Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055050

RESUMO

Although coronavirus disease 2019 (COVID-19)-related major health consequences involve the lungs, a growing body of evidence indicates that COVID-19 is not inert to the pancreas either. This review presents a summary of the molecular mechanisms involved in the development of pancreatic dysfunction during the course of COVID-19, the comparison of the effects of non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on pancreatic function, and a summary of how drugs used in COVID-19 treatment may affect this organ. It appears that diabetes is not only a condition that predisposes a patient to suffer from more severe COVID-19, but it may also develop as a consequence of infection with this virus. Some SARS-CoV-2 inpatients experience acute pancreatitis due to direct infection of the tissue with the virus or due to systemic multiple organ dysfunction syndrome (MODS) accompanied by elevated levels of amylase and lipase. There are also reports that reveal a relationship between the development and treatment of pancreatic cancer and SARS-CoV-2 infection. It has been postulated that evaluation of pancreatic function should be increased in post-COVID-19 patients, both adults and children.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/complicações , Pâncreas/virologia , Pancreatite/complicações , Enzima de Conversão de Angiotensina 2/metabolismo , Complicações do Diabetes , Diabetes Mellitus , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio , Pâncreas/lesões , Neoplasias Pancreáticas/metabolismo , Pancreatite/induzido quimicamente , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Serina Endopeptidases/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
2.
J Endocrinol Invest ; 45(3): 537-550, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34669152

RESUMO

PURPOSE: Coronavirus Disease 2019 (COVID-19) severity and Diabetes mellitus affect each other bidirectionally. However, the cause of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection on the incidence of diabetes is unclear. In the SARS-CoV-2-infected cells, host microRNAs (miRNAs) may target the native gene transcripts as well as the viral genomic and subgenomic RNAs. Here, we investigated the role of miRNAs in linking Diabetes to SARS-CoV-2 infection in the human pancreas. METHODS: Differential gene expression and disease enrichment analyses were performed on an RNA-Seq dataset of human embryonic stem cell-derived (hESC) mock-infected and SARS-CoV-2-infected pancreatic organoids to obtain the dysregulated Diabetes-associated genes. The miRNA target prediction for the Diabetes-associated gene transcripts and the SARS-CoV-2 RNAs has been made to determine the common miRNAs targeting them. Minimum Free Energy (MFE) analysis was done to identify the miRNAs, preferably targeting SARS-CoV-2 RNAs over the Diabetes-associated gene transcripts. RESULTS: The gene expression and disease enrichment analyses of the RNA-Seq data have revealed five biomarker genes, i.e., CP, SOCS3, AGT, PSMB8 and CFB that are associated with Diabetes and get significantly upregulated in the pancreas following SARS-CoV-2-infection. Four miRNAs, i.e., hsa-miR-298, hsa-miR-3925-5p, hsa-miR-4691-3p and hsa-miR-5196-5p, showed preferential targeting of the SARS-CoV-2 genome over the cell's Diabetes-associated messenger RNAs (mRNAs) in the human pancreas. CONCLUSION: Our study proposes that the differential targeting of the Diabetes-associated host genes by the miRNAs may lead to diabetic complications or new-onset Diabetes that can worsen the condition of COVID-19 patients.


Assuntos
COVID-19/epidemiologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , MicroRNAs/genética , Pâncreas/virologia , SARS-CoV-2/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , COVID-19/virologia , Comorbidade , Regulação da Expressão Gênica/genética , Humanos , Pâncreas/química , Pâncreas/metabolismo , RNA Mensageiro/genética , RNA Viral/genética
4.
Arch Virol ; 166(11): 3105-3116, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34482448

RESUMO

Several outbreaks of duck hepatitis A virus type 1 (DHAV-1), which were characterized by yellow coloration and hemorrhage in pancreatic tissues, have occurred in China. The causative agent is called pancreatitis-associated DHAV-1. The mechanisms involved in pancreatitis-associated DHAV-1 infection are still unclear. Transcriptome analysis of duck pancreas infected with classical-type DHAV-1 and pancreatitis-associated DHAV-1 was carried out. Deep sequencing with Illumina-Solexa resulted in a total of 53.9 Gb of clean data from the cDNA library of the pancreas, and a total of 29,597 unigenes with an average length of 993.43 bp were generated by de novo sequence assembly. The expression levels of D-3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which are involved in glycine, serine, and threonine metabolism pathways, were significantly downregulated in ducks infected with pancreatitis-associated DHAV-1 compared with those infected with classical-type DHAV-1. These findings provide information regarding differences in expression levels of metabolism-associated genes between ducks infected with pancreatitis-associated DHAV-1 and those infected with classical-type DHAV-1, indicating that intensive metabolism disorders may contribute to the different phenotypes of DHAV-1-infection.


Assuntos
Vírus da Hepatite do Pato/patogenicidade , Hepatite Viral Animal/virologia , Interações Hospedeiro-Patógeno/genética , Infecções por Picornaviridae/veterinária , Doenças das Aves Domésticas/virologia , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Patos/virologia , Expressão Gênica , Hepatite Viral Animal/genética , Hepatite Viral Animal/metabolismo , Hepatite Viral Animal/patologia , Pâncreas/citologia , Pâncreas/patologia , Pâncreas/virologia , Pancreatite/patologia , Pancreatite/virologia , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
5.
Cell Rep Med ; 2(8): 100371, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467248

RESUMO

Enteroviral infections have been associated with autoimmunity and type 1 diabetes (T1D), but reliable methods to ascertain localization of single infected cells in the pancreas were missing. Using a single-molecule-based fluorescent in situ hybridization (smFISH) method, we detected increased virus infection in pancreases from organ donors with T1D and with disease-associated autoantibodies (AAb+). Although virus-positive ß cells are found at higher frequency in T1D pancreases, compared to control donors, but are scarce, most virus-positive cells are scattered in the exocrine pancreas. Augmented CD45+ lymphocytes in T1D pancreases show virus positivity or localization in close proximity to virus-positive cells. Many more infected cells were also found in spleens from T1D donors. The overall increased proportion of virus-positive cells in the pancreas of AAb+ and T1D organ donors suggests that enteroviruses are associated with immune cell infiltration, autoimmunity, and ß cell destruction in both preclinical and diagnosed T1D.


Assuntos
Autoanticorpos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Enterovirus/genética , Pâncreas/virologia , RNA Viral/metabolismo , Doadores de Tecidos , Humanos , Linfócitos/imunologia , Baço/imunologia
6.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34241597

RESUMO

Evidence suggests an association between severe acute respiratory syndrome-cornavirus-2 (SARS-CoV-2) infection and the occurrence of new-onset diabetes. We examined pancreatic expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), the cell entry factors for SARS-CoV-2, using publicly available single-cell RNA sequencing data sets, and pancreatic tissue from control male and female nonhuman primates (NHPs) and humans. We also examined SARS-CoV-2 immunolocalization in pancreatic cells of SARS-CoV-2-infected NHPs and patients who had died from coronavirus disease 2019 (COVID-19). We report expression of ACE2 in pancreatic islet, ductal, and endothelial cells in NHPs and humans. In pancreata from SARS-CoV-2-infected NHPs and COVID-19 patients, SARS-CoV-2 infected ductal, endothelial, and islet cells. These pancreata also exhibited generalized fibrosis associated with multiple vascular thrombi. Two out of 8 NHPs developed new-onset diabetes following SARS-CoV-2 infection. Two out of 5 COVID-19 patients exhibited new-onset diabetes at admission. These results suggest that SARS-CoV-2 infection of the pancreas may promote acute and especially chronic pancreatic dysfunction that could potentially lead to new-onset diabetes.


Assuntos
COVID-19/complicações , Diabetes Mellitus/etiologia , Pâncreas/virologia , SARS-CoV-2/isolamento & purificação , Trombose/etiologia , Enzima de Conversão de Angiotensina 2/análise , Animais , Chlorocebus aethiops , Feminino , Fibrose , Humanos , Macaca mulatta , Masculino , Serina Endopeptidases/análise
7.
Front Immunol ; 12: 597399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796097

RESUMO

There exists increasing evidence that people with preceding medical conditions, such as diabetes and cancer, have a higher risk of infection with SARS-CoV-2 and are more vulnerable to severe disease. To get insights into the possible role of the immune system upon COVID-19 infection, 2811 genes of the gene ontology term "immune system process GO: 0002376" were selected for coexpression analysis of the human targets of SARS-CoV-2 (HT-SARS-CoV-2) ACE2, TMPRSS2, and FURIN in tissue samples from patients with cancer and diabetes mellitus. The network between HT-SARS-CoV-2 and immune system process genes was analyzed based on functional protein associations using STRING. In addition, STITCH was employed to determine druggable targets. DPP4 was the only immune system process gene, which was coexpressed with the three HT-SARS-CoV-2 genes, while eight other immune genes were at least coexpressed with two HT-SARS-CoV-2 genes. STRING analysis between immune and HT-SARS-CoV-2 genes plotted 19 associations of which there were eight common networking genes in mixed healthy (323) and pan-cancer (11003) tissues in addition to normal (87), cancer (90), and diabetic (128) pancreatic tissues. Using this approach, three commonly applicable druggable connections between HT-SARS-CoV-2 and immune system process genes were identified. These include positive associations of ACE2-DPP4 and TMPRSS2-SRC as well as a negative association of FURIN with ADAM17. Furthermore, 16 drugs were extracted from STITCH (score <0.8) with 32 target genes. Thus, an immunological network associated with HT-SARS-CoV-2 using bioinformatics tools was identified leading to novel therapeutic opportunities for COVID-19.


Assuntos
Diabetes Mellitus/metabolismo , Neoplasias/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Antivirais/farmacologia , COVID-19/genética , COVID-19/imunologia , COVID-19/metabolismo , Bases de Dados Genéticas , Diabetes Mellitus/genética , Diabetes Mellitus/imunologia , Diabetes Mellitus/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Furina/genética , Furina/metabolismo , Regulação da Expressão Gênica/imunologia , Ontologia Genética , Estudo de Associação Genômica Ampla , Genômica , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/virologia , Pâncreas/imunologia , Pâncreas/metabolismo , Pâncreas/virologia , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Tratamento Farmacológico da COVID-19
8.
Front Endocrinol (Lausanne) ; 11: 596898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281748

RESUMO

Increasing evidence demonstrated that the expression of Angiotensin I-Converting Enzyme type 2 (ACE2) is a necessary step for SARS-CoV-2 infection permissiveness. In light of the recent data highlighting an association between COVID-19 and diabetes, a detailed analysis aimed at evaluating ACE2 expression pattern distribution in human pancreas is still lacking. Here, we took advantage of INNODIA network EUnPOD biobank collection to thoroughly analyze ACE2, both at mRNA and protein level, in multiple human pancreatic tissues and using several methodologies. Using multiple reagents and antibodies, we showed that ACE2 is expressed in human pancreatic islets, where it is preferentially expressed in subsets of insulin producing ß-cells. ACE2 is also highly expressed in pancreas microvasculature pericytes and moderately expressed in rare scattered ductal cells. By using different ACE2 antibodies we showed that a recently described short-ACE2 isoform is also prevalently expressed in human ß-cells. Finally, using RT-qPCR, RNA-seq and High-Content imaging screening analysis, we demonstrated that pro-inflammatory cytokines, but not palmitate, increase ACE2 expression in the ß-cell line EndoC-ßH1 and in primary human pancreatic islets. Taken together, our data indicate a potential link between SARS-CoV-2 and diabetes through putative infection of pancreatic microvasculature and/or ductal cells and/or through direct ß-cell virus tropism.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Células Secretoras de Insulina/metabolismo , Microvasos/metabolismo , Pâncreas/metabolismo , SARS-CoV-2/isolamento & purificação , COVID-19/metabolismo , COVID-19/patologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Células Secretoras de Insulina/virologia , Microvasos/virologia , Pâncreas/virologia
9.
Clin Transl Gastroenterol ; 11(7): e00215, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32764201

RESUMO

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the pandemic of coronavirus disease 2019 (COVID-19) is a global health crisis. Possible pancreatic involvement has recently been observed in these patients; however, its significance is unclear. The aim of this study was to evaluate the association of significantly elevated lipase with disease outcomes. METHODS: Data about demographics, symptoms, laboratory values, and clinical outcomes were collected for 1,003 consecutive patients testing positive for COVID-19. Elevated lipase was defined as greater than 3 times the upper limit of normal (>3 × ULN). Baseline characteristics among patients with or without elevated lipase were compared using Fisher exact test or Student t-test for categorical or numerical variables, respectively. Logistic regression was used to evaluate the association of lipase levels with primary clinical outcomes (intensive care unit admission and intubation) adjusted for age, sex, body mass index, history of diabetes, and hypertension. RESULTS: Of 1,003 patients with COVID-19, 83 had available lipase levels and were all admitted to the hospital. Of 83, 14 (16.8%) had elevated lipase (>3 × ULN), which was associated with higher rates of leukocytosis (P < 0.001) and abnormal liver enzymes (P < 0.01). Compared with lower lipase levels (<3 × ULN), patients with elevated lipase had higher rates of ICU admission (92.9% vs 32.8%; P < 0.001) and intubation (78.6% vs 23.5%; P 0.002). In a multivariable-adjusted model, higher lipase levels were significantly associated with admission to the ICU and rate of intubation. DISCUSSION: Lipase elevation is seen in COVID-19 and is associated with worse disease outcomes.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Lipase/sangue , Obesidade , Pâncreas , Pandemias , Pneumonia Viral , Idoso , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , Índice de Massa Corporal , COVID-19 , Estudos de Coortes , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico , Obesidade/epidemiologia , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Pâncreas/virologia , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/fisiopatologia , Fatores de Risco , SARS-CoV-2 , Índice de Gravidade de Doença , Fatores Sexuais , Avaliação de Sintomas/métodos , Avaliação de Sintomas/estatística & dados numéricos , Estados Unidos/epidemiologia
10.
Cell Stem Cell ; 27(1): 125-136.e7, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32579880

RESUMO

SARS-CoV-2 has caused the COVID-19 pandemic. There is an urgent need for physiological models to study SARS-CoV-2 infection using human disease-relevant cells. COVID-19 pathophysiology includes respiratory failure but involves other organ systems including gut, liver, heart, and pancreas. We present an experimental platform comprised of cell and organoid derivatives from human pluripotent stem cells (hPSCs). A Spike-enabled pseudo-entry virus infects pancreatic endocrine cells, liver organoids, cardiomyocytes, and dopaminergic neurons. Recent clinical studies show a strong association with COVID-19 and diabetes. We find that human pancreatic beta cells and liver organoids are highly permissive to SARS-CoV-2 infection, further validated using adult primary human islets and adult hepatocyte and cholangiocyte organoids. SARS-CoV-2 infection caused striking expression of chemokines, as also seen in primary human COVID-19 pulmonary autopsy samples. hPSC-derived cells/organoids provide valuable models for understanding the cellular responses of human tissues to SARS-CoV-2 infection and for disease modeling of COVID-19.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Organoides/virologia , Pneumonia Viral/virologia , Tropismo , Enzima de Conversão de Angiotensina 2 , Animais , Autopsia , COVID-19 , Linhagem Celular , Infecções por Coronavirus/patologia , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/virologia , Fígado/patologia , Camundongos , Pâncreas/patologia , Pâncreas/virologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , SARS-CoV-2 , Internalização do Vírus
11.
J Clin Virol ; 128: 104386, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388469

RESUMO

There is an increasing number of confirmed cases and deaths caused by the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributing to the Coronavirus disease 2019 (COVID-19) pandemic. At this point, the need for further disease characterization is critical. COVID-19 is well established as a respiratory tract pathogen; however, recent studies have shown an increasing number of patients reporting gastrointestinal manifestations such as diarrhea, nausea, vomiting, and abdominal pain. The time from onset of gastrointestinal symptoms to hospital presentation is often delayed compared to that of respiratory symptoms. It has been noted that SARS-CoV-2 RNA can be detected in fecal matter for an extended period of time, even after respiratory samples have tested negative and patients are asymptomatic. In this article, SARS-CoV-2 and its disease COVID-19 will be reviewed with consideration of the latest literature about gastrointestinal symptomatology, the mechanisms by which the virus may inflict damage, and the possibility of viral replication contributing to a fecal-oral route of transmission.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/epidemiologia , Diarreia/virologia , Doenças do Sistema Digestório/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Doenças do Sistema Digestório/prevenção & controle , Doenças do Sistema Digestório/virologia , Fezes/virologia , Trato Gastrointestinal/virologia , Humanos , Fígado/virologia , Oxigênio/administração & dosagem , Pâncreas/virologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Respiração Artificial , SARS-CoV-2 , Replicação Viral , Vômito/virologia
12.
Cardiovasc Res ; 116(10): 1756-1766, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31598635

RESUMO

AIMS: The coxsackievirus B3 (CVB3) mouse myocarditis model is the standard model for investigation of virus-induced myocarditis but the pancreas, rather than the heart, is the most susceptible organ in mouse. The aim of this study was to develop a CVB3 mouse myocarditis model in which animals develop myocarditis while attenuating viral infection of the pancreas and the development of severe pancreatitis. METHODS AND RESULTS: We developed the recombinant CVB3 variant H3N-375TS by inserting target sites (TS) of miR-375, which is specifically expressed in the pancreas, into the 3'UTR of the genome of the pancreo- and cardiotropic CVB3 variant H3. In vitro evaluation showed that H3N-375TS was suppressed in pancreatic miR-375-expressing EndoC-ßH1 cells >5 log10, whereas its replication was not suppressed in isolated primary embryonic mouse cardiomyocytes. In vivo, intraperitoneal (i.p.) administration of H3N-375TS to NMRI mice did not result in pancreatic or cardiac infection. In contrast, intravenous (i.v.) administration of H3N-375TS to NMRI and Balb/C mice resulted in myocardial infection and acute and chronic myocarditis, whereas the virus was not detected in the pancreas and the pancreatic tissue was not damaged. Acute myocarditis was characterized by myocardial injury, inflammation with mononuclear cells, induction of proinflammatory cytokines, and detection of replicating H3N-375TS in the heart. Mice with chronic myocarditis showed myocardial fibrosis and persistence of H3N-375TS genomic RNA but no replicating virus in the heart. Moreover, H3N-375TS infected mice showed distinctly less suffering compared with mice that developed pancreatitis and myocarditis after i.p. or i.v application of control virus. CONCLUSION: In this study, we demonstrate that by use of the miR-375-sensitive CVB3 variant H3N-375TS, CVB3 myocarditis can be established without the animals developing severe systemic infection and pancreatitis. As the H3N-375TS myocarditis model depends on pancreas-attenuated H3N-375TS, it can easily be used in different mouse strains and for various applications.


Assuntos
Infecções por Coxsackievirus/virologia , Enterovirus Humano B/patogenicidade , Miocardite/virologia , Miócitos Cardíacos/virologia , Pâncreas/virologia , Pancreatite/virologia , Regiões 3' não Traduzidas , Animais , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/patologia , Modelos Animais de Doenças , Enterovirus Humano B/genética , Feminino , Fibrose , Genótipo , Células HEK293 , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miocardite/metabolismo , Miocardite/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pancreatite/prevenção & controle , Fenótipo , Virulência , Replicação Viral
13.
J Autoimmun ; 107: 102378, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31818546

RESUMO

Human herpesvirus-6 (HHV-6) is a ubiquitous pathogen associated with nervous and endocrine autoimmune disorders. The aim of this study was to investigate the presence of HHV-6 in pancreatic tissue sections from non-diabetic, auto-antibody positive (AAB+), and donors with type 1 diabetes (T1D) and explore whether there is any association between HHV-6 and MHC class I hyperexpression and CD8 T cell infiltration. HHV-6 DNA was detected by PCR and its protein was examined by indirect immunofluorescence assay followed by imaging using high-resolution confocal microscopy. Viral DNA (U67) was found in most pancreata of non-diabetic (3 out of 4), AAB+ (3 out of 5) and T1D donors (6 out of 7). Interestingly, HHV-6 glycoprotein B (gB) was more expressed in islets and exocrine pancreas of donors with T1D. However, gB expression was not directly associated with other pathologies. Out of 20 islets with high gB expression, only 3 islets (15%) showed MHC class I hyperexpression. Furthermore, no correlation was found between gB expression and CD8 T cell infiltration on a per-islet basis in any of the groups. Our observations indicate that HHV-6 DNA and protein are present in the pancreas of non-diabetic subjects but gB expression is higher in the pancreas of donors with T1D. The possible role of HHV-6 as a contributory factor for T1D should therefore be further investigated.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Suscetibilidade a Doenças , Herpesvirus Humano 6 , Pâncreas/virologia , Infecções por Roseolovirus/complicações , Autoimunidade , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/metabolismo , Expressão Gênica , Herpesvirus Humano 6/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/virologia , Pâncreas/imunologia , Pâncreas/metabolismo , Infecções por Roseolovirus/virologia
14.
J Virol Methods ; 276: 113790, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31770544

RESUMO

Pancreatin is a combination of enzymes, principally amylase, lipase, and protease, used in the treatment of pancreatic endocrine insufficiency in humans. Pancreatin manufactured from imported porcine pancreas carries the risk of hepatitis E virus (HEV) contamination. About 1 % of the starting material for pancreatin manufacture is invariably constituted of the small intestine, which is known to be a major extrahepatic site of HEV replication in pigs. The aim of this study was to evaluate a method to detect and quantify HEV in pancreatin of porcine origin. Because HEV cannot be easily grown by conventional cell culture, an approach based on an established quantitative RT-PCR (RT-qPCR) was selected. This entailed the use of a non-HEV internal control to monitor RNA extraction efficacy and the production of HEV synthetic RNA as a reference to account for the efficacy of reverse-transcription. The method was evaluated by experiments in which HEV (from naturally infected pigs) was spiked in both the starting material (i.e., porcine pancreas homogenate for industrial production) and in the pancreatin itself. A laboratory protocol matching the industrial production workflow was set up and RT-qPCR experiments were carried out to evaluate the method's ability to detect HEV in pancreatin made from HEV-contaminated porcine tissues. The results showed that the method may be employed in two different strategies: to test the porcine pancreas homogenate (quantitative performance) or directly on pancreatin (qualitative assay). While the risk of HEV contamination in pancreatin may be low, it cannot be completely ruled out. Testing for HEV based on the precautionary principle ought to be the guiding rule.


Assuntos
Vírus da Hepatite E/isolamento & purificação , Pâncreas/virologia , Pancreatina/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Carga Viral/métodos , Animais , Fezes/virologia , Vírus da Hepatite E/genética , RNA Viral/genética , RNA Viral/isolamento & purificação , Suínos/virologia
15.
FEBS Lett ; 594(4): 763-775, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31643074

RESUMO

Coxsackievirus B3 (CVB3) has potential as a new oncolytic agent for the treatment of cancer but can induce severe pancreatitis. Here, we inserted target sequences of the microRNA miR-375 (miR-375TS) into the 5' terminus of the polyprotein encoding sequence or into the 3'UTR of the CVB3 strain rCVB3.1 to prevent viral replication in the pancreas. In pancreatic EndoC-ßH1 cells expressing miR-375 endogenously, replication of the 5'-miR-375TS virus and that of the 3'-miR-375TS virus was reduced by 4 × 103 -fold and 3.9 × 104 -fold, respectively, compared to the parental rCVB3.1. In colorectal carcinoma cells, replication and cytotoxicity of both viruses were slightly reduced compared to rCVB3.1, but less pronounced for the 3'-miR-375TS virus. Thus, CVB3 with miR-375TS in the 3'UTR of the viral genome may be suitable to avoid pancreatic toxicity.


Assuntos
Enterovirus Humano B/genética , Engenharia Genética , MicroRNAs/genética , Pâncreas/citologia , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Células HEK293 , Humanos , Pâncreas/virologia
16.
Nat Med ; 25(12): 1865-1872, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792456

RESUMO

Viruses are implicated in autoimmune destruction of pancreatic islet ß cells, which results in insulin deficiency and type 1 diabetes (T1D)1-4. Certain enteroviruses can infect ß cells in vitro5, have been detected in the pancreatic islets of patients with T1D6 and have shown an association with T1D in meta-analyses4. However, establishing consistency in findings across studies has proven difficult. Obstacles to convincingly linking RNA viruses to islet autoimmunity may be attributed to rapid viral mutation rates, the cyclical periodicity of viruses7 and the selection of variants with altered pathogenicity and ability to spread in populations. ß cells strongly express cell-surface coxsackie and adenovirus receptor (CXADR) genes, which can facilitate enterovirus infection8. Studies of human pancreata and cultured islets have shown significant variation in enteroviral virulence to ß cells between serotypes and within the same serotype9,10. In this large-scale study of known eukaryotic DNA and RNA viruses in stools from children, we evaluated fecally shed viruses in relation to islet autoimmunity and T1D. This study showed that prolonged enterovirus B rather than independent, short-duration enterovirus B infections may be involved in the development of islet autoimmunity, but not T1D, in some young children. Furthermore, we found that fewer early-life human mastadenovirus C infections, as well as CXADR rs6517774, independently correlated with islet autoimmunity.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/virologia , Enterovirus/isolamento & purificação , RNA Viral/isolamento & purificação , Adolescente , Autoimunidade/genética , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Enterovirus/imunologia , Enterovirus/patogenicidade , Fezes/virologia , Feminino , Humanos , Lactente , Insulina/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/virologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/virologia , Masculino , Pâncreas/imunologia , Pâncreas/patologia , Pâncreas/virologia
17.
Sci Rep ; 9(1): 10080, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300658

RESUMO

Coxsackieviruses B (CV-B) belong to the EV-B species. CV-B and particularly CV-B4 are thought to be involved in the development of chronic diseases like type 1 diabetes (T1D). The mechanisms of the enteroviral pathogenesis of T1D are not well known, yet. The in vitro studies are rich with information but in vivo infection models are needed to investigate the impact of viruses onto organs. Our objective was to study the impact of CV-B4E2 combined with a single sub-diabetogenic dose of streptozotocin (STZ) on the pancreas of mice. The infection with CV-B4E2 of CD1 outbred mice treated with a sub-diabetogenic dose of STZ induced hyperglycemia and hypoinsulinemia. Along with the chemokine IP-10, viral RNA and infectious particles were detected in the pancreas. The pancreas of these animals was also marked with insulitis and other histological alterations. The model combining STZ and CV-B4E2 opens the door to new perspectives to better understand the interactions between virus and host, and the role of environmental factors capable, like STZ, to predispose the host to the diabetogenic effects of enteroviruses.


Assuntos
Infecções por Coxsackievirus/patologia , Diabetes Mellitus Tipo 1/patologia , Pâncreas/patologia , Estreptozocina/farmacologia , Animais , Linhagem Celular , Quimiocina CXCL10/análise , Diabetes Mellitus Tipo 1/virologia , Enterovirus Humano B/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/virologia , Insulina/sangue , Masculino , Camundongos , Pâncreas/virologia , Carga Viral
18.
Biochem Biophys Res Commun ; 513(2): 446-451, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30967257

RESUMO

Influenza virus infection is associated with type 1 diabetes (T1DM), but its pathogenesis remains unclear. Here, our study found that one of the monoclonal antibodies against H1N1 influenza virus hemagglutinin(HA) cross-reacted with human pancreatic tissue and further demonstrated that it binded to rat islet ß-cells. We immunoprecipitated islet protein with this cross-reactive antibody and identified the bound antigen as prohibitin by mass spectrometry. We then expressed the prohibitin protein in bacteria and confirmed the antibody binding to prohibitin by Western blot. We also verified the cross-reactivity of the antibody by prohibitin-siRNA transfection in islet beta cells. We conclude that prohibitin is an autoantigen that cross-reacts with influenza virus HA. The correlation between the autoantigen prohibitin and type 1 diabetes remains to be investigated.


Assuntos
Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteínas Repressoras/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Reações Cruzadas , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/virologia , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/virologia , Infecções por Orthomyxoviridae/virologia , Pâncreas/imunologia , Pâncreas/virologia , Proibitinas , Ratos
19.
Virulence ; 10(1): 207-221, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30829107

RESUMO

Enteroviral infections are frequent, often asymptomatic in humans and during gravidity. The present study is an extension of our previous investigations where we had shown pancreatitis in challenged pups of CVB4-E2-infected dams. Present investigation describes the effect of gestational infection with this virus on the pancreas of both dams and their challenged pups. Gravid CD1 outbred mice were orally infected with CVB4-E2 virus at different gestation times. Pups were challenged orally with the same virus after 25 days of birth. Organs were collected at selected intervals postinfection (p.i.), and replicating virus and viral-RNA copies were analyzed. Additional readouts included histopathology and immunohistochemical (IHC) analysis for localization and identification of Ly6G+ cells (neutrophils), CD11b+ cells (macrophages), and viral protein in pancreatic tissue sections of the infected dams and their challenged pups. Our results show the presence of replicating virus in the pancreas of infected dams and their challenged pups, with inflammation leading to chronic necrotizing pancreatitis and atrophy of pancreatic acini of the dams and their offspring. IHC analysis of the infiltrating cells showed pronounced Ly6G+ neutrophils in dams only, whereas CD11b+ macrophages were present in tissues of both, the pups and the dams. Time of infection during gravidity as well as the p.i. intervals when mice were sacrificed influenced the pancreatic pathophysiology in both groups. We conclude that coxsackievirus infection during pregnancy is a risk factor for chronic affliction of the exocrine tissue and could affect endocrine pancreas in the mother and child.


Assuntos
Infecções por Coxsackievirus/transmissão , Pâncreas/fisiopatologia , Pâncreas/virologia , RNA Viral/análise , Animais , Modelos Animais de Doenças , Feminino , Transmissão Vertical de Doenças Infecciosas , Camundongos , Pancreatite/patologia , Pancreatite/virologia , Gravidez , Replicação Viral
20.
Diabetologia ; 62(5): 744-753, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30675626

RESUMO

In type 1 diabetes, pancreatic beta cells are destroyed by chronic autoimmune responses. The disease develops in genetically susceptible individuals, but a role for environmental factors has been postulated. Viral infections have long been considered as candidates for environmental triggers but, given the lack of evidence for an acute, widespread, cytopathic effect in the pancreas in type 1 diabetes or for a closely related temporal association of diabetes onset with such infections, a role for viruses in type 1 diabetes remains unproven. Moreover, viruses have rarely been isolated from the pancreas of individuals with type 1 diabetes, mainly (but not solely) due to the inaccessibility of the organ. Here, we review past and recent literature to evaluate the proposals that chronic, recurrent and, possibly, persistent enteroviral infections occur in pancreatic beta cells in type 1 diabetes. We also explore whether these infections may be sustained by different virus strains over time and whether multiple viral hits can occur during the natural history of type 1 diabetes. We emphasise that only a minority of beta cells appear to be infected at any given time and that enteroviruses may become replication defective, which could explain why they have been isolated from the pancreas only rarely. We argue that enteroviral infection of beta cells largely depends on the host innate and adaptive immune responses, including innate responses mounted by beta cells. Thus, we propose that viruses could play a role in type 1 diabetes on multiple levels, including in the triggering and chronic stimulation of autoimmunity and in the generation of inflammation and the promotion of beta cell dysfunction and stress, each of which might then contribute to autoimmunity, as part of a vicious circle. We conclude that studies into the effects of vaccinations and/or antiviral drugs (some of which are currently on-going) is the only means by which the role of viruses in type 1 diabetes can be finally proven or disproven.


Assuntos
Antivirais/uso terapêutico , Diabetes Mellitus Tipo 1/virologia , Infecções por Enterovirus/prevenção & controle , Pâncreas/fisiopatologia , Vacinas Virais/uso terapêutico , Imunidade Adaptativa , Autoimunidade , Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Infecções por Enterovirus/complicações , Infecções por Enterovirus/tratamento farmacológico , Humanos , Imunidade Inata , Células Secretoras de Insulina/metabolismo , Pâncreas/virologia , Vacinas Virais/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA