Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.047
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731401

RESUMO

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Assuntos
Azadirachta , Di-Hidro-Orotato Desidrogenase , Simulação de Acoplamento Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Esquistossomose , Azadirachta/química , Animais , Esquistossomose/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Simulação de Dinâmica Molecular , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Simulação por Computador , Esquistossomicidas/farmacologia , Esquistossomicidas/química , Esquistossomicidas/uso terapêutico , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Praziquantel/farmacologia , Praziquantel/química , Praziquantel/uso terapêutico
2.
Biochem Biophys Res Commun ; 712-713: 149932, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38626530

RESUMO

The DHCR7 enzyme converts 7-DHC into cholesterol. Mutations in DHCR7 can block cholesterol production, leading to abnormal accumulation of 7-DHC and causing Smith-Lemli-Opitz syndrome (SLOS). SLOS is an autosomal recessive disorder characterized by multiple malformations, including microcephaly, intellectual disability, behavior reminiscent of autism, sleep disturbances, and attention-deficit/hyperactivity disorder (ADHD)-like hyperactivity. Although 7-DHC affects neuronal differentiation in ex vivo experiments, the precise mechanism of SLOS remains unclear. We generated Dhcr7 deficient (dhcr7-/-) zebrafish that exhibited key features of SLOS, including microcephaly, decreased neural stem cell pools, and behavioral phenotypes similar to those of ADHD-like hyperactivity. These zebrafish demonstrated compromised myelination, synaptic anomalies, and neurotransmitter imbalances. The axons of the dhcr7-/- zebrafish showed increased lysosomes and attenuated autophagy, suggesting that autophagy-related neuronal homeostasis is disrupted.


Assuntos
Axônios , Colesterol , Síndrome de Smith-Lemli-Opitz , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Colesterol/metabolismo , Axônios/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia , Neurogênese , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Autofagia , Neurônios/metabolismo , Lisossomos/metabolismo
3.
Nat Commun ; 15(1): 2195, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472233

RESUMO

Recent evidence indicates ferroptosis is implicated in the pathophysiology of various liver diseases; however, the organ-specific regulation mechanism is poorly understood. Here, we demonstrate 7-dehydrocholesterol reductase (DHCR7), the terminal enzyme of cholesterol biosynthesis, as a regulator of ferroptosis in hepatocytes. Genetic and pharmacological inhibition (with AY9944) of DHCR7 suppress ferroptosis in human hepatocellular carcinoma Huh-7 cells. DHCR7 inhibition increases its substrate, 7-dehydrocholesterol (7-DHC). Furthermore, exogenous 7-DHC supplementation using hydroxypropyl ß-cyclodextrin suppresses ferroptosis. A 7-DHC-derived oxysterol metabolite, 3ß,5α-dihydroxycholest-7-en-6-one (DHCEO), is increased by the ferroptosis-inducer RSL-3 in DHCR7-deficient cells, suggesting that the ferroptosis-suppressive effect of DHCR7 inhibition is associated with the oxidation of 7-DHC. Electron spin resonance analysis reveals that 7-DHC functions as a radical trapping agent, thus protecting cells from ferroptosis. We further show that AY9944 inhibits hepatic ischemia-reperfusion injury, and genetic ablation of Dhcr7 prevents acetaminophen-induced acute liver failure in mice. These findings provide new insights into the regulatory mechanism of liver ferroptosis and suggest a potential therapeutic option for ferroptosis-related liver diseases.


Assuntos
Ferroptose , Hepatopatias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Camundongos , Animais , Humanos , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
4.
Aging (Albany NY) ; 16(7): 5967-5986, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38526324

RESUMO

BACKGROUND: Energy metabolism has a complex intersection with pathogenesis and development of breast cancer (BC). This allows for the possibility of identifying energy-metabolism-related genes (EMRGs) as novel prognostic biomarkers for BC. 7-dehydrocholesterol reductase (DHCR7) is a key enzyme of cholesterol biosynthesis involved in many cancers, and in this paper, we investigate the effects of DHCR7 on the proliferation and mitochondrial function of BC. METHODS: EMRGs were identified from the Gene Expression Omnibus (GEO) and MSigDB databases using bioinformatics methods. Key EMRGs of BC were then identified and validated by functional enrichment analysis, interaction analysis, weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) regression, Cox analysis, and immune infiltration. Western blot, qRT-PCR, immunohistochemistry (IHC), MTT assay, colony formation assay and flow cytometry assay were then used to analyze DHCR7 expression and its biological effects on BC cells. RESULTS: We identified 31 EMRGs in BC. These 31 EMRGs and related transcription factors (TFs), miRNAs, and drugs were enriched in glycerophospholipid metabolism, glycoprotein metabolic process, breast cancer, and cell cycle. Crucially, DHCR7 was a key EMRG in BC identified and validated by WGCNA, LASSO regression and receiver operating characteristic (ROC) curve analysis. High DHCR7 expression was significantly associated with tumor immune infiltration level, pathological M, and poor prognosis in BC. In addition, DHCR7 knockdown inhibited cell proliferation, induced apoptosis and affected mitochondrial function in BC cells. CONCLUSIONS: DHCR7 was found to be a key EMRG up-regulated in BC cells. This study is the first to our knowledge to report that DHCR7 acts as an oncogene in BC, which might become a novel therapeutic target for BC patients.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Mitocôndrias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Feminino , Proliferação de Células/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Linhagem Celular Tumoral , Metabolismo Energético/genética , Prognóstico , Células MCF-7
5.
FEBS J ; 291(7): 1400-1403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38297957

RESUMO

Reduction of the 17,18-double bond in the D-ring during chlorophyll biosynthesis is catalyzed by the rare, naturally occurring photoenzyme protochlorophyllide oxidoreductase (POR). A conserved tyrosine residue has been suggested to donate a proton to C18 of the substrate in the past decades. Taylor and colleagues scrutinized the model with a powerful tool that utilized a modified genetic code to introduce fluorinated tyrosine analogues into POR. The presented results show that the suggested catalytically critical tyrosine is unlikely to participate in the reaction chemistry but is required for substrate binding, and instead, a cysteine residue preceding the lid helix is proposed to have the role of proton donor.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida , Halogenação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Protoclorifilida/química , Prótons , Clorofila/biossíntese , Clorofila/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38407305

RESUMO

Endothelial cells (ECs) senescence is critical for vascular dysfunction, which leads to age-related disease. DHCR24, a 3ß-hydroxysterol δ 24 reductase with multiple functions other than enzymatic activity, has been involved in age-related disease. However, little is known about the relationship between DHCR24 and vascular ECs senescence. We revealed that DHCR24 expression is chronologically decreased in senescent human umbilical vein endothelial cells (HUVECs) and the aortas of aged mice. ECs senescence in endothelium-specific DHCR24 knockout mice was characterized by increased P16 and senescence-associated secretory phenotype, decreased SIRT1 and cell proliferation, impaired endothelium-dependent relaxation, and elevated blood pressure. In vitro, DHCR24 knockdown in young HUVECs resulted in a similar senescence phenotype. DHCR24 deficiency impaired endothelial migration and tube formation and reduced nitric oxide (NO) levels. DHCR24 suppression also inhibited the caveolin-1/ERK signaling, probably responsible for increased reactive oxygen species production and decreased eNOS/NO. Conversely, DHCR24 overexpression enhanced this signaling pathway, blunted the senescence phenotype, and improved cellular function in senescent cells, effectively blocked by the ERK inhibitor U0126. Moreover, desmosterol accumulation induced by DHCR24 deficiency promoted HUVECs senescence and inhibited caveolin-1/ERK signaling. Our findings demonstrate that DHCR24 is essential in ECs senescence.


Assuntos
Caveolina 1 , Senescência Celular , Células Endoteliais da Veia Umbilical Humana , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Humanos , Camundongos , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Transdução de Sinais
7.
Biomolecules ; 14(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397392

RESUMO

Biliverdin reductase-A (BVRA) is a multi-functional enzyme with a multitude of important roles in physiologic redox homeostasis. Classically, BVRA is well known for converting the heme metabolite biliverdin to bilirubin, which is a potent antioxidant in both the periphery and the brain. However, BVRA additionally participates in many neuroprotective signaling cascades in the brain that preserve cognition. Here, we review the neuroprotective roles of BVRA and bilirubin in the brain, which together constitute a BVRA/bilirubin axis that influences healthy aging and cognitive function.


Assuntos
Bilirrubina , Biliverdina , Encéfalo , Neuroproteção , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Bilirrubina/metabolismo , Biliverdina/metabolismo , Encéfalo/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Camundongos
8.
J Exp Bot ; 75(9): 2754-2771, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38224521

RESUMO

l-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler pathway is the primary route for AsA biosynthesis, and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science, and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focuses on three of them in the model species Myrciaria dubia (camu-camu): GDP-d-mannose 3',5'-epimerase (GME), l-galactose dehydrogenase (l-GalDH), and l-galactono-1,4-lactone dehydrogenase (l-GalLDH). We provide insights into substrate and cofactor binding and the conformational changes they induce. The MdGME structure reveals a distorted substrate in the active site, pertinent to the catalytic mechanism. Mdl-GalDH shows that the way in which NAD+ association affects loop structure over the active site is not conserved when compared with its homologue in spinach. Finally, the structure of Mdl-GalLDH is described for the first time. This allows for the rationalization of previously identified residues which play important roles in the active site or in the formation of the covalent bond with FAD. In conclusion, this study enhances our understanding of AsA biosynthesis in plants, and the information provided should prove useful for biotechnological applications.


Assuntos
Ácido Ascórbico , Frutas , Myrtaceae , Proteínas de Plantas , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biossíntese , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Myrtaceae/metabolismo , Myrtaceae/genética , Galactose Desidrogenases/metabolismo , Galactose Desidrogenases/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética
9.
J Chem Inf Model ; 64(2): 435-448, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38175956

RESUMO

We used a structure-based drug discovery approach to identify novel inhibitors of human dihydroorotate dehydrogenase (DHODH), which is a therapeutic target for treating cancer and autoimmune and inflammatory diseases. In the case of acute myeloid leukemia, no previously discovered DHODH inhibitors have yet succeeded in this clinical application. Thus, there remains a strong need for new inhibitors that could be used as alternatives to the current standard-of-care. Our goal was to identify novel inhibitors of DHODH. We implemented prefiltering steps to omit PAINS and Lipinski violators at the earliest stages of this project. This enriched compounds in the data set that had a higher potential of favorable oral druggability. Guided by Glide SP docking scores, we found 20 structurally unique compounds from the ChemBridge EXPRESS-pick library that inhibited DHODH with IC50, DHODH values between 91 nM and 2.7 µM. Ten of these compounds reduced MOLM-13 cell viability with IC50, MOLM-13 values between 2.3 and 50.6 µM. Compound 16 (IC50, DHODH = 91 nM) inhibited DHODH more potently than the known DHODH inhibitor, teriflunomide (IC50, DHODH = 130 nM), during biochemical characterizations and presented a promising scaffold for future hit-to-lead optimization efforts. Compound 17 (IC50, MOLM-13 = 2.3 µM) was most successful at reducing survival in MOLM-13 cell lines compared with our other hits. The discovered compounds represent excellent starting points for the development and optimization of novel DHODH inhibitors.


Assuntos
Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo
10.
FEBS J ; 291(7): 1404-1421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060334

RESUMO

The photoenzyme protochlorophyllide oxidoreductase (POR) is an important enzyme for understanding biological H-transfer mechanisms. It uses light to catalyse the reduction of protochlorophyllide to chlorophyllide, a key step in chlorophyll biosynthesis. Although a wealth of spectroscopic data have provided crucial mechanistic insight, a structural rationale for POR photocatalysis has proved challenging and remains hotly debated. Recent structural models of the ternary enzyme-substrate complex, derived from crystal and electron microscopy data, show differences in the orientation of the protochlorophyllide substrate and the architecture of the POR active site, with significant implications for the catalytic mechanism. Here, we use a combination of computational and experimental approaches to investigate the compatibility of each structural model with the hypothesised reaction mechanisms and propose an alternative structural model for the cyanobacterial POR ternary complex. We show that a strictly conserved tyrosine, previously proposed to act as the proton donor in POR photocatalysis, is unlikely to be involved in this step of the reaction but is crucial for Pchlide binding. Instead, an active site cysteine is important for both hydride and proton transfer reactions in POR and is proposed to act as the proton donor, either directly or through a water-mediated network. Moreover, a conserved glutamine is important for Pchlide binding and ensuring efficient photochemistry by tuning its electronic properties, likely by interacting with the central Mg atom of the substrate. This optimal 'binding pose' for the POR ternary enzyme-substrate complex illustrates how light energy can be harnessed to facilitate enzyme catalysis by this unique enzyme.


Assuntos
Cianobactérias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida/química , Luz , Prótons , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fotoquímica
11.
Cell ; 186(26): 5812-5825.e21, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38056462

RESUMO

Acyl-coenzyme A (acyl-CoA) species are cofactors for numerous enzymes that acylate thousands of proteins. Here, we describe an enzyme that uses S-nitroso-CoA (SNO-CoA) as its cofactor to S-nitrosylate multiple proteins (SNO-CoA-assisted nitrosylase, SCAN). Separate domains in SCAN mediate SNO-CoA and substrate binding, allowing SCAN to selectively catalyze SNO transfer from SNO-CoA to SCAN to multiple protein targets, including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1). Insulin-stimulated S-nitrosylation of INSR/IRS1 by SCAN reduces insulin signaling physiologically, whereas increased SCAN activity in obesity causes INSR/IRS1 hypernitrosylation and insulin resistance. SCAN-deficient mice are thus protected from diabetes. In human skeletal muscle and adipose tissue, SCAN expression increases with body mass index and correlates with INSR S-nitrosylation. S-nitrosylation by SCAN/SNO-CoA thus defines a new enzyme class, a unique mode of receptor tyrosine kinase regulation, and a revised paradigm for NO function in physiology and disease.


Assuntos
Insulina , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Transdução de Sinais , Animais , Humanos , Camundongos , Acil Coenzima A/metabolismo , Tecido Adiposo/metabolismo , Resistência à Insulina , Óxido Nítrico/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
12.
Expert Opin Ther Pat ; 33(9): 579-596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942637

RESUMO

INTRODUCTION: Pyrimidine nucleotides are essential for the parasite's growth and replication. Parasites have only a de novo pathway for the biosynthesis of pyrimidine nucleotides. Dihydroorotate dehydrogenase (DHODH) enzyme is involved in the rate-limiting step of the pyrimidine biosynthesis pathway. DHODH is a biochemical target for the discovery of new antimalarial agents. AREA COVERED: This review discussed the development of patented PfDHODH inhibitors published between 2007 and 2023 along with their chemical structures and activities. EXPERT OPINION: PfDHODH enzyme is involved in the rate-limiting fourth step of the pyrimidine biosynthesis pathway. Thus, inhibition of PfDHODH using species-selective inhibitors has drawn much attention for treating malaria because they inhibit parasite growth without affecting normal human functions. Looking at the current scenario of antimalarial drug resistance with most of the available antimalarial drugs, there is a huge need for targeted newer agents. Newer agents with unique mechanisms of action may be devoid of drug toxicity, adverse effects, and the ability of parasites to quickly gain resistance, and PfDHODH inhibitors can be those newer agents. Many PfDHODH inhibitors were patented in the past, and the dependency of Plasmodium on de novo pyrimidine provided a new approach for the development of novel antimalarial agents.


Assuntos
Antimaláricos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Di-Hidro-Orotato Desidrogenase , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Patentes como Assunto , Pirimidinas/farmacologia , Inibidores Enzimáticos/farmacologia , Nucleotídeos de Pirimidina/farmacologia
13.
J Virol ; 97(12): e0151323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032198

RESUMO

IMPORTANCE: The precise regulation of the innate immune response is essential for the maintenance of homeostasis. MAVS and STING play key roles in immune signaling pathways activated by RNA and DNA viruses, respectively. Here, we showed that DHCR24 impaired the antiviral response by targeting MAVS and STING. Notably, DHCR24 interacts with MAVS and STING and inhibits TRIM21-triggered K27-linked ubiquitination of MAVS and AMFR-triggered K27-linked ubiquitination of STING, restraining the activation of MAVS and STING, respectively. Together, this study elucidates how one cholesterol key enzyme orchestrates two antiviral signal transduction pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Imunidade Inata , Proteínas de Membrana , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hidroxiesteroides , Proteínas de Membrana/metabolismo , Oxirredutases , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Ubiquitinação , Linhagem Celular
14.
Proc Natl Acad Sci U S A ; 120(48): e2313197120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988466

RESUMO

A lead aryl pyrrolidinone anilide identified using high-throughput in vivo screening was optimized for efficacy, crop safety, and weed spectrum, resulting in tetflupyrolimet. Known modes of action were ruled out through in vitro enzyme and in vivo plant-based assays. Genomic sequencing of aryl pyrrolidinone anilide-resistant Arabidopsis thaliana progeny combined with nutrient reversal experiments and metabolomic analyses confirmed that the molecular target of the chemistry was dihydroorotate dehydrogenase (DHODH), the enzyme that catalyzes the fourth step in the de novo pyrimidine biosynthesis pathway. In vitro enzymatic and biophysical assays and a cocrystal structure with purified recombinant plant DHODH further confirmed this enzyme as the target site of this class of chemistry. Like known inhibitors of other DHODH orthologs, these molecules occupy the membrane-adjacent binding site of the electron acceptor ubiquinone. Identification of a new herbicidal chemical scaffold paired with a novel mode of action, the first such finding in over three decades, represents an important leap in combatting weed resistance and feeding a growing worldwide population.


Assuntos
Herbicidas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Herbicidas/farmacologia , Pirimidinas/farmacologia , Anilidas , Pirrolidinonas , Inibidores Enzimáticos/farmacologia
15.
J Phys Chem B ; 127(44): 9461-9475, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37897437

RESUMO

Malaria is a parasitic disease that, in its most severe form, can even lead to death. Insect-resistant vectors, insufficiently effective vaccines, and drugs that cannot stop parasitic infestations are making the fight against the disease increasingly difficult. It is known that the enzyme dihydroorotate dehydrogenase (DHODH) is of paramount importance for the synthesis of pyrimidine from the Plasmodium precursor, that is, for its growth and reproduction. Therefore, its blockade can lead to disruption of the parasite's life cycle in the vertebrate host. In this scenario, PfDHODH inhibitors have been considered candidates for a new therapy to stop the parasitic energy source. Given what is known, in this work, we applied molecular fractionation with conjugated caps (MFCC) in the framework of the quantum formalism of density functional theory (DFT) to evaluate the energies of the interactions between the enzyme and the different triazolopyrimidines (DSM483, DMS557, and DSM1), including a complex carrying the mutation C276F. From these results, it was possible to identify the main features of each system, focusing on the wild-type and mutant PfDHODH and examining the major amino acid residues that are part of the four complexes. Our analysis provides new information that can be used to develop new drugs that could prove to be more effective alternatives to present antimalarial drugs.


Assuntos
Antimaláricos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Plasmodium falciparum , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Antimaláricos/farmacologia , Antimaláricos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
16.
Elife ; 122023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737220

RESUMO

Drug resistance remains a major obstacle to malaria control and eradication efforts, necessitating the development of novel therapeutic strategies to treat this disease. Drug combinations based on collateral sensitivity, wherein resistance to one drug causes increased sensitivity to the partner drug, have been proposed as an evolutionary strategy to suppress the emergence of resistance in pathogen populations. In this study, we explore collateral sensitivity between compounds targeting the Plasmodium dihydroorotate dehydrogenase (DHODH). We profiled the cross-resistance and collateral sensitivity phenotypes of several DHODH mutant lines to a diverse panel of DHODH inhibitors. We focus on one compound, TCMDC-125334, which was active against all mutant lines tested, including the DHODH C276Y line, which arose in selections with the clinical candidate DSM265. In six selections with TCMDC-125334, the most common mechanism of resistance to this compound was copy number variation of the dhodh locus, although we did identify one mutation, DHODH I263S, which conferred resistance to TCMDC-125334 but not DSM265. We found that selection of the DHODH C276Y mutant with TCMDC-125334 yielded additional genetic changes in the dhodh locus. These double mutant parasites exhibited decreased sensitivity to TCMDC-125334 and were highly resistant to DSM265. Finally, we tested whether collateral sensitivity could be exploited to suppress the emergence of resistance in the context of combination treatment by exposing wildtype parasites to both DSM265 and TCMDC-125334 simultaneously. This selected for parasites with a DHODH V532A mutation which were cross-resistant to both compounds and were as fit as the wildtype parent in vitro. The emergence of these cross-resistant, evolutionarily fit parasites highlights the mutational flexibility of the DHODH enzyme.


Malaria affects around 240 million people around the world every year. The microscopic parasite responsible for the disease are carried by certain mosquitoes and gets transmitted to humans through bites. These parasites are increasingly acquiring genetic mutations that make anti-malaria medication less effective, creating an urgent need for alternative treatment approaches. Several new malaria drugs being explored in preclinical research work by binding to an enzyme known as DHODH and preventing it from performing its usual role in the parasite. Previous work found that, in some cases, malaria parasites that evolved resistance to one type of DHODH inhibitor (by acquiring mutations in their DHODH enzyme) then became more vulnerable to another kind. It may be possible to leverage this 'collateral sensitivity' by designing treatments which combine two DHODH inhibitors and therefore make it harder for the parasites to evolve resistance. To investigate this possibility, Mandt et al. first tested several DHODH inhibitors to find the one that was most potent against drug-resistant parasites. In subsequent experiments, they combined TCMDC-125334, the best candidate that emerged from these tests, with a DHODH inhibitor that works well against vulnerable parasites. However, the parasites still rapidly evolved resistance. Further work identified a new DHODH mutation that allowed the parasites to evade both drugs simultaneously. Together, these findings suggest that the DHODH enzyme may not be the best target for new malaria drugs because many it can acquire many possible mutations that confer resistance. Such results may inform other studies that aim to harness collateral sensitivity to fight against a range of harmful agents.


Assuntos
Antimaláricos , Malária Falciparum , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Parasitos , Animais , Humanos , Di-Hidro-Orotato Desidrogenase , Malária Falciparum/parasitologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Variações do Número de Cópias de DNA , Sensibilidade Colateral a Medicamentos , Parasitos/metabolismo
17.
SAR QSAR Environ Res ; 34(9): 709-728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665563

RESUMO

Malaria is a lethal disease that claims thousands of lives worldwide annually. The objective of this study was to identify new natural compounds that can target two P. falciparum enzymes; P. falciparum Dihydroorotate dehydrogenase (PfDHODH) and P. falciparum phosphoethanolamine methyltransferase (PfPMT). To accomplish this, e-pharmacophore modelling and molecular docking were employed against PfDHODH. Following this, 1201 natural compounds with docking scores of ≤ -7 kcal/mol were docked into the active site of the second enzyme PMT. The top nine compounds were subjected to further investigation using MM-GBSA free binding energy calculations and ADME analysis. The results revealed favourable free binding energy values better than the references, as well as acceptable pharmacokinetic properties. Compounds ZINC000013377887, ZINC000015113777, and ZINC000085595753 were scrutinized to assess their interaction stability with the PfDHODH enzyme, and chemical stability reactivity using molecular dynamics (MD) simulation and density functional theory (DFT) calculations. These findings indicate that the three natural compounds are potential candidates for dual PfDHODH and PfPMT inhibitors for malaria treatment.


Assuntos
Antimaláricos , Malária , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Di-Hidro-Orotato Desidrogenase , Antimaláricos/farmacologia , Antimaláricos/química , Simulação de Acoplamento Molecular , Plasmodium falciparum , Simulação de Dinâmica Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Farmacóforo , Relação Quantitativa Estrutura-Atividade , Malária/tratamento farmacológico
18.
PLoS One ; 18(8): e0289441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531380

RESUMO

Olorofim is a new antifungal in clinical development which has a novel mechanism of action against dihydroorotate dehydrogenase (DHODH). DHODH form a ubiquitous family of enzymes in the de novo pyrimidine biosynthetic pathway and are split into class 1A, class 1B and class 2. Olorofim specifically targets the fungal class 2 DHODH present in a range of pathogenic moulds. The nature and number of DHODH present in many fungal species have not been addressed for large clades of this kingdom. Mucorales species do not respond to olorofim; previous work suggests they have only class 1A DHODH and so lack the class 2 target that olorofim inhibits. The dematiaceous moulds have mixed susceptibility to olorofim, yet previous analyses imply that they have class 2 DHODH. As this is at odds with their intermediate susceptibility to olorofim, we hypothesised that these pathogens may maintain a second class of DHODH, facilitating pyrimidine biosynthesis in the presence of olorofim. The aim of this study was to investigate the DHODH repertoire of clinically relevant species of Mucorales and dematiaceous moulds to further characterise these pathogens and understand variations in olorofim susceptibility. Using bioinformatic analysis, S. cerevisiae complementation and biochemical assays of recombinant protein, we provide the first evidence that two representative members of the Mucorales have only class 1A DHODH, substantiating a lack of olorofim susceptibility. In contrast, bioinformatic analyses initially suggested that seven dematiaceous species appeared to harbour both class 1A-like and class 2-like DHODH genes. However, further experimental investigation of the putative class 1A-like genes through yeast complementation and biochemical assays characterised them as dihydrouracil oxidases rather than DHODHs. These data demonstrate variation in dematiaceous mould olorofim susceptibility is not due to a secondary DHODH and builds on the growing picture of fungal dihydrouracil oxidases as an example of horizontal gene transfer.


Assuntos
Mucorales , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Saccharomyces cerevisiae/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirimidinas/farmacologia
19.
Blood Adv ; 7(21): 6685-6701, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37648673

RESUMO

Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) have a poor prognosis with few therapeutic options. With the goal of identifying novel therapeutic targets, we used data from the Dependency Map project to identify dihydroorotate dehydrogenase (DHODH) as one of the top metabolic dependencies in T-ALL. DHODH catalyzes the fourth step of de novo pyrimidine nucleotide synthesis. Small molecule inhibition of DHODH rapidly leads to the depletion of intracellular pyrimidine pools and forces cells to rely on extracellular salvage. In the absence of sufficient salvage, this intracellular nucleotide starvation results in the inhibition of DNA and RNA synthesis, cell cycle arrest, and, ultimately, death. T lymphoblasts appear to be specifically and exquisitely sensitive to nucleotide starvation after DHODH inhibition. We have confirmed this sensitivity in vitro and in vivo in 3 murine models of T-ALL. We identified that certain subsets of T-ALL seem to have an increased reliance on oxidative phosphorylation when treated with DHODH inhibitors. Through a series of metabolic assays, we show that leukemia cells, in the setting of nucleotide starvation, undergo changes in their mitochondrial membrane potential and may be more highly dependent on alternative fuel sources. The effect on normal T-cell development in young mice was also examined to show that DHODH inhibition does not permanently damage the developing thymus. These changes suggest a new metabolic vulnerability that may distinguish these cells from normal T cells and other normal hematopoietic cells and offer an exploitable therapeutic opportunity. The availability of clinical-grade DHODH inhibitors currently in human clinical trials suggests a potential for rapidly advancing this work into the clinic.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Linfócitos T/metabolismo , Nucleotídeos/uso terapêutico
20.
J Agric Food Chem ; 71(30): 11654-11666, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467369

RESUMO

Herbicide resistance is a prevalent problem that has posed a foremost challenge to crop production worldwide. Light-dependent enzyme NADPH: protochlorophyllide oxidoreductase (LPOR) in plants is a metabolic target that could satisfy this unmet demand. Herein, for the first time, we embarked on proposing a new mode of action of herbicides by performing structure-based virtual screening targeting multiple LPOR binding sites, with the determination of further bioactivity on the lead series. The feasibility of exploiting high selectivity and safety herbicides targeting LPOR was discussed from the perspective of the origin and phylogeny. Besides, we revealed the structural rearrangement and the selection key for NADPH cofactor binding to LPOR. Based on these, multitarget virtual screening was performed and the result identified compounds 2 affording micromolar inhibition, in which the IC50 reached 4.74 µM. Transcriptome analysis revealed that compound 2 induced more genes related to chlorophyll synthesis in Arabidopsis thaliana, especially the LPOR genes. Additionally, we clarified that these compounds binding to the site enhanced the overall stability and local rigidity of the complex systems from molecular dynamics simulation. This study delivers a guideline on how to assess activity-determining features of inhibitors to LPOR and how to translate this knowledge into the design of novel and effective inhibitors against malignant weed that act by targeting LPOR.


Assuntos
Herbicidas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida/metabolismo , Luz , Herbicidas/farmacologia , NADP/metabolismo , Plantas/metabolismo , Oxirredutases , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA