, with its cognate reductase (TPARED), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion. Here, we showed that the heterologously expressed TPADO/TPARED system exhibits only ~300 total turnovers at its optimal pH and temperature. We investigated the thermal stability of the system and the unfolding pathway of TPADO through a combination of biochemical and biophysical approaches. The system's activity is thermally limited by a melting temperature (Tm) of 39.9°C for the monomeric TPARED, while the independent Tm of TPADO is 50.8°C. Differential scanning calorimetry revealed a two-step thermal decomposition pathway for TPADO with Tm values of 47.6 and 58.0°C (ΔH = 210 and 509 kcal mol-1, respectively) for each step. Temperature-dependent small-angle x-ray scattering and dynamic light scattering both detected heat-induced dissociation of TPADO subunits at 53.8°C, followed by higher-temperature loss of tertiary structure that coincided with protein aggregation. The computed enthalpies of dissociation for the monomer interfaces were most congruent with a decomposition pathway initiated by ß-ß interface dissociation, a pattern predicted to be widespread in ROs. As a strategy for enhancing TPADO stability, we propose prioritizing the re-engineering of the ß subunit interfaces, with subsequent targeted improvements of the subunits.


Assuntos
Estabilidade Enzimática , Oxirredutases/química , Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Modelos Moleculares , Dioxigenases/química , Dioxigenases/metabolismo , Dioxigenases/genética , Temperatura , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Concentração de Íons de Hidrogênio , Complexo III da Cadeia de Transporte de Elétrons
3.
Nat Commun ; 15(1): 3802, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714719

RESUMO

The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.


Assuntos
Microscopia Crioeletrônica , Ferritinas , Coativadores de Receptor Nuclear , Ferritinas/metabolismo , Ferritinas/química , Ferritinas/genética , Humanos , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/química , Coativadores de Receptor Nuclear/genética , Ligação Proteica , Sítios de Ligação , Ferro/metabolismo , Autofagia , Modelos Moleculares , Células HEK293 , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/genética , Proteólise , Mutação
4.
Protein Sci ; 33(6): e5014, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747384

RESUMO

A heterodisulfide reductase-like complex (sHdr) and novel lipoate-binding proteins (LbpAs) are central players of a wide-spread pathway of dissimilatory sulfur oxidation. Bioinformatic analysis demonstrate that the cytoplasmic sHdr-LbpA systems are always accompanied by sets of sulfur transferases (DsrE proteins, TusA, and rhodaneses). The exact composition of these sets may vary depending on the organism and sHdr system type. To enable generalizations, we studied model sulfur oxidizers from distant bacterial phyla, that is, Aquificota and Pseudomonadota. DsrE3C of the chemoorganotrophic Alphaproteobacterium Hyphomicrobium denitrificans and DsrE3B from the Gammaproteobacteria Thioalkalivibrio sp. K90mix, an obligate chemolithotroph, and Thiorhodospira sibirica, an obligate photolithotroph, are homotrimers that donate sulfur to TusA. Additionally, the hyphomicrobial rhodanese-like protein Rhd442 exchanges sulfur with both TusA and DsrE3C. The latter is essential for sulfur oxidation in Hm. denitrificans. TusA from Aquifex aeolicus (AqTusA) interacts physiologically with AqDsrE, AqLbpA, and AqsHdr proteins. This is particularly significant as it establishes a direct link between sulfur transferases and the sHdr-LbpA complex that oxidizes sulfane sulfur to sulfite. In vivo, it is unlikely that there is a strict unidirectional transfer between the sulfur-binding enzymes studied. Rather, the sulfur transferases form a network, each with a pool of bound sulfur. Sulfur flux can then be shifted in one direction or the other depending on metabolic requirements. A single pair of sulfur-binding proteins with a preferred transfer direction, such as a DsrE3-type protein towards TusA, may be sufficient to push sulfur into the sink where it is further metabolized or needed.


Assuntos
Proteínas de Bactérias , Oxirredução , Oxirredutases , Enxofre , Sulfurtransferases , Enxofre/metabolismo , Sulfurtransferases/metabolismo , Sulfurtransferases/química , Sulfurtransferases/genética , Oxirredutases/metabolismo , Oxirredutases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
5.
Appl Microbiol Biotechnol ; 108(1): 323, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713233

RESUMO

Ergot alkaloids (EAs) are a diverse group of indole alkaloids known for their complex structures, significant pharmacological effects, and toxicity to plants. The biosynthesis of these compounds begins with chanoclavine-I aldehyde (CC aldehyde, 2), an important intermediate produced by the enzyme EasDaf or its counterpart FgaDH from chanoclavine-I (CC, 1). However, how CC aldehyde 2 is converted to chanoclavine-I acid (CC acid, 3), first isolated from Ipomoea violacea several decades ago, is still unclear. In this study, we provide in vitro biochemical evidence showing that EasDaf not only converts CC 1 to CC aldehyde 2 but also directly transforms CC 1 into CC acid 3 through two sequential oxidations. Molecular docking and site-directed mutagenesis experiments confirmed the crucial role of two amino acids, Y166 and S153, within the active site, which suggests that Y166 acts as a general base for hydride transfer, while S153 facilitates proton transfer, thereby increasing the acidity of the reaction. KEY POINTS: • EAs possess complicated skeletons and are widely used in several clinical diseases • EasDaf belongs to the short-chain dehydrogenases/reductases (SDRs) and converted CC or CC aldehyde to CC acid • The catalytic mechanism of EasDaf for dehydrogenation was analyzed by molecular docking and site mutations.


Assuntos
Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Alcaloides de Claviceps/biossíntese , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Aldeídos/metabolismo , Aldeídos/química , Oxirredução , Domínio Catalítico , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química
6.
Anal Chim Acta ; 1308: 342664, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740454

RESUMO

Nanozymes is a kind of nanomaterials with enzyme catalytic properties. Compared with natural enzymes, nanozymes merge the advantages of both nanomaterials and natural enzymes, which is highly important in applications such as biosensing, clinical diagnosis, and food inspection. In this study, we prepared ß-MnOOH hexagonal nanoflakes with a high oxygen vacancy ratio by utilizing SeO2 as a sacrificial agent. The defect-rich MnOOH hexagonal nanoflakes demonstrated excellent oxidase-like activity, catalyzing the oxidation substrate in the presence of O2, thereby rapidly triggering a color reaction. Consequently, a colorimetric sensing platform was constructed to assess the total antioxidant capacity in commercial beverages. The strategy of introducing defects in situ holds great significance for the synthesis of a series of high-performance metal oxide nanozymes, driving the development of faster and more efficient biosensing and analysis methods.


Assuntos
Antioxidantes , Compostos de Manganês , Óxidos , Óxidos/química , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/análise , Compostos de Manganês/química , Colorimetria , Oxirredutases/química , Oxirredutases/metabolismo , Oxirredução , Nanoestruturas/química , Catálise
7.
Acc Chem Res ; 57(9): 1446-1457, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38603772

RESUMO

ConspectusEnzymes are desired catalysts for chemical synthesis, because they can be engineered to provide unparalleled levels of efficiency and selectivity. Yet, despite the astonishing array of reactions catalyzed by natural enzymes, many reactivity patterns found in small molecule catalysts have no counterpart in the living world. With a detailed understanding of the mechanisms utilized by small molecule catalysts, we can identify existing enzymes with the potential to catalyze reactions that are currently unknown in nature. Over the past eight years, our group has demonstrated that flavin-dependent "ene"-reductases (EREDs) can catalyze various radical-mediated reactions with unparalleled levels of selectivity, solving long-standing challenges in asymmetric synthesis.This Account presents our development of EREDs as general catalysts for asymmetric radical reactions. While we have developed multiple mechanisms for generating radicals within protein active sites, this account will focus on examples where flavin mononucleotide hydroquinone (FMNhq) serves as an electron transfer radical initiator. While our initial mechanistic hypotheses were rooted in electron-transfer-based radical initiation mechanisms commonly used by synthetic organic chemists, we ultimately uncovered emergent mechanisms of radical initiation that are unique to the protein active site. We will begin by covering intramolecular reactions and discussing how the protein activates the substrate for reduction by altering the redox-potential of alkyl halides and templating the charge transfer complex between the substrate and flavin-cofactor. Protein engineering has been used to modify the fundamental photophysics of these reactions, highlighting the opportunity to tune these systems further by using directed evolution. This section highlights the range of coupling partners and radical termination mechanisms available to intramolecular reactions.The next section will focus on intermolecular reactions and the role of enzyme-templated ternary charge transfer complexes among the cofactor, alkyl halide, and coupling partner in gating electron transfer to ensure that it only occurs when both substrates are bound within the protein active site. We will highlight the synthetic applications available to this activation mode, including olefin hydroalkylation, carbohydroxylation, arene functionalization, and nitronate alkylation. This section also discusses how the protein can favor mechanistic steps that are elusive in solution for the asymmetric reductive coupling of alkyl halides and nitroalkanes. We are aware of several recent EREDs-catalyzed photoenzymatic transformations from other groups. We will discuss results from these papers in the context of understanding the nuances of radical initiation with various substrates.These biocatalytic asymmetric radical reactions often complement the state-of-the-art small-molecule-catalyzed reactions, making EREDs a valuable addition to a chemist's synthetic toolbox. Moreover, the underlying principles studied with these systems are potentially operative with other cofactor-dependent proteins, opening the door to different types of enzyme-catalyzed radical reactions. We anticipate that this Account will serve as a guide and inspire broad interest in repurposing existing enzymes to access new transformations.


Assuntos
Oxirredutases , Oxirredutases/metabolismo , Oxirredutases/química , Radicais Livres/química , Radicais Livres/metabolismo , Biocatálise , Flavinas/química , Flavinas/metabolismo , Hidroquinonas/química , Hidroquinonas/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Transporte de Elétrons
8.
Food Chem ; 448: 139170, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579558

RESUMO

Current nanozyme applications rely heavily on peroxidase-like nanozymes and are limited to a specific temperature range, despite notable advancements in nanozyme development. In this work, we designed novel Mn-based metal organic frameworks (UoZ-4), with excellent oxidase mimic activity towards common substrates. UoZ-4 showed excellent oxidase-like activity (with Km 0.072 mM) in a wide range of temperature, from 10 °C to 100 °C with almost no activity loss, making it a very strong candidate for psychrophilic and thermophilic applications. Ascorbic acid, cysteine, and glutathione could quench the appearance of the blue color of oxTMB, led us to design a visual-based sensing platform for detection of total antioxidant capacity (TAC) in cold, mild and hot conditions. The visual mode successfully assessed TAC in citrus fruits with satisfactory recovery and precisions. Cold/hot adapted and magnetic property will broaden the horizon of nanozyme applications and breaks the notion of the temperature limitation of enzymes.


Assuntos
Antioxidantes , Citrus , Frutas , Manganês , Estruturas Metalorgânicas , Oxirredutases , Temperatura , Citrus/química , Citrus/metabolismo , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/análise , Frutas/química , Frutas/metabolismo , Manganês/metabolismo , Manganês/química , Manganês/análise , Estruturas Metalorgânicas/química , Oxirredutases/metabolismo , Oxirredutases/química
9.
Methods Enzymol ; 696: 231-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658081

RESUMO

Nonheme iron enzymes stand out as one of the most versatile biocatalysts for molecular functionalization. They facilitate a wide array of chemical transformations within biological processes, including hydroxylation, chlorination, epimerization, desaturation, cyclization, and more. Beyond their native biological functions, these enzymes possess substantial potential as powerful biocatalytic platforms for achieving abiological metal-catalyzed reactions, owing to their functional and structural diversity and high evolvability. To this end, our group has recently engineered a series of nonheme iron enzymes to employ non-natural radical-relay mechanisms for abiological radical transformations not previously known in biology. Notably, we have demonstrated that a nonheme iron enzyme, (S)-2-hydroxypropylphosphonate epoxidase from Streptomyces viridochromogenes (SvHppE), can be repurposed into an efficient and selective biocatalyst for radical fluorine transfer reactions. This marks the first known instance of a redox enzymatic process for C(sp3)F bond formation. This chapter outlines the detailed experimental protocol for engineering SvHPPE for fluorination reactions. Furthermore, the provided protocol could serve as a general guideline that might facilitate other engineering endeavors targeting nonheme iron enzymes for novel catalytic functions.


Assuntos
Biocatálise , Flúor , Halogenação , Engenharia de Proteínas , Streptomyces , Flúor/química , Engenharia de Proteínas/métodos , Streptomyces/enzimologia , Streptomyces/genética , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química , Oxirredução , Ferroproteínas não Heme/química , Ferroproteínas não Heme/metabolismo , Ferroproteínas não Heme/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
10.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652326

RESUMO

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Assuntos
Cobalto , Colorimetria , Glutationa Transferase , Compostos de Manganês , Nanopartículas Metálicas , Óxidos , Polietilenoimina , Prata , Polietilenoimina/química , Prata/química , Cobalto/química , Óxidos/química , Compostos de Manganês/química , Nanopartículas Metálicas/química , Colorimetria/métodos , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Limite de Detecção , Oxirredutases/química , Oxirredutases/metabolismo , Humanos , Glutationa/química , Oxirredução , Técnicas Biossensoriais/métodos , Fenilenodiaminas/química , Nanoestruturas/química
11.
Nat Commun ; 15(1): 3574, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678027

RESUMO

Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,ß-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that other CDO-like enzymes are likely enzyme filaments. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.


Assuntos
Streptomyces , Streptomyces/enzimologia , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dipeptídeos/química , Dipeptídeos/metabolismo , Oxirredutases/metabolismo , Oxirredutases/química , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Antibacterianos/biossíntese
12.
Talanta ; 274: 126074, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608632

RESUMO

Monitoring acetylcholinesterase (AChE) is crucial in clinical diagnosis and drug screening. Traditional methods for detecting AChE usually require the addition of intermediates like acetylthiocholine, which complicates the detection process and introduces interference risks. Herein, we develop a direct colorimetric assay based on alkaline iron formate nanosheets (Fe(HCOO)2.6(OH)0.3·H2O NSs, Fef NSs) for the detection of AChE without any intermediates. The as-prepared Fef NSs exhibit oxidase-like activity, catalyzing the generation of O2·-, 1O2 and ·OH, which leads to a color change from colorless to blue when exposed to 3,3',5,5'-tetramethylbenzidine. AChE directly inhibits the oxidase-like activity of Fef NSs, resulting in a hindered color reaction, enabling the detection of AChE. The biosensor has a linear detection range of 0.1-30 mU/mL, with a minimum detection limit of 0.0083 mU/mL (S/N = 3), representing a 100-fold improvement in detection sensitivity over the traditional Ellman's method. Satisfactory results were obtained when analyzing real AChE samples. Attractively, a method for the quantitative detection of AChE by a smartphone is established based on the Fef NSs. This method enables instant acquisition of AChE concentrations, achieving real-time visualized detection.


Assuntos
Acetilcolinesterase , Técnicas Biossensoriais , Colorimetria , Nanoestruturas , Smartphone , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Colorimetria/métodos , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Oxirredutases/metabolismo , Oxirredutases/química , Humanos , Compostos de Ferro/química
13.
Food Chem ; 449: 139220, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579657

RESUMO

A colorimetry/fluorescence dual-mode assay based on the aptamer-functionalized magnetic covalent organic framework-supported CuO and Au NPs (MCOF-CuO/Au@apt) was developed for Salmonella typhimurium (S. typhimurium) biosensing. The nanohybrid combined three functions in one: good magnetic separation characteristic, excellent oxidase-mimic activity for tetrap-aminophenylethylene (TPE-4A), and target recognition capability. The attachment of MCOF-CuO/Au@apt onto the surface of S. typhimurium resulted in a significant reduction in the oxidase-mimicking activity of the nanohybrid, which could generate dual-signal of colorimetry and fluorescence through the catalytic oxidation of TPE-4A. Based on this, S. typhimurium could be specifically detected in the linear ranges of 102- 106 CFU·mL-1 and 101- 106 CFU·mL-1, with LODs of 7.6 and 2.1 CFU·mL-1, respectively in colorimetry/fluorescence modes. Moreover, the smartphone and linear discrimination analysis-based system could be used for on-site and portable testing. In addition, this platform showed applicability in detecting S. typhimurium in milk, egg liquid and chicken samples.


Assuntos
Técnicas Biossensoriais , Colorimetria , Salmonella typhimurium , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/enzimologia , Animais , Técnicas Biossensoriais/instrumentação , Leite/microbiologia , Leite/química , Fluorescência , Galinhas , Ouro/química , Oxirredutases/química , Oxirredutases/metabolismo , Contaminação de Alimentos/análise , Nanopartículas Metálicas/química , Espectrometria de Fluorescência , Ovos/análise , Ovos/microbiologia
14.
J Biol Chem ; 300(4): 107210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519030

RESUMO

Flavin-dependent halogenases are central enzymes in the production of halogenated secondary metabolites in various organisms and they constitute highly promising biocatalysts for regioselective halogenation. The mechanism of these monooxygenases includes formation of hypohalous acid from a reaction of fully reduced flavin with oxygen and halide. The hypohalous acid then diffuses via a tunnel to the substrate-binding site for halogenation of tryptophan and other substrates. Oxidized flavin needs to be reduced for regeneration of the enzyme, which can be performed in vitro by a photoreduction with blue light. Here, we employed this photoreduction to study characteristic structural changes associated with the transition from oxidized to fully reduced flavin in PyrH from Streptomyces rugosporus as a model for tryptophan-5-halogenases. The effect of the presence of bromide and chloride or the absence of any halides on the UV-vis spectrum of the enzyme demonstrated a halide-dependent structure of the flavin-binding pocket. Light-induced FTIR difference spectroscopy was applied and the signals assigned by selective isotope labeling of the protein moiety. The identified structural changes in α-helix and ß-sheet elements were strongly dependent on the presence of bromide, chloride, the substrate tryptophan, and the product 5-chloro-tryptophan, respectively. We identified a clear allosteric coupling in solution at ambient conditions between cofactor-binding site and substrate-binding site that is active in both directions, despite their separation by a tunnel. We suggest that this coupling constitutes a fine-tuned mechanism for the promotion of the enzymatic reaction of flavin-dependent halogenases in dependence of halide and substrate availability.


Assuntos
Proteínas de Bactérias , Flavinas , Oxirredutases , Streptomyces , Oxirredutases/metabolismo , Oxirredutases/química , Flavinas/metabolismo , Flavinas/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Streptomyces/enzimologia , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Halogenação , Brometos/química , Brometos/metabolismo , Triptofano/metabolismo , Triptofano/química , Sítios de Ligação , Cloretos/metabolismo , Cloretos/química
15.
J Inorg Biochem ; 255: 112534, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552360

RESUMO

The family of flavodiiron proteins (FDPs) plays an important role in the scavenging and detoxification of both molecular oxygen and nitric oxide. Using electrons from a flavin mononucleotide cofactor molecular oxygen is reduced to water and nitric oxide is reduced to nitrous oxide and water. While the mechanism for NO reduction in FDPs has been studied extensively, there is very little information available about O2 reduction. Here we use hybrid density functional theory (DFT) to study the mechanism for O2 reduction in FDPs. An important finding is that a proton coupled reduction is needed after the O2 molecule has bound to the diferrous diiron active site and before the OO bond can be cleaved. This is in contrast to the mechanism for NO reduction, where both NN bond formation and NO bond cleavage occurs from the same starting structure without any further reduction, according to both experimental and computational results. This computational result for the O2 reduction mechanism should be possible to evaluate experimentally. Another difference between the two substrates is that the actual OO bond cleavage barrier is low, and not involved in rate-limiting the reduction process, while the barrier connected with bond cleavage/formation in the NO reduction process is of similar height as the rate-limiting steps. We suggest that these results may be part of the explanation for the generally higher activity for O2 reduction as compared to NO reduction in most FDPs. Comparisons are also made to the O2 reduction reaction in the family of heme­copper oxidases.


Assuntos
Heme , Óxido Nítrico , Óxido Nítrico/metabolismo , Heme/química , Oxirredutases/química , Ceruloplasmina/metabolismo , Oxigênio/química , Água/metabolismo , Oxirredução
16.
J Biotechnol ; 386: 19-27, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38521166

RESUMO

Vanillin is a valuable natural product that can be used as a fragrance and additive. Recent research in the biosynthesis of vanillin has brought attention to a key enzyme, carboxylic acid reductase (CAR), which catalyzes the reduction of vanillic acid to vanillin. Nevertheless, the biosynthesis of vanillin is hampered by the low activity and stability of CAR. As such, a rational design campaign was conducted on a well-documented carboxylic acid reductase from Segniliparus rugosus (SrCAR), using vanillic acid as the model substrate. After combined active site saturation and iterative site-specific mutagenesis, the best quadruple mutant N292H/K524S/A627L/E1121W (M3) was successfully obtained. In comparison to the wildtype SrCAR, M3 demonstrated a 4.2-fold increase in catalytic efficiency (kcat/Km), and its half-life (t1/2) was enhanced by 3.8 times up to 385.08 minutes at 40 °C. In silico docking and molecular dynamics simulation provided insights into the improved activity and stability. In the subsequent preparative-scale reaction with 100 mM (16.8 g L-1) vanillic acid, the whole cell catalysis utilizing M3 produced 10.15 g·L-1 of vanillin and 1.11 g·L-1 of vanillyl alcohol, respectively. This work demonstrates a dual improvement in the activity and thermal stability of SrCAR, thereby potentially facilitating the application of carboxylic acid reductase in the biosynthesis of vanillin.


Assuntos
Oxirredutases , Ácido Vanílico , Oxirredutases/química , Benzaldeídos
17.
Anal Methods ; 16(14): 2044-2050, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38501322

RESUMO

The preparation of cobalt-based nanozymes with high oxidase-like activity still needs more efforts. In this paper, we report the synthesis of a CoO/Co-tryptophan-functional graphene quantum dot hybrid (CoO/Co-Try-GQD). Firstly, cobalt ions coordinate with the indole nitrogen on Try-GQD to form a complex, followed by thermal reduction and oxidation. The resulting hybrid presents a three-dimensional network structure, and CoO/Co nanoparticles are uniformly dispersed on the graphene sheet with an average size of 10 ± 0.24 nm. This unique structure improved the oxidase-like activity of the hybrid, enabling it to catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to rapidly produce deep blue ox-TMB with a strong absorbance at 652 nm (A652). A colorimetric method was developed for the highly sensitive determination of L-cysteine (L-cys) based on the inhibition of the hybrid's oxidase-like activity and low A652 caused by the binding of L-cys with Co atoms on CoO/Co via the Co-S bond. The A652 linearly decreased with increasing L-cys concentration in the range of 0.05-2 µM, and the detection limit was 0.032 µM. Further, the established method has been successfully applied to the determination of L-cys in milk.


Assuntos
Benzidinas , Grafite , Pontos Quânticos , Grafite/química , Cisteína/metabolismo , Pontos Quânticos/química , Colorimetria/métodos , Oxirredutases/química , Oxirredutases/metabolismo , Cobalto/química , Estresse Oxidativo
18.
Mikrochim Acta ; 191(4): 213, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512701

RESUMO

Strontium-90 (90Sr) is a major radioactive component that has attracted great attention, but its detection remains challenging since there are no specific energy rays indicative of its presence. Herein, a biosensor that is capable of rapidly detecting Sr2+ ions is demonstrated. Simple colorimetric method for sensitive detection of Sr2+ with the help of single-stranded DNA was developed by preparing MnO2 nanorods as oxidase mimic catalysis 3,3',5,5'-tetramethylbenzidine (TMB). Under weakly acidic conditions, MnO2 exhibited a strong oxidase-mimicking activity to oxidize colorless TMB into blue oxidation products (oxTMB) with discernible absorbance signals. Nevertheless, the introduction of a guanine-rich DNA aptamer inhibited MnO2-mediated TMB oxidation and reduced oxTMB formation, resulting in blue fading and diminished absorbance. Upon the addition of strontium ions to the system, the aptamers formed a stable G-quadruplex structure with strontium ions, thereby restoring the oxidase-mimicking activity of MnO2. Under the best experimental conditions, the absorbance exhibits a linear relationship with the Sr2+ concentration within the range 0.01-200 µM, with a limit of detection of 0.0028 µM. When the concentration of Sr2+ from 10-8 to 10-6 mol L-1, a distinct color change gradient could be observed in paper-based sensor. We successfully applied this approach to determine Sr2+ in natural water samples, obtaining recoveries ranging from 97.6 to 103% with a relative standard deviation of less than 5%. By providing technical solutions for detection, our work contributed to the effective monitoring of transportation of radioactive Sr in the environment.


Assuntos
Técnicas Biossensoriais , Quadruplex G , Nanotubos , Oxirredutases/química , Óxidos/química , Colorimetria/métodos , Compostos de Manganês/química , Estrôncio , DNA , Técnicas Biossensoriais/métodos
19.
Food Chem ; 447: 138919, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452538

RESUMO

The content of gallic acid (GA) is positively correlated with the quality grade of tea. Here, we developed a colorimetric method based on raspberry-like N-doped Mn3O4 nanospheres (N-Mn3O4 NSs) with oxidase-like activity for GA assay. Modulating the electronic structure of Mn3O4 by N doping could promote the catalysis ability, and the produced oxygen vacancies (OVs) can provide high surface energy and abundant active sites. The N-Mn3O4 NSs presented low Michaelis-Menten constant (Km) of 0.142 mM and maximum initial velocity (Vmax) of 9.8 × 10-6 M s-1. The sensor exhibited excellent analytical performance towards GA detection, including low LOD (0.028 µM) and promising linear range (5 âˆ¼ 30 µM). It is attributed that OVs and O2- participated in TMB oxidation. Based on the reaction color changes, a visualized semi-quantitative GA detection could be realized via a smartphone-based system. It could be applied for evaluating GA quality in market-purchased black tea and green tea.


Assuntos
Oxirredutases , Rubus , Oxirredutases/química , Oxigênio , Colorimetria/métodos , Ácido Gálico , Smartphone , Peróxido de Hidrogênio
20.
Mikrochim Acta ; 191(4): 200, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488888

RESUMO

A single-holed cobalt - nitrogen - carbon (Co - N - C) hollow structure nanozyme has been fabricated by in situ growth of zeolitic imidazolate framework (ZIF - 67) on the polystyrene (PS) sphere and following treatment by high-temperature carbonization. The Co - N - C nanostructure mimics the activity of oxidase and can activate O2 into reactive oxygen species (ROS), giving a remarkable enhancement on the chemiluminescence (CL) signal of luminol - O2 reaction. The Co - N - C oxidase mimic has further been exploited in the biosensing field by the determination of the activity of ß - galactosidase (ß - gal). The CL method for ß - gal activity has a linear range of 0.5 mU·L-1 to 5.0 U·L-1, a detection limit of 0.167 mU·L-1, and the precision of 3.1% (5.0 U·L-1, n = 11). This method has been employed to assess inhibitor screening of ß - gal and determine activity of ß - gal in spiked human serum samples.


Assuntos
Carbono , Oxirredutases , Humanos , Oxirredutases/química , Carbono/química , Cobalto/química , Nitrogênio , Luminescência , Galactosidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA