Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34403986

RESUMO

INTRODUCTION: Prostacyclin (PGI2) is synthetized by PGI2 synthase (PGIS) and induces vasorelaxation via activation of cyclic AMP (cAMP) generating IP-receptor. Several components of the PGI2 signaling pathway are reduced in patients with pulmonary hypertension (PH). AIM: To study the effect of 17ß-estradiol (E2) on the PGI2 signaling pathway in human pulmonary arteries (HPA) and in their smooth muscle cells (hPASMC) derived from Group-3 PH and non-PH patients. METHODS: Following E2-treatments of isolated HPA and cultured hPASMC, we measured: 6-keto-Prostaglandin F1α (PGI2 stable metabolite) by ELISA, PGIS and IP protein levels by Western blot and HPA vasorelaxations with an organ bath system. RESULTS: Incubation with E2 (24/48 h, doses ≥ 10 nM) significantly increased the expression of PGIS in hPASMC derived from both PH (65-98%) and non-PH (21-33%) patients, whereas incubation with E2 (2 h, 0.1 and 1 µM) increased 6-keto-PGF1α production in HPA from Group-3 PH patients only, and did not affect 6-keto-PGF1α production in hPASMC from either non-PH or Group-3 PH patients. Increases in IP receptor expression were observed following 10 mM E2-treatment of hPASMC from non-PH (33% after 48 h) and Group-3 PH (23% after 24 h) patient lungs. Finally, preincubation with 100 nM E2 significantly increased arachidonic acid-induced vasorelaxation of HPA from non-PH patient lungs but not of HPA from Group-3 PH patient lungs. CONCLUSION: E2-treatment may help to restore the PGI2-pathway in Group-3 PH.


Assuntos
6-Cetoprostaglandina F1 alfa/metabolismo , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Hipertensão Pulmonar/metabolismo , Oxirredutases Intramoleculares/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Anti-Hipertensivos/farmacologia , Ácido Araquidônico/farmacologia , Estudos de Casos e Controles , Sistema Enzimático do Citocromo P-450/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Feminino , Humanos , Hipertensão Pulmonar/fisiopatologia , Oxirredutases Intramoleculares/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia
2.
J Neuroinflammation ; 18(1): 130, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116703

RESUMO

BACKGROUND: Astrocytes are the predominant glial cell type in the central nervous system (CNS) that can secrete various cytokines and chemokines mediating neuropathology in response to danger signals. D-dopachrome tautomerase (D-DT), a newly described cytokine and a close homolog of macrophage migration inhibitory factor (MIF) protein, has been revealed to share an overlapping function with MIF in some ways. However, its cellular distribution pattern and mediated astrocyte neuropathological function in the CNS remain unclear. METHODS: A contusion model of the rat spinal cord was established. The protein levels of D-DT and PGE2 synthesis-related proteinase were assayed by Western blot and immunohistochemistry. Primary astrocytes were stimulated by different concentrations of D-DT in the presence or absence of various inhibitors to examine relevant signal pathways. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. RESULTS: D-DT was inducibly expressed within astrocytes and neurons, rather than in microglia following spinal cord contusion. D-DT was able to activate the COX2/PGE2 signal pathway of astrocytes through CD74 receptor, and the intracellular activation of mitogen-activated protein kinases (MAPKs) was involved in the regulation of D-DT action. The selective inhibitor of D-DT was efficient in attenuating D-DT-induced astrocyte production of PGE2 following spinal cord injury, which contributed to the improvement of locomotor functions. CONCLUSION: Collectively, these data reveal a novel inflammatory activator of astrocytes following spinal cord injury, which might be beneficial for the development of anti-inflammation drug in neuropathological CNS.


Assuntos
Astrócitos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Oxirredutases Intramoleculares/metabolismo , Doenças Neuroinflamatórias/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação de Linfócitos B/metabolismo , Técnicas de Cultura de Células , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe II/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
3.
Toxicol Lett ; 319: 197-203, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785464

RESUMO

The chemical warfare agent sulfur mustard (SM) affects all cells in the epidermis including melanocytes which are responsible for melanin synthesis. After exposure to SM, pigment abnormalities like hypo- and hyperpigmentation can occur. The underlying molecular pathomechanisms of SM exposure on human melanogenesis have not been elucidated so far. In our study, we investigated the effect of SM on human melanocytes and melanogenesis. Normal human epidermal melanocytes (NHEM) were used as in vitro model and they were exposed to different concentrations of SM (4.5 µM-100 µM). Melanin production was analyzed by absorption measurements at 405 nm. In addition, quantitative real-time PCR (qPCR) and Western blot experiments were performed to determine the expression of essential melanogenesis-related proteins including tyrosinase (TYR), tyrosinase-related protein (TRP) 1 and 2 and microphthalmia transcription factor (MITF). Our findings demonstrated that exposure to low SM concentrations increased melanin synthesis accompanied with an increase in protein expression. In contrast, high SM concentrations led to decreased melanin content and a downregulation in expression of all investigated melanogenesis-associated proteins. We concluded that low SM concentrations may cause hyperpigmentation while high SM concentrations decreased melanin content which may explain hypopigmented skin areas in SM exposed patients.


Assuntos
Substâncias para a Guerra Química/toxicidade , Melaninas/biossíntese , Gás de Mostarda/toxicidade , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperpigmentação/induzido quimicamente , Hipopigmentação/induzido quimicamente , Oxirredutases Intramoleculares/efeitos dos fármacos , Melaninas/genética , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/biossíntese , Fator de Transcrição Associado à Microftalmia/genética , Monofenol Mono-Oxigenase/biossíntese , Monofenol Mono-Oxigenase/genética , Tripsina/biossíntese , Tripsina/genética
4.
Alcohol Clin Exp Res ; 43(7): 1439-1451, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31009094

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF), a pluripotent immune regulator, is an emerging mediator in alcohol-related liver disease (ALD). MIF is associated with ALD progression through its chemokine- and cytokine-like activities. METHODS: Mechanistic studies into the role of MIF in ethanol (EtOH)-induced liver injury were performed in Mif-/- mice and in C57BL/6J mice treated with a small-molecule MIF antagonist, MIF098, after Gao-Binge (acute-on-chronic) EtOH feeding, an EtOH feeding protocol associated with hepatic neutrophilia and induction of the unfolded protein response (UPR). RESULTS: The MIF axis, for example, MIF and MIF receptors invariant polypeptide of major histocompatibility complex, class II antigen-associated (CD74), CXCR2, CXCR4, and CXCR7, was enhanced in the livers of alcoholic hepatitis (AH) patients as compared to healthy controls. Mif-/- mice were protected from hepatocellular injury after Gao-Binge feeding, independent of neutrophilia and inflammation, but were associated with the UPR. Interestingly, the UPR signature in AH patients and in mice following Gao-Binge feeding was biased toward cell death with increased expression of pro-cell death CCAAT-enhancer-binding protein homologous protein (CHOP) and decreased prosurvival GRP78. The UPR and liver injury 6 hours after binge were prevented both in Mif-/- mice and in MIF098-treated mice. However, both MIF interventions led to increased liver injury and exacerbated the hepatic UPR 9 hours after binge. Induction of upstream UPR signaling and expression of CHOP protein by thapsigargin in alpha mouse liver 12 hepatocytes were blunted by coexposure to MIF098, directly connecting MIF to UPR in hepatocytes. CONCLUSIONS: The current study revealed that, in addition to its cytokine/chemokine functions, MIF is an upstream regulator of UPR in response to EtOH feeding in mice. Importantly, both MIF and UPR can either protect or contribute to liver injury, dependent upon the stage or severity of EtOH-induced liver injury.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Oxirredutases Intramoleculares/efeitos dos fármacos , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Benzoxazóis/farmacologia , Chaperona BiP do Retículo Endoplasmático , Feminino , Fator Estimulador de Colônias de Granulócitos/biossíntese , Interleucina-3/biossíntese , Oxirredutases Intramoleculares/antagonistas & inibidores , Fígado/efeitos dos fármacos , Fígado/patologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Proteínas Recombinantes de Fusão/biossíntese
5.
Head Neck ; 39(12): 2573-2584, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28963807

RESUMO

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in systemic, autoimmune, and inflammatory diseases, such as obesity, rheumatoid arthritis, and systemic lupus erythematosus. For the 2 past decades, MIF has been reported to participate in carcinogenesis, disease prognosis, tumor cell proliferation, invasion, and tumor-induced angiogenesis in many cancers. The purpose of this article is to review published experimental and clinical data for MIF and its involvement in upper aerodigestive tract cancers. Based on the current literature, we propose a biomolecular model describing the mechanisms underlying the involvement of MIF in the initiation, progression, apoptosis, and proliferation of head and neck tumor cells. In reference to this model, potential therapeutic approaches based on the use of MIF antagonists and neutralizing antibodies are described. It is concluded that MIF is a promising target for future therapeutic strategies, both with and without chemoradiation strategies.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias de Cabeça e Pescoço/patologia , Fatores Inibidores da Migração de Macrófagos/genética , Terapia de Alvo Molecular , Neovascularização Patológica/prevenção & controle , Apoptose/efeitos dos fármacos , Apoptose/genética , Biópsia por Agulha , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Progressão da Doença , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Imuno-Histoquímica , Oxirredutases Intramoleculares/efeitos dos fármacos , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Sensibilidade e Especificidade , Células Tumorais Cultivadas
6.
Lupus ; 26(1): 62-72, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27230555

RESUMO

OBJECTIVE: Macrophage migration inhibitory factor (MIF) is a key regulator of both atherosclerosis and systemic lupus erythematosus (SLE), yet factors leading to its overproduction remain unclear. To explore regulation of MIF in SLE, we studied effects and potential mechanisms of type I interferon (IFN) and artesunate (ART), an antimalarial agent extracted from Chinese herbs, on levels of MIF. METHODS: Serum and peripheral blood cells from SLE patients and healthy controls were measured for MIF levels by ELISA and type I IFN-inducible gene expressions by real-time PCR, respectively, and assessed for associations by Spearman correlation. ART was added to human umbilical vein endothelial cell (HUVEC) cultures with or without prior IFNα-1b stimulation and to SLE peripheral blood mononuclear cell (PBMC) cultures. Protein levels of STATs and phosphorylated (p-) STATs in HUVECs were determined by Western blotting. RESULTS: Serum MIF levels were elevated in SLE patients and positively associated with disease activity (r = 0.86, p < 0.0001), accumulated damage (r = 0.34, p < 0.05), and IFN scores in SLE PBMCs (r = 0.74, p = 0.0002). The addition of IFNα-1b promoted MIF production in a time- and dose-dependent manner in HUVEC cultures. ART could inhibit expressions of IFN-inducible genes (LY6E and ISG15) in both HUVEC and SLE PBMC cultures, and suppress MIF production and over-expression of p-STAT1, but not p-STAT3 or STAT5, induced by IFNα-1b stimulation. IFNγ-induced expression of p-STAT1 in HUVECs was not inhibited by ART. CONCLUSION: MIF could be regulated by type I IFN in SLE patients. ART counteracts the effect of IFNα to inhibit MIF production by blocking STAT1 phosphorylation and thus may have therapeutic potential for SLE-associated atherosclerosis.


Assuntos
Artemisininas/farmacologia , Oxirredutases Intramoleculares/metabolismo , Lúpus Eritematoso Sistêmico/fisiopatologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fator de Transcrição STAT1/metabolismo , Adulto , Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Artemisininas/administração & dosagem , Artesunato , Western Blotting , Estudos de Casos e Controles , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Interferon Tipo I/metabolismo , Interferon-alfa/administração & dosagem , Interferon-alfa/metabolismo , Oxirredutases Intramoleculares/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT1/genética , Fatores de Tempo , Adulto Jovem
7.
Brain Behav Immun ; 60: 27-31, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27375005

RESUMO

From experiments in mice in which the prostaglandin E2 (PGE2) synthesizing enzyme mPGES-1 was genetically deleted, as well as from experiments in which PGE2 was injected directly into the brain, PGE2 has been implicated as a mediator of inflammatory induced anorexia. Here we aimed at examining which PGE2 receptor (EP1-4) that was critical for the anorexic response to peripherally injected interleukin-1ß (IL-1ß). However, deletion of neither EP receptor in mice, either globally (for EP1, EP2, and EP3) or selectively in the nervous system (EP4), had any effect on the IL-1ß induced anorexia. Because these mice were all on a C57BL/6 background, whereas previous observations demonstrating a role for induced PGE2 in IL-1ß evoked anorexia had been carried out on mice on a DBA/1 background, we examined the anorexic response to IL-1ß in mice with deletion of mPGES-1 on a C57BL/6 background and a DBA/1 background, respectively. We confirmed previous findings that mPGES-1 knock-out mice on a DBA/1 background displayed attenuated anorexia to IL-1ß; however, mice on a C57BL/6 background showed the same profound anorexia as wild type mice when carrying deletion of mPGES-1, while displaying almost normal food intake after pretreatment with a cyclooxygenase-2 inhibitor. We conclude that the involvement of induced PGE2 in IL-1ß evoked anorexia is strain dependent and we suggest that different routes that probably involve distinct prostanoids exist by which inflammatory stimuli may evoke an anorexic response and that these routes may be of different importance in different strains of mice.


Assuntos
Anorexia/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Interleucina-1beta/metabolismo , Animais , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Oxirredutases Intramoleculares/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prostaglandina-E Sintases/farmacologia , Regulação para Cima/efeitos dos fármacos
8.
Med Res Rev ; 36(3): 440-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26777977

RESUMO

Strong evidence has been presented linking chronic inflammation to the onset and pathogenesis of cancer. The multifunctional pro-inflammatory protein macrophage migration inhibitory factor (MIF) occupies a central role in the inflammatory pathway and has been implicated in the tumorigenesis, angiogenesis, and metastasis of many cancer phenotypes. This review highlights the current state of the art, which presents MIF, and the second member of the MIF structural superfamily, D-DT (MIF2), as significant mediators in the inflammatory-cancer axis. Although the mechanism by which MIF asserts its biological activity has yet to be fully understood, it has become clear in recent years that for certain phenotypes of cancer, MIF represents a valid therapeutic target. Current research efforts have focused on small molecule approaches that target MIF's unique tautomerase active site and neutralization of MIF with anti-MIF antibodies. These approaches have yielded promising results in a number of preclinical murine cancer models and have helped to increase our understanding of MIF biological activity. More recently, MIF's involvement in a number of key protein-protein interactions, such as with CD74 and HSP90, has been highlighted and provides a novel platform for the development of anti-MIF chemotherapeutic strategies in the future.


Assuntos
Oxirredutases Intramoleculares/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Neoplasias/terapia , Humanos , Oxirredutases Intramoleculares/química , Fatores Inibidores da Migração de Macrófagos/química , Neoplasias/metabolismo
9.
J Dermatol Sci ; 80(3): 203-11, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26475433

RESUMO

BACKGROUND: The mouse pink-eyed dilution (oculocutaneous albinism II; p/Oca2(p)) locus is known to control tyrosinase activity, melanin content, and melanosome development in melanocytes. Pink-eyed dilution castaneus (p(cas)/Oca2(p-cas)) is a novel mutant allele on mouse chromosome 7 that arose spontaneously in Indonesian wild mice, Mus musculus castaneus. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and beige-colored coat on nonagouti C57BL/6 (B6) background. Recently, a novel spontaneous mutation occurred in the progeny between this mutant and B6 mice. The eyes of this novel mutant progressively become black from pink and the coat becomes dark gray from beige with aging. OBJECTIVE: The aim of this study is to clarify whatever differences exist in melanocyte proliferation and differentiation between the ordinary (pink-eyed) and novel (black-eyed) mutant using serum-free primary culture system. METHODS: The characteristics of melanocyte proliferation and differentiation were investigated by serum-free primary culture system using melanocyte-proliferation medium (MDMD). RESULTS: The proliferation of melanoblasts in MDMD did not differ between the two mice. However, when the epidermal cell suspensions were cultured with MDMD supplemented with l-tyrosine (Tyr), the differentiation of black-eyed melanocytes was greatly induced in a concentration-dependent manner compared with pink-eyed melanocytes. Immunocytochemistry demonstrated that the expression of tyrosinase and tyrosinase-related protein-1 (Tyrp1) was greatly induced or stimulated both in pink-eyed and black-eyed melanocytes, whereas the expression of microphthalmia-associated transcription factor (Mitf) was stimulated only in black-eyed melanocytes. CONCLUSION: These results suggest that the age-related coat darkening in black-eyed mutant may be caused by the increased ability of melanocyte differentiation dependent on l-Tyr through the upregulation of tyrosinase, Tyrp1, and Mitf. This mutant mouse may be useful for animal model to clarify the mechanisms of age-related pigmentation in human skin, such as melasma and solar lentigines.


Assuntos
Envelhecimento , Albinismo Oculocutâneo/genética , Diferenciação Celular/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , RNA Mensageiro/metabolismo , Tirosina/farmacologia , Animais , Proliferação de Células , Oxirredutases Intramoleculares/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/efeitos dos fármacos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/efeitos dos fármacos , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/efeitos dos fármacos , Oxirredutases/metabolismo , Cultura Primária de Células , Regulação para Cima/efeitos dos fármacos
10.
J Endod ; 40(12): 2024-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25266467

RESUMO

INTRODUCTION: The aim of this study was to evaluate the biocompatibility of a new calcium aluminate cement (EndoBinder) in subcutaneous tissue of rats in comparison with mineral trioxide aggregate and calcium hydroxide hard-setting cement. METHODS: Polyethylene tubes (1.5 × 10 mm) containing the dental cements were implanted into dorsal subcutaneous tissue of 30 rats. After experimental periods of 7, 30, and 90 days, biopsies were performed for tissue response analysis under optical light microscope. The mRNA extraction was performed for molecular evaluation of the inflammatory process in the peri-implant tissue, which was submitted to quantitative real-time polymerase chain reaction analysis for inflammatory mediators and cytokines TNF-α, Ptges2, Il-1ß, Il-4, and Il-10. RESULTS: On the basis of the score used to grade the tissue reaction (0-3), EndoBinder (0) presented no inflammatory reaction after the 90-day period, a similar result to mineral trioxide aggregate and calcium hydroxide. The thickness of inflammatory capsules (µm) also presented significant decrease during the course of periods (P < .05). As regards expression of inflammatory mediators, Ptges2 and Il-10 were detected only at 7 and 30 days, with no statistically significant difference among the experimental groups (P > .05). CONCLUSIONS: EndoBinder induced limited inflammatory reaction. It was considered biocompatible when tested in subcutaneous tissue of rats.


Assuntos
Compostos de Alumínio/farmacologia , Materiais Biocompatíveis/farmacologia , Compostos de Cálcio/farmacologia , Citocinas/efeitos dos fármacos , Mediadores da Inflamação/análise , Materiais Restauradores do Canal Radicular/farmacologia , Tela Subcutânea/efeitos dos fármacos , Animais , Hidróxido de Cálcio/farmacologia , Combinação de Medicamentos , Interleucina-10/análise , Interleucina-1beta/efeitos dos fármacos , Oxirredutases Intramoleculares/efeitos dos fármacos , Masculino , Teste de Materiais , Óxidos/farmacologia , Prostaglandina-E Sintases , Ratos , Silicatos/farmacologia , Tela Subcutânea/imunologia , Tela Subcutânea/patologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/efeitos dos fármacos
11.
Braz J Med Biol Res ; 46(9): 746-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24036910

RESUMO

Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H2O2), but not angiotensin II, stimulated MIF expression in HL-1 cells. H2O2-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H2O2-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.


Assuntos
Peróxido de Hidrogênio/farmacologia , Oxirredutases Intramoleculares/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxidantes/farmacologia , Proteína Quinase C/metabolismo , Quinases da Família src/metabolismo , Angiotensina II/metabolismo , Animais , Western Blotting , Linhagem Celular , Imuno-Histoquímica , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Microscopia Confocal , Estresse Oxidativo/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Sistema Renina-Angiotensina/fisiologia
12.
Braz. j. med. biol. res ; 46(9): 746-751, 19/set. 2013. graf
Artigo em Inglês | LILACS | ID: lil-686569

RESUMO

Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H2O2), but not angiotensin II, stimulated MIF expression in HL-1 cells. H2O2-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H2O2-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.


Assuntos
Animais , Camundongos , Peróxido de Hidrogênio/farmacologia , Oxirredutases Intramoleculares/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxidantes/farmacologia , Proteína Quinase C/metabolismo , Quinases da Família src/metabolismo , Angiotensina II/metabolismo , Western Blotting , Linhagem Celular , Imuno-Histoquímica , Oxirredutases Intramoleculares/genética , Microscopia Confocal , Fatores Inibidores da Migração de Macrófagos/genética , Estresse Oxidativo/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Sistema Renina-Angiotensina/fisiologia
13.
J Periodontal Res ; 48(4): 527-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23298274

RESUMO

BACKGROUND AND OBJECTIVE: Macrophage migration-inhibitory factor (MIF) plays crucial roles in the recruitment and activation of macrophages as well as in helping to kill bacteria. This study investigated the expression profile of MIF in human gingiva under different periodontal conditions and its expression patterns induced by Porphyromonas gingivalis lipopolysaccharide (LPS) in gingival epithelia. MATERIAL AND METHODS: Gingival tissue samples were collected from deep pockets and clinically healthy sites of 22 nonsmoking subjects with chronic periodontitis. The expression of MIF mRNA and protein was evaluated using real-time PCR and immunohistochemistry, respectively. The in vitro study analyzed the effects of P. gingivalis LPS on the expression of MIF in a reconstituted human gingival epithelia (RHGE) model. RESULTS: In gingival epithelia, MIF protein was diffusely expressed from the basal layer to the granular and spinous layers; whereas, in the underlying connective tissues, MIF was observed around the dilated blood vessels in the deep-pocket tissues. A significantly lower level of expression of MIF mRNA and an increased level of expression of MIF protein were found in deep-pocket tissues compared with clinically healthy tissues. Expression of MIF mRNA in the RHGE model was significantly down-regulated by P. gingivalis LPS. CONCLUSION: The present study suggests that MIF expression may be related to periodontal conditions and that its expression profile could be modulated by P. gingivalis LPS. MIF may play a role in periodontal pathogenesis.


Assuntos
Gengiva/patologia , Oxirredutases Intramoleculares/análise , Lipopolissacarídeos/farmacologia , Fatores Inibidores da Migração de Macrófagos/análise , Porphyromonas gingivalis/metabolismo , Adulto , Capilares/patologia , Periodontite Crônica/patologia , Tecido Conjuntivo/irrigação sanguínea , Tecido Conjuntivo/patologia , Epitélio/efeitos dos fármacos , Epitélio/patologia , Escherichia coli/metabolismo , Gengiva/efeitos dos fármacos , Humanos , Oxirredutases Intramoleculares/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Pessoa de Meia-Idade , Bolsa Periodontal/patologia , Técnicas de Cultura de Tecidos
14.
Arch Oral Biol ; 57(9): 1274-81, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22480456

RESUMO

OBJECTIVE: This study aimed to determine in vitro how exogenous PGE(2) affects the expression of genes in cultured osteoblasts by relative quantitation PCR. DESIGN: Cultured osteoblasts were exposed to 10(-3)M, 10(-5)M or 10(-7)M PGE(2) over 5, 10, 15 and 20 days. RESULTS: RANKL expression was higher after 5 days of exposure (p<0.05), but thereafter reduced in those treated with the two lower doses of PGE(2) (p<0.01). RANKL/OPG ratio reported in favour of OPG gene expression and alkaline phosphatase gene expression increased in osteoblasts exposed to the two lower doses of the eicosanoid after 15 days. Conversely, prostaglandin E synthase, a cytokine produced during PGE(2) synthesis, gene expression was significantly reduced at 15 and 20 days (p<0.01 and 0.05 respectively). The results from this study add to the current knowledge of the mechanisms by which PGE(2) modulates the osteoblast biology in a dose-dependent manner. CONCLUSIONS: It is proposed that PGE(2)at a low dose switch osteoblast's biology in favour of bone apposition by: first, inducing a significantly higher OPG gene expression overwhelming RANKL gene expression; second, reducing PGEs synthesis; and third, increasing ALP gene expression. An opposite effect is expected when the concentration of the eicosanoid overpass certain levels.


Assuntos
Dinoprostona/farmacologia , Osteoblastos/efeitos dos fármacos , Fosfatase Alcalina/análise , Fosfatase Alcalina/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Forma Celular , Subunidade alfa 1 de Fator de Ligação ao Core/análise , Dinoprostona/administração & dosagem , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Oxirredutases Intramoleculares/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Osteoprotegerina/efeitos dos fármacos , Prostaglandina-E Sintases , Ligante RANK/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo
15.
Phytother Res ; 25(5): 744-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21425378

RESUMO

The protective effects of plant polyphenol intake on cardiovascular morbidity and mortality are widely acknowledged. Caffeine-free chicory coffee is a rich source of plant phenolics, including caffeic acid, which inhibits in vitro platelet aggregation, and also phenylpyruvate tautomerase enzymatic activity of the proinflammatory cytokine, macrophage migration inhibitory factor (MIF). To assess whether chicory coffee consumption might confer cardiovascular benefits a clinical intervention study was performed with 27 healthy volunteers, who consumed 300 mL chicory coffee every day for 1 week. The dietary intervention produced variable effects on platelet aggregation, depending on the inducer used for the aggregation test. Whole blood and plasma viscosity were both significantly decreased, along with serum MIF levels, after 1 week of chicory coffee consumption. Moreover, significant improvements were seen in red blood cell deformability. No changes in hematocrit, fibrinogen level or red blood cell counts were detected. The full spectrum of these effects is unlikely to be attributable to a single compound present in chicory coffee, nevertheless, the phenolics, including caffeic acid, are expected to play a substantial role. In conclusion, our study offers an encouraging starting-point to delineate the antithrombotic and antiinflammatory effects of phenolic compounds found in chicory coffee.


Assuntos
Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Cichorium intybus/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Trombose/prevenção & controle , Plaquetas/efeitos dos fármacos , Viscosidade Sanguínea/efeitos dos fármacos , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Comportamento Alimentar , Feminino , Humanos , Oxirredutases Intramoleculares/sangue , Oxirredutases Intramoleculares/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/sangue , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Masculino , Raízes de Plantas/química , Agregação Plaquetária/efeitos dos fármacos , Adulto Jovem
16.
Planta Med ; 77(13): 1504-11, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21341175

RESUMO

Prostaglandin E2 (PGE2) has a central role in inflammation and both cyclooxygenase-2 (COX-2) and prostaglandin E synthases are critical enzymes in its synthesis. In inflammation, bacterial products and cytokines enhance the expression of COX-2 and inducible microsomal prostaglandin E synthase-1 (mPGES-1) which are functionally coupled to result in increased PGE2 formation in macrophages and tissue cells. In the present study, we systematically investigated the effects of 26 naturally occurring flavonoids on PGE2 production and on COX-2 and mPGES-1 expression in activated macrophages. Twelve flavonoids, i.e., flavone, luteolin-7-glucoside, kaempferol, isorhamnetin, morin, quercetin, naringenin, taxifolin, pelargonidin, daidzein, genistein, and genistin effectively inhibited lipopolysaccharide (LPS)-induced PGE2 production. Four flavonoids (flavone, isorhamnetin, daidzein, and genistein) inhibited significantly LPS-induced COX-2 expression, while mPGES-1 expression was downregulated by kaempferol and isorhamnetin. The present study characterizes the effects of flavonoids on PGE2 production and on COX-2 and mPGES-1 expression in activated macrophages. The results add to our knowledge of the anti-inflammatory actions of flavonoids and introduce kaempferol and isorhamnetin as compounds capable of downregulating the expression of mPGES-1.


Assuntos
Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Dinoprostona/biossíntese , Flavonoides/farmacologia , Oxirredutases Intramoleculares/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/análise , Regulação para Baixo/efeitos dos fármacos , Flavonoides/química , Regulação da Expressão Gênica/efeitos dos fármacos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , Prostaglandina-E Sintases
17.
Clin Cancer Res ; 16(16): 4207-16, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20682710

RESUMO

PURPOSE: 2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. EXPERIMENTAL DESIGN: To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). RESULTS: DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. CONCLUSIONS: We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.


Assuntos
Antineoplásicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Óleos de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Oxirredutases Intramoleculares/biossíntese , Oxirredutases Intramoleculares/efeitos dos fármacos , Camundongos , Camundongos Nus , Microssomos/efeitos dos fármacos , Neoplasias Experimentais/metabolismo , Azeite de Oliva , Fenóis/farmacologia , Óleos de Plantas/química , Polifenóis , Prostaglandina-E Sintases , RNA Interferente Pequeno , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Lett ; 290(1): 76-86, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19751963

RESUMO

The molecular chaperone complex Hsp90-p23 interacts with the rate-limiting catalytic subunit of telomerase, hTERT. Although their interactions are required for proper folding of nascent hTERT as well as the assembly of active telomerase, the precise role of the chaperone proteins in regulation of nuclear localization of hTERT remains unclear. Here we demonstrate that curcumin inhibits telomerase activity in a time- and dose-dependent manner by decreasing the level of hTERT expression. Following curcumin treatment, we observed a clear accumulation of hTERT in the cytoplasmic compartment of the cell. The curcumin-induced cytoplasmic retention of hTERT could be due to failure of nuclear import, and the resulting cytoplasmic hTERT protein was rapidly ubiquitinated and degraded by the proteasome. We also report that curcumin treatment results in a substantial decrease in association of p23 and hTERT but does not affect the Hsp90 binding to hTERT. In contrast, the treatment of the Hsp90 inhibitor geldanamycin promotes dissociation of both Hsp90 and p23 proteins from hTERT. Taken together, these results demonstrate that the interaction of the Hsp90-p23 complex with hTERT is critical for regulation of the nuclear localization of telomerase, and that down-regulation of hTERT by curcumin involves dissociating the binding of hTERT with p23. Thus, inhibition of nuclear translocation of hTERT by curcumin may provide new perspectives for regulation of telomerase activity during tumorigenic progression.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Oxirredutases Intramoleculares/efeitos dos fármacos , Telomerase/efeitos dos fármacos , Linhagem Celular Tumoral , Separação Celular , Citometria de Fluxo , Imunofluorescência , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Oxirredutases Intramoleculares/metabolismo , Prostaglandina-E Sintases , Transporte Proteico/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telomerase/metabolismo
19.
Trends Cardiovasc Med ; 20(6): 189-95, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22137640

RESUMO

Both traditional and purpose-designed nonsteroidal anti-inflammatory drugs, selective for inhibition of cyclooxygenase (COX)-2, alleviate pain and inflammation but confer a cardiovascular hazard attributable to inhibition of COX-2-derived prostacyclin (PGI(2)). Deletion of microsomal PGE synthase-1 (mPGES-1), the dominant enzyme that converts the COX-derived intermediate product PGH(2) to PGE(2), modulates inflammatory pain in rodents. In contrast with COX-2 deletion or inhibition, PGI(2) formation is augmented in mPGES-1(-/-) mice-an effect that may confer cardiovascular benefit but may undermine the analgesic potential of inhibitors of this enzyme. This review considers the cardiovascular biology of mPGES1 and the complex challenge of developing inhibitors of this enzyme.


Assuntos
Doenças Cardiovasculares/enzimologia , Oxirredutases Intramoleculares/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacologia , Doenças Cardiovasculares/patologia , Modelos Animais de Doenças , Endotélio Vascular/enzimologia , Humanos , Inflamação , Oxirredutases Intramoleculares/antagonistas & inibidores , Neointima/enzimologia , Prostaglandina-E Sintases
20.
Proc Natl Acad Sci U S A ; 106(51): 21807-12, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19995978

RESUMO

The arachidonic acid (AA) cascade produces eicosanoids, such as prostaglandins (PGs), that regulate physiological and pathological functions. Although various nonsteroidal anti-inflammatory drugs have been developed, blocking upstream components (cyclooxygenase-1 and -2) of the AA cascade leads to severe side effects, including gastrointestinal ulcers and cardiovascular events, respectively, due to the complexity of the AA cascade. Here, using an AA cascade-targeted lipidomics approach, we report that microsomal PGE synthase 1 (mPGES-1) plays a key role in experimental autoimmune encephalomyelitis (EAE). Eicosanoids (mainly PGD(2)) are produced constitutively in the spinal cord of naive mice. However, in EAE lesions, the PGE(2) pathway is favored and the PGD(2), PGI(2), and 5-lipoxygenase pathways are attenuated. Furthermore, mPGES-1(-/-) mice showed less severe symptoms of EAE and lower production of IL-17 and IFN-gamma than mPGES-1(+/+) mice. Expression of PGE(2) receptors (EP1, EP2, and EP4) was elevated in EAE lesions and correlated with clinical symptoms. Immunohistochemistry on central nervous systems of EAE mice and multiple sclerosis (MS) patients revealed overt expression of mPGES-1 protein in microglia/macrophages. Thus, the mPGES-1-PGE(2)-EPs axis of the AA cascade may exacerbate EAE pathology. Our findings have important implications for the design of therapies for MS.


Assuntos
Dinoprostona/metabolismo , Oxirredutases Intramoleculares/efeitos dos fármacos , Lipídeos , Esclerose Múltipla/tratamento farmacológico , Animais , Ácido Araquidônico/metabolismo , Citocinas/biossíntese , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/metabolismo , Prostaglandina-E Sintases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA