Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 19(1): 11, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530514

RESUMO

Neuro-inflammation involves distinct alterations of microglial phenotypes, containing nocuous pro-inflammatory M1-phenotype and neuroprotective anti-inflammatory M-phenotype. Currently, there is no effective treatment for modulating such alterations. M1/M2 marker of primary microglia influenced by Melatonin were detected via qPCR. Functional activities were explored by western blotting, luciferase activity, EMSA, and ChIP assay. Structure interaction was assessed by molecular docking and LIGPLOT analysis. ER-stress detection was examined by ultrastructure TEM, calapin activity, and ERSE assay. The functional neurobehavioral evaluations were used for investigation of Melatonin on the neuroinflammation in vivo. Melatonin had targeted on Peroxisome Proliferator Activated Receptor Delta (PPARδ) activity, boosted LPS-stimulated alterations in polarization from the M1 to the M2 phenotype, and thereby inhibited NFκB-IKKß activation in primary microglia. The PPARδ agonist L-165,041 or over-expression of PPARδ plasmid (ov-PPARδ) showed similar results. Molecular docking screening, dynamic simulation approaches, and biological studies of Melatonin showed that the activated site was located at PPARδ (phospho-Thr256-PPARδ). Activated microglia had lowered PPARδ activity as well as the downstream SIRT1 formation via enhancing ER-stress. Melatonin, PPARδ agonist and ov-PPARδ all effectively reversed the above-mentioned effects. Melatonin blocked ER-stress by regulating calapin activity and expression in LPS-activated microglia. Additionally, Melatonin or L-165,041 ameliorated the neurobehavioral deficits in LPS-aggravated neuroinflammatory mice through blocking microglia activities, and also promoted phenotype changes to M2-predominant microglia. Melatonin suppressed neuro-inflammation in vitro and in vivo by tuning microglial activation through the ER-stress-dependent PPARδ/SIRT1 signaling cascade. This treatment strategy is an encouraging pharmacological approach for the remedy of neuro-inflammation associated disorders.


Assuntos
Melatonina , PPAR delta , Ratos , Camundongos , Animais , Microglia , PPAR delta/metabolismo , PPAR delta/farmacologia , PPAR delta/uso terapêutico , Melatonina/farmacologia , Lipopolissacarídeos/farmacologia , Sirtuína 1/metabolismo , Simulação de Acoplamento Molecular , Inflamação/metabolismo
2.
Cancer Prev Res (Phila) ; 17(2): 59-75, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37956420

RESUMO

Risk and outcome of acute promyelocytic leukemia (APL) are particularly worsened in obese-overweight individuals, but the underlying molecular mechanism is unknown. In established mouse APL models (Ctsg-PML::RARA), we confirmed that obesity induced by high-fat diet (HFD) enhances leukemogenesis by increasing penetrance and shortening latency, providing an ideal model to investigate obesity-induced molecular events in the preleukemic phase. Surprisingly, despite increasing DNA damage in hematopoietic stem cells (HSC), HFD only minimally increased mutational load, with no relevant impact on known cancer-driving genes. HFD expanded and enhanced self-renewal of hematopoietic progenitor cells (HPC), with concomitant reduction in long-term HSCs. Importantly, linoleic acid, abundant in HFD, fully recapitulates the effect of HFD on the self-renewal of PML::RARA HPCs through activation of peroxisome proliferator-activated receptor delta, a central regulator of fatty acid metabolism. Our findings inform dietary/pharmacologic interventions to counteract obesity-associated cancers and suggest that nongenetic factors play a key role. PREVENTION RELEVANCE: Our work informs interventions aimed at counteracting the cancer-promoting effect of obesity. On the basis of our study, individuals with a history of chronic obesity may still significantly reduce their risk by switching to a healthier lifestyle, a concept supported by evidence in solid tumors but not yet in hematologic malignancies. See related Spotlight, p. 47.


Assuntos
Leucemia Promielocítica Aguda , PPAR delta , Animais , Camundongos , Catepsina G , Dieta Hiperlipídica/efeitos adversos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Obesidade/complicações , Proteínas de Fusão Oncogênica/genética , PPAR delta/uso terapêutico
3.
Front Endocrinol (Lausanne) ; 13: 949990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051387

RESUMO

Background: Exenatide is a GLP-1R agonist that often exhibits considerable interindividual variability in therapeutic efficacy. However, there is no evidence about the impact of genetic variants in the PPARD on the therapeutic efficacy of exenatide. This research was aimed to explore the influence of PPARD gene polymorphism on the therapeutic effect of exenatide, and to identify the potential mechanism futher. Methods: A total of 300 patients with T2DM and 200 control subjects were enrolled to identify PPARD rs2016520 and rs3777744 genotypes. A prospective clinical study was used to collect clinical indicators and peripheral blood of T2DM patients treated with exenatide monotherapy for 6 months. The SNaPshot method was used to identify PPARD rs2016520 and rs3777744 genotypes, and then we performed correlation analysis between PPARD gene variants and the efficacy of exenatide, and conducted multiple linear regression analysis of factors affecting the therapeutic effect of exenatide. HepG2 cells were incubated with exenatide in the absence or presence of a PPARδ agonist or the siPPARδ plasmid, after which the levels of GLP-1R and the ratio of glucose uptake were determined. Results: After 6 months exenatide monotherapy, we observed that homeostasis model assessment for insulin resistance (HOMA-IR) levels of the subjects with at least one C allele of the PPARD rs2016520 were significantly lower than those with the TT genotype, which suggested that the PPARD rs2016520 TT genotype conferred the poor exenatide response through a reduction of insulin resistance, as measured by HOMA-IR. The carriers of G alleles at rs3777744 exhibited higher levels of in waist to hip ratio (WHR), fasting plasma glucose (FPG), hemoglobin A1c (HbA1c) and HOMA-IR compared to individuals with the AA genotype following 6 months of exenatide treatment, potentially accounting for the lower failure rate of exenatide therapy among the AA homozygotes. In an insulin resistant HepG2 cell model, the PPARδ agonists enhanced exenatide efficacy on insulin resistance, with the expression of GLP-1R being up-regulated markedly. Conclusion: These data suggest that the PPARD rs2016520 and rs3777744 polymorphisms are associated with exenatide monotherapy efficacy, due to the pivotal role of PPARδ in regulating insulin resistance through affecting the expression of GLP-1R. This study was registered in the Chinese Clinical Trial Register (No. ChiCTR-CCC13003536).


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , PPAR delta , China/epidemiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Exenatida/uso terapêutico , Humanos , Resistência à Insulina/genética , PPAR delta/genética , PPAR delta/uso terapêutico , Estudos Prospectivos
4.
Cell Death Dis ; 10(3): 197, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814493

RESUMO

Peroxisome proliferator-activated receptor δ (PPARδ) belongs to the nuclear receptor family and is involved in metabolic diseases. Although PPARδ is known to attenuate hepatic lipid deposition, its mechanism remains unclear. Here, we show that PPARδ is a potent stimulator of hepatic autophagic flux. The expression levels of PPARδ and autophagy-related proteins were decreased in liver tissues from obese and ageing mice. Pharmacological and adenovirus-mediated increases in PPARδ expression and activity were achieved in obese transgenic db/db and high fat diet-fed mice. Using genetic, pharmacological and metabolic approaches, we demonstrate that PPARδ reduces intrahepatic lipid content and stimulates ß-oxidation in liver and hepatic cells by an autophagy-lysosomal pathway involving AMPK/mTOR signalling. These results provide novel insight into the lipolytic actions of PPARδ through autophagy in the liver and highlight its potential beneficial effects in NAFLD.


Assuntos
Ácidos Graxos/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR delta/uso terapêutico , Animais , Autofagia , Regulação para Baixo , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , PPAR delta/farmacologia
5.
Int J Mol Sci ; 19(7)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954129

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major health issue in developed countries. Although usually associated with obesity, NAFLD is also diagnosed in individuals with low body mass index (BMI) values, especially in Asia. NAFLD can progress from steatosis to non-alcoholic steatohepatitis (NASH), which is characterized by liver damage and inflammation, leading to cirrhosis and hepatocellular carcinoma (HCC). NAFLD development can be induced by lipid metabolism alterations; imbalances of pro- and anti-inflammatory molecules; and changes in various other factors, such as gut nutrient-derived signals and adipokines. Obesity-related metabolic disorders may be improved by activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)ß/δ, which is involved in metabolic processes and other functions. This review is focused on research findings related to PPARß/δ-mediated regulation of hepatic lipid and glucose metabolism and NAFLD development. It also discusses the potential use of pharmacological PPARß/δ activation for NAFLD treatment.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Animais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , PPAR delta/uso terapêutico , PPAR beta/uso terapêutico
6.
ASN Neuro ; 10: 1759091418777329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29806482

RESUMO

The compact myelin sheath is important for axonal function, and its loss can lead to neuronal cell death and irreversible functional deficits. Myelin is vulnerable to a variety of metabolic, toxic, and autoimmune insults. In diseases like multiple sclerosis, there is currently no therapy to stop myelin loss, underscoring the need for neuroprotective and remyelinating therapies. Noninvasive, robust techniques are also needed to confirm the effect of such therapies in animal models. This article describes the generation, characterization, and potential uses for a myelin basic protein-luciferase (MBP-luci) transgenic mouse model, in which the firefly luciferase reporter gene is selectively controlled by the MBP promoter. In vivo bioluminescence imaging can be used to visualize and quantify demyelination and remyelination at the transcriptional level, noninvasively, and in real time. Transgenic mice were assessed in the cuprizone-induced model of demyelination, and luciferase activity highly correlated with demyelination and remyelination events as confirmed by both magnetic resonance imaging and postmortem histological analysis. Furthermore, MBP-luci mice demonstrated enhanced luciferase signal and remyelination in the cuprizone model after treatment with a peroxisome proliferator activated receptor-delta selective agonist and quetiapine. Imaging sensitivity was further enhanced by using CycLuc 1, a luciferase substrate, which has greater blood-brain barrier penetration. We demonstrated the utility of MBP-luci model in tracking myelin changes in real time and supporting target and therapeutic validation efforts.


Assuntos
Luciferases/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Imagem Óptica/métodos , Regiões Promotoras Genéticas/genética , Animais , Antipsicóticos/uso terapêutico , Quelantes/toxicidade , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Básica da Mielina/genética , Bainha de Mielina/patologia , PPAR delta/metabolismo , PPAR delta/uso terapêutico , Fumarato de Quetiapina/uso terapêutico , Remielinização/efeitos dos fármacos
7.
Int J Cardiol ; 174(1): 43-50, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24698256

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is an inflammatory disorder characterized by a localized degradation of connective tissue and apoptosis of vascular smooth muscle cells. This study examined whether the ligand-activated peroxisome proliferator-activated receptor (PPAR) δ can directly antagonize angiotensin II (Ang II)-induced AAA formation in apoE-deficient mice. METHODS AND RESULTS: Six-month-old male apoE-deficient mice were infused with Ang II and/or GW501516 (1.44 and 3.3mg/kg/day, respectively) via osmotic mini-pumps. At day 28, aortic size was measured and tissues were collected for analyses. Co-infusion of GW501516, an activator of PPARδ, attenuated both the incidence and the severity of Ang II-induced AAA in apoE-deficient mice. Ligand-activated PPARδ also reduced infiltration of macrophages, resulting in significant decreases in chemotactic proteins such as monocyte chemoattractant protein-1, macrophage inflammatory protein-1ß, and inducible nitric oxide synthase. The anti-inflammatory effect of GW501516 was associated with the suppression of apoptotic cell death, along with the inhibition of medial smooth muscle cell loss and focal elastin destruction, which leads to a medial dissection and aortic rupture. These ameliorative effects of GW501516 on Ang II-induced aneurysm were correlated with increased expression of extracellular matrix (ECM) proteins, such as types I and III collagen, fibronectin, and elastin, along with the up-regulation of transforming growth factor-ß1. In addition, ligand-activated PPARδ also increased the expression of tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3, while it strongly suppressed that of matrix metalloproteinase-2. CONCLUSIONS: PPARδ attenuates Ang II-induced AAA formation by regulating ECM homeostasis and inflammatory responses, suggesting a novel strategy for the treatment of AAA.


Assuntos
Aneurisma da Aorta Abdominal/prevenção & controle , Matriz Extracelular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Inflamação/prevenção & controle , PPAR delta/farmacologia , PPAR delta/uso terapêutico , Angiotensina II/administração & dosagem , Animais , Apolipoproteínas E/deficiência , Bombas de Infusão , Masculino , Camundongos
8.
Hepatology ; 58(6): 1941-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23703580

RESUMO

UNLABELLED: Nonalcoholic fatty liver disease (NAFLD) covers a spectrum of liver damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. To date, no pharmacological treatment is approved for NAFLD/NASH. Here, we report on preclinical and clinical data with GFT505, a novel dual peroxisome proliferator-activated receptor alpha/delta (PPAR-α/δ) agonist. In the rat, GFT505 concentrated in the liver with limited extrahepatic exposure and underwent extensive enterohepatic cycling. The efficacy of GFT505 was assessed in animal models of NAFLD/NASH and liver fibrosis (Western diet [WD]-fed human apolipoprotein E2 [hApoE2] transgenic mice, methionine- and choline-deficient diet-fed db/db mice, and CCl4 -induced fibrosis in rats). GFT505 demonstrated liver-protective effects on steatosis, inflammation, and fibrosis. In addition, GFT505 improved liver dysfunction markers, decreased hepatic lipid accumulation, and inhibited proinflammatory (interleukin-1 beta, tumor necrosis factor alpha, and F4/80) and profibrotic (transforming growth factor beta, tissue inhibitor of metalloproteinase 2, collagen type I, alpha 1, and collagen type I, alpha 2) gene expression. To determine the role of PPAR-α-independent mechanisms, the effect of GFT505 was assessed in hApoE2 knock-in/PPAR-α knockout mice. In these mice, GFT505 also prevented WD-induced liver steatosis and inflammation, indicating a contribution of PPAR-α-independent mechanisms. Finally, the effect of GFT505 on liver dysfunction markers was assessed in a combined analysis of four phase II clinical studies in metabolic syndrome patients. GFT505 treatment decreased plasma concentrations of alanine aminotransferase, gamma-glutamyl transpeptidase, and alkaline phosphatase. CONCLUSION: The dual PPAR-α/δ agonist, GFT505, is a promising liver-targeted drug for treatment of NAFLD/NASH. In animals, its protective effects are mediated by both PPAR-α-dependent and -independent mechanisms.


Assuntos
Chalconas/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , PPAR alfa/agonistas , PPAR delta/agonistas , Propionatos/uso terapêutico , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Dislipidemias/tratamento farmacológico , Fígado Gorduroso/prevenção & controle , Humanos , Fígado/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Camundongos , Hepatopatia Gordurosa não Alcoólica , PPAR alfa/uso terapêutico , PPAR delta/uso terapêutico , Ratos
10.
Dig Dis Sci ; 52(11): 2912-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17404849

RESUMO

Peroxisome proliferator-activated receptors (PPARs) beta/delta and gamma have overlapping roles in the negative regulation of inflammatory response genes. Ligand activation of PPARgamma protects against experimental colitis in mice. PPARbeta/delta can negatively regulate inflammation and is highly expressed in the epithelial cells of the colon, therefore PPARbeta/delta may also have a role in experimental colitis. In these studies, colitis was induced by dextran sodium sulfate (DSS) treatment in wild-type and PPARbeta/delta-null mice, with and without the PPARbeta/delta specific ligand GW0742. PPARbeta/delta-null mice exhibited increased sensitivity to DSS-induced colitis, as shown by marked differences in body weight loss, colon length, colonic morphology, myeloperoxidase activity and increased expression of mRNAs encoding the inflammatory markers interferon gamma, tumor necrosis factor-alpha, and interleukin-6 compared to similarly treated wild-type mice. Interestingly, these differences were not affected by ligand activation of PPARbeta/delta in either genotype. These studies demonstrate that PPARbeta/delta expression in the colonic epithelium inhibits inflammation and protects against DSS-induced colitis through a ligand-independent mechanism.


Assuntos
Colite/prevenção & controle , PPAR delta/uso terapêutico , PPAR beta/uso terapêutico , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Progressão da Doença , Enterócitos/metabolismo , Enterócitos/patologia , Feminino , Expressão Gênica/efeitos dos fármacos , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Substitutos do Plasma/toxicidade , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Índice de Gravidade de Doença , Tiazóis , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA