Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 778
Filtrar
1.
Med ; 5(5): 377-379, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733969

RESUMO

The study by Hirschfield et al.1 demonstrated safety profile and clinically significant effectiveness of the peroxisome proliferator-activated receptor delta (PPARδ) agonist seladelpar in patients with primary biliary cholangitis, highlighting its plausible use as a second-line treatment to reduce disease activity and pruritus.


Assuntos
Cirrose Hepática Biliar , Prurido , Humanos , Prurido/tratamento farmacológico , Cirrose Hepática Biliar/tratamento farmacológico , PPAR delta/agonistas , PPAR delta/metabolismo
2.
Eur J Pharmacol ; 972: 176565, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38599309

RESUMO

Blockade of PD-1/PD-L1 immune checkpoint is wildly used for multiple types of cancer treatment, while the low response rate for patients is still completely unknown. As nuclear hormone receptor, PPARδ (peroxisome-proliferator-activated receptor) regulates cell proliferation, inflammation, and tumor progression, while the effect of PPARδ on tumor immune escape is still unclear. Here we found that PPARδ antagonist GSK0660 significantly reduced colon cancer cell PD-L1 protein and gene expression. Luciferase analysis showed that GSK0660 decreased PD-L1 gene transcription activity. Moreover, reduced PD-L1 expression in colon cancer cells led to increased T cell activity. Further analysis showed that GSK0660 decreased PD-L1 expression in a PPARδ dependent manner. Implanted tumor model analysis showed that GSK0660 inhibited tumor immune escape and the combined PD-1 antibody with GSK0660 effectively enhanced colorectal cancer immunotherapy. These findings suggest that GSK0660 treatment could be an effective strategy for cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Imunoterapia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Humanos , Animais , Imunoterapia/métodos , Camundongos , Linhagem Celular Tumoral , PPAR delta/genética , PPAR delta/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Neoplasias do Colo/genética , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Evasão Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C
3.
Fluids Barriers CNS ; 21(1): 33, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589879

RESUMO

BACKGROUND: The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS: We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS: Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS: Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.


Assuntos
Barreira Hematoencefálica , PPAR delta , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , PPAR delta/metabolismo , Células Endoteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Encéfalo/metabolismo , Jejum
4.
Sci Signal ; 17(828): eadh2783, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502732

RESUMO

Post-exercise recovery is essential to resolve metabolic perturbations and promote long-term cellular remodeling in response to exercise. Here, we report that muscle-generated brain-derived neurotrophic factor (BDNF) elicits post-exercise recovery and metabolic reprogramming in skeletal muscle. BDNF increased the post-exercise expression of the gene encoding PPARδ (peroxisome proliferator-activated receptor δ), a transcription factor that is a master regulator of lipid metabolism. After exercise, mice with muscle-specific Bdnf knockout (MBKO) exhibited impairments in PPARδ-regulated metabolic gene expression, decreased intramuscular lipid content, reduced ß-oxidation, and dysregulated mitochondrial dynamics. Moreover, MBKO mice required a longer period to recover from a bout of exercise and did not show increases in exercise-induced endurance capacity. Feeding naïve mice with the bioavailable BDNF mimetic 7,8-dihydroxyflavone resulted in effects that mimicked exercise-induced adaptations, including improved exercise capacity. Together, our findings reveal that BDNF is an essential myokine for exercise-induced metabolic recovery and remodeling in skeletal muscle.


Assuntos
PPAR delta , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , PPAR delta/genética , PPAR delta/metabolismo
5.
Asian Pac J Cancer Prev ; 25(3): 1035-1043, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546086

RESUMO

OBJECTIVE: The aim of the present study was to examine whether GLUT1 was involved in the antiproliferative activity of curcumin and doxorubicin by understanding mechanistically how curcumin regulated GLUT1. METHODS: Expression level of GLUT1 in MCF-7 and MDA-MB-231 cells were quantitated using quantitative real-time PCR and western blot. GLUT1 activity was inhibited in MDA-MB-231 cells with the pharmacological inhibitor WZB117 to assess the anti-proliferative effects of doxorubicin using MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide).  To examine cell proliferation, trypan blue assay was used in cells transfected with GLUT1 siRNA or plasmid overexpressing GLUT1 with doxorubicin and/or commercially available curcumin. The role of PPARδ and Akt on the regulation of GLUT1 by curcumin was examined by overexpressing these proteins and western blot was employed to examine their protein expression. RESULTS: The data revealed that there was a 1.5 fold increase in GLUT1 mRNA and protein levels in MDA-MB-231 compared to MCF-7.  By inhibiting GLUT1 in triple negative breast cancer cell line, MDA-MB-231 with either the pharmacological inhibitor WZB117 or with GLUT1 siRNA, we observed the enhanced antiproliferative effects of doxorubicin. Additional observations indicated these effects can be reversed by the overexpression of GLUT1. Treatment of MDA-MB-231 with curcumin also revealed downregulation of GLUT1, with further growth suppressive effects when combined with doxorubicin.  Overexpression of GLUT1 blocked the growth suppressive role of curcumin and doxorubicin (p< 0.05). Mechanistically, we also observed that the regulation of GLUT1 by curcumin was mediated by the Peroxisome proliferator-activated receptor (PPAR) δ/Akt pathway. CONCLUSION: Our study demonstrates that regulation of GLUT1 by curcumin via the PPARδ/Akt signaling improves the efficacy of doxorubicin by promoting its growth inhibitory effects in MDA-MB-231 cells.


Assuntos
Neoplasias da Mama , Curcumina , Hidroxibenzoatos , PPAR delta , Humanos , Feminino , Curcumina/farmacologia , Células MDA-MB-231 , PPAR delta/metabolismo , PPAR delta/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transportador de Glucose Tipo 1/genética , Doxorrubicina/farmacologia , Proliferação de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Linhagem Celular Tumoral
6.
J Neuroimmune Pharmacol ; 19(1): 11, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530514

RESUMO

Neuro-inflammation involves distinct alterations of microglial phenotypes, containing nocuous pro-inflammatory M1-phenotype and neuroprotective anti-inflammatory M-phenotype. Currently, there is no effective treatment for modulating such alterations. M1/M2 marker of primary microglia influenced by Melatonin were detected via qPCR. Functional activities were explored by western blotting, luciferase activity, EMSA, and ChIP assay. Structure interaction was assessed by molecular docking and LIGPLOT analysis. ER-stress detection was examined by ultrastructure TEM, calapin activity, and ERSE assay. The functional neurobehavioral evaluations were used for investigation of Melatonin on the neuroinflammation in vivo. Melatonin had targeted on Peroxisome Proliferator Activated Receptor Delta (PPARδ) activity, boosted LPS-stimulated alterations in polarization from the M1 to the M2 phenotype, and thereby inhibited NFκB-IKKß activation in primary microglia. The PPARδ agonist L-165,041 or over-expression of PPARδ plasmid (ov-PPARδ) showed similar results. Molecular docking screening, dynamic simulation approaches, and biological studies of Melatonin showed that the activated site was located at PPARδ (phospho-Thr256-PPARδ). Activated microglia had lowered PPARδ activity as well as the downstream SIRT1 formation via enhancing ER-stress. Melatonin, PPARδ agonist and ov-PPARδ all effectively reversed the above-mentioned effects. Melatonin blocked ER-stress by regulating calapin activity and expression in LPS-activated microglia. Additionally, Melatonin or L-165,041 ameliorated the neurobehavioral deficits in LPS-aggravated neuroinflammatory mice through blocking microglia activities, and also promoted phenotype changes to M2-predominant microglia. Melatonin suppressed neuro-inflammation in vitro and in vivo by tuning microglial activation through the ER-stress-dependent PPARδ/SIRT1 signaling cascade. This treatment strategy is an encouraging pharmacological approach for the remedy of neuro-inflammation associated disorders.


Assuntos
Melatonina , PPAR delta , Ratos , Camundongos , Animais , Microglia , PPAR delta/metabolismo , PPAR delta/farmacologia , PPAR delta/uso terapêutico , Melatonina/farmacologia , Lipopolissacarídeos/farmacologia , Sirtuína 1/metabolismo , Simulação de Acoplamento Molecular , Inflamação/metabolismo
7.
In Vivo ; 38(2): 657-664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418133

RESUMO

BACKGROUND/AIM: Myelodysplastic syndromes (MDS) are clinically heterogeneous hematological malignancies with an increased risk of transformation to acute myeloid leukemia, emphasizing the importance of identifying new diagnostic and prognostic markers. This study sought to investigate the predictive ability of all-trans retinoic acid (ATRA)-dependent nuclear transcription factors RARα and PPARß/δ gene expression in MDS patients. MATERIALS AND METHODS: Peripheral blood specimens were collected from 49 MDS patients and 15 healthy volunteers. The specimens were further separated in Ficoll density gradient to obtain the mononuclear cells fractions. Gene expression analysis was carried out using quantitative real-time polymerase chain reaction (qRT-PCR) technique. RESULTS: In the mononuclear cell fractions of MDS patients, RARα expression was increased (p<0.05) and PPARß/δ expression was decreased (p<0.01) compared to healthy volunteers. When RARα and PPARß/δ expression was compared in groups of MDS patients with different risks of disease progression, no statistically significant difference was found for RARα expression, while PPARß/δ expression was significantly lower in the high-risk group of patients compared to the low-risk group (p<0.05). The expression of RARα was significantly associated with overall survival (p<0.05). ROC analysis showed that the expression of PPARß/δ, rather than RARα expression, could have potential diagnostic value for MDS patients (AUC=0.75, p=0.003 and AUC=0.65, p=0.081, respectively). CONCLUSION: RARα and PPARß/δ genes are putative biomarkers that may be associated with the diagnosis and prognosis of MDS.


Assuntos
Síndromes Mielodisplásicas , PPAR delta , PPAR beta , Humanos , Relevância Clínica , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , PPAR delta/genética , PPAR delta/metabolismo , PPAR beta/genética , PPAR beta/metabolismo , Tretinoína
8.
Sci Total Environ ; 912: 168949, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042186

RESUMO

Di-2-ethylhexyl phthalic acid (DEHP) is one of the most widely used plasticizers in the industry, which can improve the flexibility and durability of plastics. It is prone to migrate from various daily plastic products through wear and leaching into the surrounding environment and decompose into the more toxic metabolite mono-2-ethylhexyl phthalic acid (MEHP) after entering the human body. However, the impacts and mechanisms of MEHP on neuroblastoma are unclear. We exposed MYCN-amplified neuroblastoma SK-N-BE(2)C cells to an environmentally related concentration of MEHP and found that MEHP increased the proliferation and migration ability of tumor cells. The peroxisome proliferator-activated receptor (PPAR) ß/δ pathway was identified as a pivotal signaling pathway in neuroblastoma, mediating the effects of MEHP through transcriptional sequencing analysis. Because MEHP can bind to the PPARß/δ protein and initiate the expression of the downstream gene angiopoietin-like 4 (ANGPTL4), the PPARß/δ-specific agonist GW501516 and antagonist GSK3787, the recombinant human ANGPTL4 protein, and the knockdown of gene expression confirmed the regulation of the PPARß/δ-ANGPTL4 axis on the malignant phenotype of neuroblastoma. Based on the critical role of PPARß/δ and ANGPTL4 in the metabolic process, a non-targeted metabolomics analysis revealed that MEHP altered multiple metabolic pathways, particularly lipid metabolites involving fatty acyls, glycerophospholipids, and sterol lipids, which may also be potential factors promoting tumor progression. We have demonstrated for the first time that MEHP can target binding to PPARß/δ and affect the progression of neuroblastoma by activating the PPARß/δ-ANGPTL4 axis. This mechanism confirms the health risks of plasticizers as tumor promoters and provides new data support for targeted prevention and treatment of neuroblastoma.


Assuntos
Dietilexilftalato/análogos & derivados , Neuroblastoma , PPAR delta , PPAR beta , Ácidos Ftálicos , Humanos , PPAR beta/agonistas , PPAR beta/genética , PPAR beta/metabolismo , Proteína Proto-Oncogênica N-Myc , Plastificantes/toxicidade , Angiopoietinas/genética , Angiopoietinas/metabolismo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , Proteína 4 Semelhante a Angiopoietina
9.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G120-G132, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38014444

RESUMO

Seladelpar, a selective peroxisome proliferator-activated receptor δ (PPARδ) agonist, improves markers of hepatic injury in human liver diseases, but histological improvement of nonalcoholic steatohepatitis (NASH) and liver fibrosis has been challenging with any single agent. To discover how complementary agents could work with seladelpar to achieve optimal outcomes, this study evaluated a variety of therapeutics (alone and in combination) in a mouse model of NASH. Mice on a high-fat amylin liver NASH (AMLN) diet were treated for 12 wk with seladelpar, GLP-1-R (glucagon-like peptide-1 receptor) agonist liraglutide, apoptosis signal-regulating kinase 1 (ASK1) inhibitor selonsertib, farnesoid X receptor (FXR) agonist obeticholic acid, and with seladelpar in combination with liraglutide or selonsertib. Seladelpar treatment markedly improved plasma markers of liver function. Seladelpar alone or in combination resulted in stark reductions in liver fibrosis (hydroxyproline, new collagen synthesis rate, mRNA indices of fibrosis, and fibrosis staining) compared with vehicle and the other single agents. Robust reductions in liver steatosis were also observed. Seladelpar produced a reorganization of metabolic gene expression, particularly for those genes promoting peroxisomal and mitochondrial lipid oxidation. In summary, substantial improvements in NASH and NASH-induced fibrosis were observed with seladelpar alone and in combination with liraglutide in this model. Broad gene expression analysis suggests seladelpar should be effective in concert with diverse mechanisms of action.NEW & NOTEWORTHY NASH is a chronic, progressive, and increasingly problematic liver disease that has been resistant to treatment with individual therapeutics. In this study using a diet-induced mouse model of NASH, we found that the PPARδ agonist seladelpar reduced fibrosis and NASH pathology alone and in combinations with a GLP-1-R agonist (liraglutide) or an ASK1 inhibitor (selonsertib). Liver transcriptome analysis comparing each agent and coadministration suggests seladelpar should be effective in combination with a variety of therapeutics.


Assuntos
Acetatos , Benzamidas , Terapias Complementares , Imidazóis , Hepatopatia Gordurosa não Alcoólica , PPAR delta , Piridinas , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , PPAR delta/metabolismo , PPAR delta/farmacologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
10.
Exp Neurol ; 372: 114615, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37995951

RESUMO

BACKGROUND: Activation of mast cells plays an important role in brain inflammation. CD300a, an inhibitory receptor located on mast cell surfaces, has been reported to reduce the production of pro-inflammatory cytokines and exert protective effects in inflammation-related diseases. Peroxisome proliferator-activated receptor ß/δ (PPARß/δ), a ligand-activated nuclear receptor, activation upregulates the transcription of CD300a. In this study, we aim to investigate the role of PPARß/δ in the attenuation of germinal matrix hemorrhage (GMH)-induced mast cell activation via CD300a/SHP1 pathway. METHODS: GMH model was induced by intraparenchymal injection of bacterial collagenase into the right hemispheric ganglionic eminence in P7 Sprague Dawley rats. GW0742, a PPARß/δ agonist, was administered intranasally at 1 h post-ictus. CD300a small interfering RNA (siRNA) and PPARß/δ siRNA were injected intracerebroventricularly 5 days and 2 days before GMH induction. Behavioral tests, Western blot, immunofluorescence, Toluidine Blue staining, and Nissl staining were applied to assess post-GMH evaluation. RESULTS: Results demonstrated that endogenous protein levels of PPARß/δ and CD300a were decreased, whereas chymase, tryptase, IL-17A and transforming growth factor ß1 (TGF-ß1) were elevated after GMH. GMH induced significant short- and long-term neurobehavioral deficits in rat pups. GW0742 decreased mast cell degranulation, improved neurological outcomes, and attenuated ventriculomegaly after GMH. Additionally, GW0742 increased expression of PPARß/δ, CD300a and phosphorylation of SHP1, decreased phosphorylation of Syk, chymase, tryptase, IL-17A and TGF-ß1 levels. PPARß/δ siRNA and CD300a siRNA abolished the beneficial effects of GW0742. CONCLUSIONS: GW0742 inhibited mast cell-induced inflammation and improved neurobehavior after GMH, which is mediated by PPARß/δ/CD300a/SHP1 pathway. GW0742 may serve as a potential treatment to reduce brain injury for GMH patients.


Assuntos
PPAR delta , PPAR beta , Humanos , Ratos , Animais , PPAR delta/genética , PPAR delta/metabolismo , PPAR beta/genética , PPAR beta/metabolismo , Animais Recém-Nascidos , Mastócitos/metabolismo , Quimases , Interleucina-17 , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1 , Triptases , Hemorragia Cerebral , Tiazóis/farmacologia , Inflamação , RNA Interferente Pequeno
11.
Food Res Int ; 175: 113783, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129008

RESUMO

Fisetin, a dietary polyphenol abundantly found in strawberries, exhibits a broad spectrum of health-promoting activities, including antihyperlipidemic effects. This study aimed to investigate the regulatory effect of fisetin on cholesterol elimination through novel transintestinal cholesterol excretion (TICE) pathway. A hypercholesterolemic mouse model and human colon epithelial cancer cell line Caco-2 were utilized to conduct the study. In hypercholesterolemic mice, fisetin (25 mg/kg) treatment reduced serum total cholesterol by 46.48% and significantly decreased lipid accumulation in the liver. Furthermore, fisetin administration led to a substantial increase in the fecal neutral sterol contents, including coprostanol, coprostanone, dihydrocholesterol, and cholesterol. Specifically, these sterol contents increased by approximately 224.20%, 151.40%, 70.40% and 50.72% respectively. The fluorescence intensity of 22-NBD-cholesterol in intestinal perfusion increased by 95.94% in fisetin group (25 mg/kg), indicating that fisetin stimulated TICE. In high cholesterol-induced Caco-2 cells, fisetin at a concentration of 30 µM reduced total cholesterol and free cholesterol by 37.21% and 45.30% respectively, stimulated cholesterol excretion, and inhibited cholesterol accumulation. Additionally, fisetin upregulated the gene and protein expression of cholesterol efflux transporters ABCG5/G8 and ABCB1, while downregulating the cholesterol uptake regulator NPC1L1. Furthermore, fisetin increased LDLR protein expression and decreased PCSK9 expression. Notably, fisetin significantly activated nuclear receptor PPARδ in Caco-2 cells. PPARδ antagonist pretreatment counteracted the regulatory effects of fisetin on TICE regulators, suggesting fisetin lowered cholesterol through enhancing TICE by activation of intestinal PPARδ. Fisetin could be used as functional dietarysupplement for eliminating cholesterol and reducing the incidence of cardiovascular diseases.


Assuntos
PPAR delta , Pró-Proteína Convertase 9 , Camundongos , Humanos , Animais , PPAR delta/metabolismo , Células CACO-2 , Colesterol , Flavonóis , Esteróis , Polifenóis
12.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 121-128, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953575

RESUMO

Gut microbiota dysbiosis is an essential factor contributing to non-alcoholic fatty liver disease (NAFLD), in which the gut-liver axis plays a crucial role. Peroxisome proliferator-activated receptor δ (PPARδ) is considered a new direction for the research on NAFLD due to its positive regulation of glucose and lipid metabolism. Our experiment aimed to investigate the effect of PPARδ gene deletion on gut microbiota and NAFLD through the gut-liver axis. PPARδ-/- mice and wild-type mice were randomly divided into high-fat diet(HFD) groups and normal diet groups. In each group, six mice were sacrificed at weeks 4, 8, and 12. Metabolic indicators and inflammation indicators were measured, and the degree of liver steatosis and the ileum mucosa integrity were evaluated. Additionally, fecal samples were subjected to 16S rDNA gene sequencing and analysis of gut microbiota. Deletion of the PPARδ gene exhibited exacerbated effects on HFD-induced NAFLD and displayed more severe liver inflammation and intestinal mucosal barrier injuries. The HFD reduced the abundance of short-chain fatty acid (SCFA)-producing bacteria and increased the abundance of intestinal endotoxin-rich bacteria in mice. Deletion of the PPARδ gene exacerbated this trend, resulting in decreased abundances of norank_f__Eubacterium_coprostanoligenes_group and Alloprevotella and increased abundances of Acidibacter, unclassified_f__Comamonadaceae, unclassified_c__Alphaproteobacteria, unclassified_f__Beijerinckiaceae, unclassified_f__Caulobacteraceae, unclassified_c__Bacteroidia and Bosea. Spearman's correlation analysis found Lachnoclostridium, unclassified_f__Rhizobiaceae, Allobaculum, Acinetobacter, Romboutsia, norank_f__Muribaculaceae and Dubosiella showed some correlations with metabolic indicators, inflammation indicators, NAS and occludin. Deletion of the PPARδ gene exacerbated HFD-induced gut microbiota dysbiosis and affected NAFLD through the gut-liver axis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , PPAR delta , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Disbiose/metabolismo , Inflamação/genética , Inflamação/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , PPAR delta/genética , PPAR delta/metabolismo
13.
Biomed Pharmacother ; 167: 115623, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783154

RESUMO

Elafibranor is a dual peroxisome proliferator-activated receptor (PPAR)α and ß/δ agonist that has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we examined the effects of elafibranor in mice fed a choline-deficient high-fat diet (CD-HFD), a model of metabolic dysfunction-associated steatohepatitis (MASH) that presents obesity and insulin resistance. Our findings revealed that elafibranor treatment ameliorated steatosis, inflammation, and fibrogenesis in the livers of CD-HFD-fed mice. Unexpectedly, elafibranor also increased the levels of the epithelial-mesenchymal transition (EMT)-promoting protein S100A4 via PPARß/δ activation. The increase in S100A4 protein levels caused by elafibranor was accompanied by changes in the levels of markers associated with the EMT program. The S100A4 induction caused by elafibranor was confirmed in the BRL-3A rat liver cells and a mouse primary hepatocyte culture. Furthermore, elafibranor reduced the levels of ASB2, a protein that promotes S100A4 degradation, while ASB2 overexpression prevented the stimulating effect of elafibranor on S100A4. Collectively, these findings reveal an unexpected hepatic effect of elafibranor on increasing S100A4 and promoting the EMT program.


Assuntos
Hepatopatia Gordurosa não Alcoólica , PPAR delta , PPAR beta , Animais , Camundongos , Ratos , Dieta Hiperlipídica , Transição Epitelial-Mesenquimal , Fígado , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR delta/metabolismo , PPAR beta/agonistas , PPAR beta/metabolismo , PPAR beta/uso terapêutico
14.
Liver Int ; 43(12): 2808-2823, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37833850

RESUMO

BACKGROUND AND AIMS: Hepatic ischaemia/reperfusion injury (HIRI) is a pathophysiological process that occurs during the liver resection and transplantation. Reportedly, peroxisome proliferator-activated receptor ß/δ (PPARß/δ) can ameliorate kidney and myocardial ischaemia/reperfusion injury. However, the effect of PPARß/δ in HIRI remains unclear. METHODS: Mouse hepatic ischaemia/reperfusion (I/R) models were constructed for in vivo study. Primary hepatocytes and Kupffer cells (KCs) isolated from mice and cell anoxia/reoxygenation (A/R) injury model were constructed for in vitro study. Liver injury and inflammation were investigated. Small molecular compounds (GW0742 and GSK0660) and adenoviruses were used to interfere with PPARß/δ. RESULTS: We found that PPARß/δ expression was increased in the I/R and A/R models. Overexpression of PPARß/δ in hepatocytes alleviated A/R-induced cell apoptosis, while knockdown of PPARß/δ in hepatocytes aggravated A/R injury. Activation of PPARß/δ by GW0742 protected against I/R-induced liver damage, inflammation and cell death, whereas inhibition of PPARß/δ by GSK0660 had the opposite effects. Consistent results were obtained in mouse I/R models through the tail vein injection of adenovirus-mediated PPARß/δ overexpression or knockdown vectors. Furthermore, knockdown and overexpression of PPARß/δ in KCs aggravated and ameliorated A/R-induced hepatocyte injury, respectively. Gene ontology and gene set enrichment analysis showed that PPARß/δ deletion was significantly enriched in the NF-κB pathway. PPARß/δ inhibited the expression of p-IKBα and p-P65 and decreased NF-κB activity. CONCLUSIONS: PPARß/δ exerts anti-inflammatory and anti-apoptotic effects on HIRI by inhibiting the NF-κB pathway, and hepatocytes and KCs may play a synergistic role in this phenomenon. Thus, PPARß/δ is a potential therapeutic target for HIRI.


Assuntos
PPAR delta , PPAR beta , Traumatismo por Reperfusão , Camundongos , Animais , PPAR beta/genética , PPAR beta/metabolismo , NF-kappa B/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , Fígado/metabolismo , Tiazóis/farmacologia , Inflamação , Modelos Animais de Doenças , Traumatismo por Reperfusão/prevenção & controle , Isquemia
15.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511155

RESUMO

Transforming growth factor-ß (TGF-ß)/Smad3 signaling has been shown to play important roles in fibrotic and inflammatory diseases. However, the role of Smad3 in dyslipidemia and non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes remains unclear, and whether targeting Smad3 has a therapeutic effect on these metabolic abnormalities remains unexplored. These topics were investigated in this study in Smad3 knockout (KO)-db/db mice and by treating db/db mice with a Smad3-specific inhibitor SIS3. Compared to Smad3 wild-type (WT)-db/db mice, Smad3 KO-db/db mice were protected against dyslipidemia and NAFLD. Similarly, treatment of db/db mice with SIS3 at week 4 before the onset of type 2 diabetes until week 12 was capable of lowering blood glucose levels and improving diabetic dyslipidemia and NAFLD. In addition, using RNA-sequencing, the potential Smad3-target genes related to lipid metabolism was identified in the liver tissues of Smad3 KO/WT mice, and the regulatory mechanisms were investigated. Mechanistically, we uncovered that Smad3 targeted peroxisome proliferator-activated receptor delta (PPARδ) to induce dyslipidemia and NAFLD in db/db mice, which was improved by genetically deleting and pharmacologically inhibiting Smad3.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , PPAR delta , Proteína Smad3 , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , PPAR delta/metabolismo , Proteína Smad3/metabolismo
16.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511356

RESUMO

Obesity is defined as a dampness-heat syndrome in traditional Chinese medicine. Coptidis Rhizoma is an herb used to clear heat and eliminate dampness in obesity and its complications. Berberine (BBR), the main active compound in Coptidis Rhizoma, shows anti-obesity effects. Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that regulate the expression of genes involved in energy metabolism, lipid metabolism, inflammation, and adipogenesis. However, whether PPARs are involved in the anti-obesity effect of BBR remains unclear. As such, the aim of this study was to elucidate the role of PPARs in BBR treatment on obesity and the underlying molecular mechanisms. Our data showed that BBR produced a dose-dependent regulation of the levels of PPARγ and PPARδ but not PPARα. The results of gene silencing and specific antagonist treatment demonstrated that PPARδ is key to the effect of BBR. In 3T3L1 preadipocytes, BBR reduced lipid accumulation; in high-fat-diet (HFD)-induced obese mice, BBR reduced weight gain and white adipose tissue mass and corrected the disturbed biochemical parameters, including lipid levels and inflammatory and oxidative markers. Both the in vitro and in vivo efficacies of BBR were reversed by the presence of a specific antagonist of PPARδ. The results of a mechanistic study revealed that BBR could activate PPARδ in both 3T3L1 cells and HFD mice, as evidenced by the significant upregulation of PPARδ endogenous downstream genes. After activating by BBR, the transcriptional functions of PPARδ were invoked, exhibiting negative regulation of CCAAT/enhancer-binding protein α (Cebpα) and Pparγ promoters and positive mediation of heme oxygenase-1 (Ho-1) promoter. In summary, this is the first report of a novel anti-obesity mechanism of BBR, which was achieved through the PPARδ-dependent reduction in lipid accumulation.


Assuntos
Berberina , Medicamentos de Ervas Chinesas , PPAR delta , Animais , Camundongos , PPAR delta/genética , PPAR delta/metabolismo , Berberina/farmacologia , PPAR gama/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Lipídeos , Metabolismo dos Lipídeos/genética
17.
Elife ; 122023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458359

RESUMO

Decidualization is a process in which endometrial stromal fibroblasts differentiate into specialized secretory decidual cells and essential for the successful establishment of pregnancy. The underlying mechanism during decidualization still remains poorly defined. Because decidualization and fibroblast activation share similar characteristics, this study was to examine whether fibroblast activation is involved in decidualization. In our study, fibroblast activation-related markers are obviously detected in pregnant decidua and under in vitro decidualization. ACTIVIN A secreted under fibroblast activation promotes in vitro decidualization. We showed that arachidonic acid released from uterine luminal epithelium can induce fibroblast activation and decidualization through PGI2 and its nuclear receptor PPARδ. Based on the significant difference of fibroblast activation-related markers between pregnant and pseudopregnant mice, we found that embryo-derived TNF promotes CPLA2α phosphorylation and arachidonic acid release from luminal epithelium. Fibroblast activation is also detected under human in vitro decidualization. Similar arachidonic acid-PGI2-PPARδ-ACTIVIN A pathway is conserved in human endometrium. Collectively, our data indicate that embryo-derived TNF promotes CPLA2α phosphorylation and arachidonic acid release from luminal epithelium to induce fibroblast activation and decidualization.


Assuntos
Decídua , PPAR delta , Gravidez , Feminino , Humanos , Animais , Camundongos , Decídua/metabolismo , PPAR delta/metabolismo , Ácido Araquidônico , Endométrio , Fibroblastos , Células Estromais/metabolismo
18.
Sci Rep ; 13(1): 11573, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463952

RESUMO

There is great interest on medium chain fatty acids (MCFA) for cardiovascular health. We explored the effects of MCFA on the expression of lipid metabolism and inflammatory genes in macrophages, and the extent to which they were mediated by the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPAR ß/δ). J774A.1 murine macrophages were exposed to octanoate or decanoate as MCFA, a long-chain fatty acid control (palmitate), or the PPAR ß/δ agonist GW501516, with or without lipopolysaccharide (LPS) stimulation, and with or without an siRNA-induced knockdown of PPAR ß/δ. MCFA increased the expression of Plin2, encoding a lipid-droplet associated protein with anti-inflammatory effects in macrophages, in a partially PPAR ß/δ-dependent manner. Both MCFA stimulated expression of the cholesterol efflux pump ABCA1, more pronouncedly under LPS stimulation and in the absence of PPAR ß/δ. Octanoate stimulated the expression of Pltp, encoding a phospholipid transfer protein that aids ABCA1 in cellular lipid efflux. Only palmitate increased expression of the proinflammatory genes Il6, Tnf, Nos2 and Mmp9. Non-stimulated macrophages exposed to MCFA showed less internalization of fluorescently labeled lipoproteins. MCFA influenced the transcriptional responses of macrophages favoring cholesterol efflux and a less inflammatory response compared to palmitate. These effects were partially mediated by PPAR ß/δ.


Assuntos
PPAR delta , PPAR beta , Camundongos , Animais , PPAR delta/metabolismo , PPAR beta/genética , PPAR beta/metabolismo , Caprilatos/farmacologia , Linhagem Celular , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Ácidos Graxos/farmacologia , Colesterol/metabolismo , Palmitatos/farmacologia
19.
Eur J Pharmacol ; 953: 175838, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307937

RESUMO

Evidence is mounting that sinomenine and peroxisome proliferator-activated receptor ß/δ (PPARß/δ) are effective against lipopolysaccharide (LPS)-induced acute lung injury (ALI) via anti-inflammatory properties. However, it is unknown whether PPARß/δ plays a role in the protective effect of sinomenine on ALI. Here, we initially observed that preemptive administration of sinomenine markedly alleviated lung pathological changes, pulmonary edema and neutrophil infiltration, accompanied by inhibition of the expression of the pro-inflammatory cytokines Tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6), which were largely reversed following the addition of a PPARß/δ antagonist. Subsequently, we also noticed that sinomenine upregulated adenosine A2A receptor expression in a PPARß/δ-dependent manner in LPS-stimulated bone marrow-derived macrophages (BMDMs). Further investigation indicated that PPARß/δ directly bound to the functional peroxisome proliferator responsive element (PPRE) in the adenosine A2A receptor gene promoter region to enhance the expression of the adenosine A2A receptor. Sinomenine was identified as a PPARß/δ agonist. It could bind with PPARß/δ, and promote the nuclear translocation and transcriptional activity of PPARß/δ. In addition, combined treatment with sinomenine and an adenosine A2A receptor agonist exhibited synergistic effects and better protective roles than their single use against ALI. Taken together, our results reveal that sinomenine exerts advantageous effects on ALI by activating of PPARß/δ, with the subsequent upregulation of adenosine A2A receptor expression, and provide a novel and potential therapeutic application for ALI.


Assuntos
Lesão Pulmonar Aguda , PPAR delta , PPAR beta , Humanos , PPAR beta/metabolismo , Lipopolissacarídeos/farmacologia , Receptor A2A de Adenosina , PPAR delta/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética
20.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175437

RESUMO

The airway wall remodeling observed in asthma is associated with subepithelial fibrosis and enhanced activation of human bronchial fibroblasts (HBFs) in the fibroblast to myofibroblast transition (FMT), induced mainly by transforming growth factor-ß (TGF-ß). The relationships between asthma severity, obesity, and hyperlipidemia suggest the involvement of peroxisome proliferator-activated receptors (PPARs) in the remodeling of asthmatic bronchi. In this study, we investigated the effect of PPARδ ligands (GW501516 as an agonist, and GSK0660 as an antagonist) on the FMT potential of HBFs derived from asthmatic patients cultured in vitro. This report shows, for the first time, the inhibitory effect of a PPARδ agonist on the number of myofibroblasts and the expression of myofibroblast-related markers-α-smooth muscle actin, collagen 1, tenascin C, and connexin 43-in asthma-related TGF-ß-treated HBF populations. We suggest that actin cytoskeleton reorganization and Smad2 transcriptional activity altered by GW501516 lead to the attenuation of the FMT in HBF populations derived from asthmatics. In conclusion, our data demonstrate that a PPARδ agonist stimulates antifibrotic effects in an in vitro model of bronchial subepithelial fibrosis. This suggests its potential role in the development of a possible novel therapeutic approach for the treatment of subepithelial fibrosis during asthma.


Assuntos
Asma , PPAR delta , Humanos , Fator de Crescimento Transformador beta/metabolismo , PPAR delta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fibroblastos/metabolismo , Asma/metabolismo , Brônquios/metabolismo , Miofibroblastos/metabolismo , Fibrose , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA