Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.742
Filtrar
1.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722098

RESUMO

During development, the gastrointestinal tract undergoes patterning along its anterior-posterior axis to define regions with distinct organs and functions. A new paper in Development derives human intestinal organoids from an individual with duodenal defects and a compound heterozygous variant in the gene encoding the transcription factor RFX6. By studying these organoids, the authors identify novel roles for RFX6 in intestinal patterning. To learn more about the story behind the paper, we caught up with first author J. Guillermo Sanchez and corresponding author Jim Wells, an endowed professor in the Division of Developmental Biology at Cincinnati Children's Hospital, USA, where he is also the Director for Basic Research in the Division of Endocrinology.


Assuntos
Biologia do Desenvolvimento , Humanos , História do Século XXI , História do Século XX , Biologia do Desenvolvimento/história , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/metabolismo , Organoides/metabolismo , Padronização Corporal/genética
2.
Curr Top Dev Biol ; 159: 168-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729676

RESUMO

The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural , Transdução de Sinais , Tubo Neural/embriologia , Tubo Neural/metabolismo , Tubo Neural/citologia , Animais , Padronização Corporal/genética , Humanos , Redes Reguladoras de Genes , Medula Espinal/embriologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Diferenciação Celular , Movimento Celular
3.
Neural Dev ; 19(1): 5, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720353

RESUMO

BACKGROUND: Chaetognaths are a clade of marine worm-like invertebrates with a heavily debated phylogenetic position. Their nervous system superficially resembles the protostome type, however, knowledge regarding the molecular processes involved in neurogenesis is lacking. To better understand these processes, we examined the expression profiles of marker genes involved in bilaterian neurogenesis during post-embryonic stages of Spadella cephaloptera. We also investigated whether the transcription factor encoding genes involved in neural patterning are regionally expressed in a staggered fashion along the mediolateral axis of the nerve cord as it has been previously demonstrated in selected vertebrate, insect, and annelid models. METHODS: The expression patterns of genes involved in neural differentiation (elav), neural patterning (foxA, nkx2.2, pax6, pax3/7, and msx), and neuronal function (ChAT and VAChT) were examined in S. cephaloptera hatchlings and early juveniles using whole-mount fluorescent in situ hybridization and confocal microscopy. RESULTS: The Sce-elav + profile of S. cephaloptera hatchlings reveals that, within 24 h of post-embryonic development, the developing neural territories are not limited to the regions previously ascribed to the cerebral ganglion, the ventral nerve center (VNC), and the sensory organs, but also extend to previously unreported CNS domains that likely contribute to the ventral cephalic ganglia. In general, the neural patterning genes are expressed in distinct neural subpopulations of the cerebral ganglion and the VNC in hatchlings, eventually becoming broadly expressed with reduced intensity throughout the CNS in early juveniles. Neural patterning gene expression domains are also present outside the CNS, including the digestive tract and sensory organs. ChAT and VAChT domains within the CNS are predominantly observed in specific subpopulations of the VNC territory adjacent to the ventral longitudinal muscles in hatchlings. CONCLUSIONS: The observed spatial expression domains of bilaterian neural marker gene homologs in S. cephaloptera suggest evolutionarily conserved roles in neurogenesis for these genes among bilaterians. Patterning genes expressed in distinct regions of the VNC do not show a staggered medial-to-lateral expression profile directly superimposable to other bilaterian models. Only when the VNC is conceptually laterally unfolded from the longitudinal muscle into a flat structure, an expression pattern bearing resemblance to the proposed conserved bilaterian mediolateral regionalization becomes noticeable. This finding supports the idea of an ancestral mediolateral patterning of the trunk nervous system in bilaterians.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Animais , Neurogênese/fisiologia , Invertebrados/genética , Padronização Corporal/genética , Padronização Corporal/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Curr Top Dev Biol ; 159: 232-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729677

RESUMO

The anterior-to-posterior (head-to-tail) body axis is extraordinarily diverse among vertebrates but conserved within species. Body axis development requires a population of axial progenitors that resides at the posterior of the embryo to sustain elongation and is then eliminated once axis extension is complete. These progenitors occupy distinct domains in the posterior (tail-end) of the embryo and contribute to various lineages along the body axis. The subset of axial progenitors with neuromesodermal competency will generate both the neural tube (the precursor of the spinal cord), and the trunk and tail somites (producing the musculoskeleton) during embryo development. These axial progenitors are called Neuromesodermal Competent cells (NMCs) and Neuromesodermal Progenitors (NMPs). NMCs/NMPs have recently attracted interest beyond the field of developmental biology due to their clinical potential. In the mouse, the maintenance of neuromesodermal competency relies on a fine balance between a trio of known signals: Wnt/ß-catenin, FGF signalling activity and suppression of retinoic acid signalling. These signals regulate the relative expression levels of the mesodermal transcription factor Brachyury and the neural transcription factor Sox2, permitting the maintenance of progenitor identity when co-expressed, and either mesoderm or neural lineage commitment when the balance is tilted towards either Brachyury or Sox2, respectively. Despite important advances in understanding key genes and cellular behaviours involved in these fate decisions, how the balance between mesodermal and neural fates is achieved remains largely unknown. In this chapter, we provide an overview of signalling and gene regulatory networks in NMCs/NMPs. We discuss mutant phenotypes associated with axial defects, hinting at the potential significant role of lesser studied proteins in the maintenance and differentiation of the progenitors that fuel axial elongation.


Assuntos
Padronização Corporal , Mesoderma , Animais , Padronização Corporal/genética , Mesoderma/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Diferenciação Celular , Cabeça/embriologia
5.
Curr Top Dev Biol ; 159: 1-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729674

RESUMO

The diversity of vertebrate body plans is dizzying, yet stunning for the many things they have in common. Vertebrates have inhabited virtually every part of the earth from its coldest to warmest climates. They locomote by swimming, flying, walking, slithering, or climbing, or combinations of these behaviors. And they exist in many different sizes, from the smallest of frogs, fish and lizards to giraffes, elephants, and blue whales. Despite these differences, vertebrates follow a remarkably similar blueprint for the establishment of their body plan. Within the relatively small amount of time required to complete gastrulation, the process through which the three germ layers, ectoderm, mesoderm, and endoderm are created, the embryo also generates its body axis and is simultaneously patterned. For the length of this axis, the genes that distinguish the neck from the rib cage or the trunk from the sacrum are the Hox genes. In vertebrates, there was evolutionary pressure to maintain this set of genes in the organism. Over the past decades, much has been learned regarding the regulatory mechanisms that ensure the appropriate expression of these genes along the main body axes. Genetic functions continue to be explored though much has been learned. Much less has been discerned on the identity of co-factors used by Hox proteins for the specificity of transcriptional regulation or what downstream targets and pathways are critical for patterning events, though there are notable exceptions. Current work in the field is demonstrating that Hox genes continue to function in many organs long after directing early patterning events. It is hopeful continued research will shed light on remaining questions regarding mechanisms used by this important and conserved set of transcriptional regulators.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Vertebrados , Animais , Padronização Corporal/genética , Vertebrados/genética , Vertebrados/embriologia , Genes Homeobox/genética
6.
Curr Top Dev Biol ; 159: 372-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729682

RESUMO

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Somitos , Animais , Padronização Corporal/genética , Somitos/embriologia , Somitos/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Mesoderma/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Transdução de Sinais , Relógios Biológicos/genética
7.
Curr Top Dev Biol ; 159: 272-308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729678

RESUMO

Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Animais , Humanos , Desenvolvimento Embrionário , Gastrulação , Vertebrados/embriologia
8.
Curr Top Dev Biol ; 159: 30-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729679

RESUMO

Morphogenesis from cells to tissue gives rise to the complex architectures that make our organs. How cells and their dynamic behavior are translated into functional spatial patterns is only starting to be understood. Recent advances in quantitative imaging revealed that, although highly heterogeneous, cellular behaviors make reproducible tissue patterns. Emerging evidence suggests that mechanisms of cellular coordination, intrinsic variability and plasticity are critical for robust pattern formation. While pattern development shows a high level of fidelity, tissue organization has undergone drastic changes throughout the course of evolution. In addition, alterations in cell behavior, if unregulated, can cause developmental malformations that disrupt function. Therefore, comparative studies of different species and of disease models offer a powerful approach for understanding how novel spatial configurations arise from variations in cell behavior and the fundamentals of successful pattern formation. In this chapter, I dive into the development of the vertebrate nervous system to explore efforts to dissect pattern formation beyond molecules, the emerging core principles and open questions.


Assuntos
Sistema Nervoso , Vertebrados , Animais , Vertebrados/fisiologia , Vertebrados/embriologia , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/embriologia , Padronização Corporal , Humanos , Morfogênese
9.
Curr Top Dev Biol ; 159: 310-342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729680

RESUMO

External bilateral symmetry is a prevalent feature in vertebrates, which emerges during early embryonic development. To begin with, vertebrate embryos are largely radially symmetric before transitioning to bilaterally symmetry, after which, morphogenesis of various bilateral tissues (e.g somites, otic vesicle, limb bud), and structures (e.g palate, jaw) ensue. While a significant amount of work has probed the mechanisms behind symmetry breaking in the left-right axis leading to asymmetric positioning of internal organs, little is known about how bilateral tissues emerge at the same time with the same shape and size and at the same position on the two sides of the embryo. By discussing emergence of symmetry in many bilateral tissues and structures across vertebrate model systems, we highlight that understanding symmetry establishment is largely an open field, which will provide deep insights into fundamental problems in developmental biology for decades to come.


Assuntos
Padronização Corporal , Vertebrados , Animais , Vertebrados/embriologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Somitos/embriologia
10.
Proc Natl Acad Sci U S A ; 121(20): e2321919121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713625

RESUMO

Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/ß-catenin signaling along the AP axis and, functions synergistically with the ß-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.


Assuntos
Padronização Corporal , Planárias , Proteínas Serina-Treonina Quinases , Regeneração , Via de Sinalização Wnt , Quinases Ativadas por p21 , Animais , Regeneração/fisiologia , Planárias/fisiologia , Planárias/genética , Planárias/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Via de Sinalização Wnt/fisiologia , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transativadores/metabolismo , Transativadores/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
11.
Neural Dev ; 19(1): 4, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698415

RESUMO

BACKGROUND: The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS: Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS: Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS: Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.


Assuntos
Evolução Biológica , Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Padronização Corporal/genética , Padronização Corporal/fisiologia , Transdução de Sinais/fisiologia
12.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742434

RESUMO

During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.


Assuntos
Receptores Notch , Somitos , Animais , Camundongos , Somitos/embriologia , Somitos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Padronização Corporal/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Relógios Biológicos/fisiologia
13.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38752392

RESUMO

The patterning of somites is coordinated by presomitic mesoderm cells through synchronised oscillations of Notch signalling, creating sequential waves of gene expression that propagate from the posterior to the anterior end of the tissue. In a new study, Klepstad and Marcon propose a new theoretical framework that recapitulates the dynamics of mouse somitogenesis observed in vivo and in vitro. To learn more about the story behind the paper, we caught up with first author Julie Klepstad and corresponding author Luciano Marcon, Principal Investigator at the Andalusian Center for Developmental Biology.


Assuntos
Biologia do Desenvolvimento , Animais , Biologia do Desenvolvimento/história , Camundongos , Somitos/embriologia , Somitos/metabolismo , História do Século XXI , Humanos , Padronização Corporal/genética , História do Século XX , Receptores Notch/metabolismo , Receptores Notch/genética
14.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587174

RESUMO

The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Organoides , Fatores de Transcrição de Fator Regulador X , Transativadores , Humanos , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/metabolismo , Animais , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Transativadores/metabolismo , Transativadores/genética , Organoides/metabolismo , Organoides/embriologia , Duodeno/metabolismo , Duodeno/embriologia , Intestinos/embriologia , Atresia Intestinal/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Padronização Corporal/genética , Transdução de Sinais/genética , Mutação/genética
15.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683880

RESUMO

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Assuntos
Drosophila melanogaster , Ectoderma , Gastrulação , Mesoderma , Miosina Tipo II , Animais , Mesoderma/embriologia , Mesoderma/citologia , Gastrulação/fisiologia , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Miosina Tipo II/metabolismo , Drosophila melanogaster/embriologia , Polaridade Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero , Morfogênese , Padronização Corporal/fisiologia , Drosophila/embriologia
16.
Curr Biol ; 34(10): 2132-2146.e5, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38688282

RESUMO

Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas Ativadoras de GTPase , Animais , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Actomiosina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Embrião não Mamífero/metabolismo , Padronização Corporal
17.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38639390

RESUMO

The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.


Assuntos
Divisão Celular , Polaridade Celular , Drosophila melanogaster , Células Epiteliais , Metáfase , Fuso Acromático , Estresse Mecânico , Animais , Metáfase/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fuso Acromático/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/citologia , Polaridade Celular/fisiologia , Padronização Corporal , Miosina Tipo II/metabolismo , Embrião não Mamífero/citologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Gastrulação/fisiologia
18.
Proc Natl Acad Sci U S A ; 121(16): e2316244121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588419

RESUMO

Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During Drosophila eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate. The underlying mechanisms that regulate this process are yet to be fully understood. We characterized defective proventriculus (dve) (Drosophila ortholog of human SATB1), a K50 homeodomain transcription factor, as a dorsal eye gene, which regulates Wg signaling to determine eye versus head fate. Across Drosophila species, Dve is expressed in the dorsal head vertex region where it regulates wg transcription. Second, Dve suppresses eye fate by down-regulating retinal determination genes. Third, the dve-expressing dorsal head vertex region is important for Wg-mediated inhibition of retinal cell fate, as eliminating the Dve-expressing cells or preventing Wg transport from these dve-expressing cells leads to a dramatic expansion of the eye field. Together, these findings suggest that Dve regulates Wg expression in the dorsal head vertex, which is critical for determining eye versus head fate. Gain-of-function of SATB1 exhibits an eye fate suppression phenotype similar to Dve. Our data demonstrate a conserved role for Dve/SATB1 in the positioning of eyes on the head and the interocular distance by regulating Wg. This study provides evidence that dysregulation of the Wg morphogen gradient results in developmental defects such as hypertelorism in humans where disproportionate interocular distance and facial anomalies are reported.


Assuntos
Proteínas de Drosophila , Proteínas de Ligação à Região de Interação com a Matriz , Animais , Humanos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Drosophila/genética , Retina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Drosophila melanogaster/metabolismo , Padronização Corporal/genética
19.
Zebrafish ; 21(2): 128-136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621212

RESUMO

Coordinated signaling pathway activity directs early patterning to set up the vertebrate body plan. Perturbations in the timing or location of signal molecule expression impacts embryo morphology and organ formation. In this study, we present a laboratory course to use zebrafish for studying the role of Wnt signaling in specifying the early embryonic axes. Students are exposed to basic techniques in molecular and developmental biology, including embryo manipulation, fluorescence microscopy, image processing, and data analysis. Furthermore, this course incorporates student-designed experiments to stimulate independent inquiry and improve scientific learning, providing an experience resembling graduate-level laboratory research. Students appreciated following vertebrate development in real-time, and principles of embryogenesis were reinforced by observing the morphological changes that arise due to signaling alterations. Scientific and research skills were enhanced through practice in experimental design, interpretation, and presentation.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Padronização Corporal , Desenvolvimento Embrionário , Proteínas de Peixe-Zebra/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Embrião não Mamífero/metabolismo
20.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619319

RESUMO

Adult planarians can grow when fed and degrow (shrink) when starved while maintaining their whole-body shape. It is unknown how the morphogens patterning the planarian axes are coordinated during feeding and starvation or how they modulate the necessary differential tissue growth or degrowth. Here, we investigate the dynamics of planarian shape together with a theoretical study of the mechanisms regulating whole-body proportions and shape. We found that the planarian body proportions scale isometrically following similar linear rates during growth and degrowth, but that fed worms are significantly wider than starved worms. By combining a descriptive model of planarian shape and size with a mechanistic model of anterior-posterior and medio-lateral signaling calibrated with a novel parameter optimization methodology, we theoretically demonstrate that the feedback loop between these positional information signals and the shape they control can regulate the planarian whole-body shape during growth. Furthermore, the computational model produced the correct shape and size dynamics during degrowth as a result of a predicted increase in apoptosis rate and pole signal during starvation. These results offer mechanistic insights into the dynamic regulation of whole-body morphologies.


Assuntos
Modelos Biológicos , Planárias , Animais , Planárias/crescimento & desenvolvimento , Padronização Corporal , Transdução de Sinais , Apoptose , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA