Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Curr Microbiol ; 81(7): 170, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734822

RESUMO

As a primary nutrient in agricultural soils, phosphorus plays a crucial but growth-limiting role for plants due to its complex interactions with various soil elements. This often results in excessive phosphorus fertilizer application, posing concerns for the environment. Agri-research has therefore shifted focus to increase fertilizer-use efficiency and minimize environmental impact by leveraging plant growth-promoting rhizobacteria. This study aimed to evaluate the in-field incremental effect of inorganic phosphate concentration (up to 50 kg/ha/P) on the ability of two rhizobacterial isolates, Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29), from the previous Breedt et al. (Ann Appl Biol 171:229-236, 2017) study on maize in enhancing the yield of commercially grown Duzi® cultivar wheat. Results obtained from three seasons of field trials revealed a significant relationship between soil phosphate concentration and the isolates' effectiveness in improving wheat yield. Rhizospheric samples collected at flowering during the third season, specifically to assess phosphatase enzyme activity at the different soil phosphate levels, demonstrated a significant decrease in soil phosphatase activity when the phosphorus rate reached 75% for both isolates. Furthermore, in vitro assessments of inorganic phosphate solubilization by both isolates at five increments of tricalcium phosphate-amended Pikovskaya media found that only isolate T19 was capable of solubilizing tricalcium at concentrations exceeding 3 mg/ml. The current study demonstrates the substantial influence of inorganic phosphate on the performance of individual rhizobacterial isolates, highlighting that this is an essential consideration when optimizing these isolates to increase wheat yield in commercial cultivation.


Assuntos
Fosfatos , Rizosfera , Microbiologia do Solo , Solo , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Fosfatos/metabolismo , Solo/química , Fertilizantes/análise , Paenibacillus/metabolismo , Paenibacillus/genética , Paenibacillus/crescimento & desenvolvimento , Fósforo/metabolismo
2.
Sci Rep ; 14(1): 7755, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565929

RESUMO

Cellulose-degrading microorganisms hold immense significance in utilizing cellulose resources efficiently. The screening of natural cellulase bacteria and the optimization of fermentation conditions are the hot spots of research. This study meticulously screened cellulose-degrading bacteria from mixed soil samples adopting a multi-step approach, encompassing preliminary culture medium screening, Congo red medium-based re-screening, and quantification of cellulase activity across various strains. Particularly, three robust cellulase-producing strains were identified: A24 (MT740356.1 Brevibacillus borstelensis), A49 (MT740358.1 Bacillus cereus), and A61 (MT740357.1 Paenibacillus sp.). For subsequent cultivation experiments, the growth curves of the three obtained isolates were monitored diligently. Additionally, optimal CMCase production conditions were determined, keeping CMCase activity as a key metric, through a series of single-factor experiments: agitation speed, cultivation temperature, unit medium concentration, and inoculum volume. Maximum CMCase production was observed at 150 rpm/37 °C, doubling the unit medium addition, and a 5 mL inoculation volume. Further optimization was conducted using the selected isolate A49 employing response surface methodology. The software model recommended a 2.21fold unit medium addition, 36.11 °C temperature, and 4.91 mL inoculant volume for optimal CMCase production. Consequently, three parallel experiments were conducted based on predicted conditions consistently yielding an average CMCase production activity of 15.63 U/mL, closely aligning with the predicted value of 16.41 U/mL. These findings validated the reliability of the model and demonstrated the effectiveness of optimized CMCase production conditions for isolate A49.


Assuntos
Celulase , Paenibacillus , Bacillus cereus/metabolismo , Celulose/metabolismo , Reprodutibilidade dos Testes , Celulase/metabolismo , Paenibacillus/metabolismo , Fermentação
3.
ACS Chem Biol ; 19(4): 992-998, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562012

RESUMO

Glycosyltransferases play a fundamental role in the biosynthesis of glycoproteins and glycotherapeutics. In this study, we investigated protein glycosyltransferase FlgGT1, belonging to the GT2 family. The GT2 family includes cysteine S-glycosyltransferases involved in antimicrobial peptide biosyntheses, sharing conserved catalytic domains while exhibiting diverse C-terminal domains. Our in vitro studies revealed that FlgGT1 recognizes structural motifs rather than specific amino acid sequences when glycosylating the flagellin protein Hag. Notably, FlgGT1 is selective for serine or threonine O-glycosylation over cysteine S-glycosylation. Molecular dynamics simulations provided insights into the structural basis of FlgGT1's ability to accommodate various sugar nucleotides as donor substrates. Mutagenesis experiments on FlgGT1 demonstrated that truncating the relatively large C-terminal domain resulted in a loss of flagellin glycosylation activity. Our classification based on sequence similarity network analysis and AlphaFold2 structural predictions suggests that the acquisition of the C-terminal domain is a key evolutionary adaptation conferring distinct substrate specificities on glycosyltransferases within the GT2 family.


Assuntos
Flagelina , Glicosiltransferases , Paenibacillus , Sequência de Aminoácidos , Cisteína/metabolismo , Flagelina/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Paenibacillus/enzimologia , Paenibacillus/metabolismo
4.
Int J Biol Macromol ; 261(Pt 1): 129663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278396

RESUMO

Paenibacillus polymyxa (P. polymyxa) is a member of the genus Paenibacillus, which is a rod-shaped, spore-forming gram-positive bacterium. P. polymyxa is a source of many metabolically active substances, including polypeptides, volatile organic compounds, phytohormone, hydrolytic enzymes, exopolysaccharide (EPS), etc. Due to the wide range of compounds that it produces, P. polymyxa has been extensively studied as a plant growth promoting bacterium which provides a direct benefit to plants through the improvement of N fixation from the atmosphere and enhancement of the solubilization of phosphorus and the uptake of iron in the soil, and phytohormones production. Among the metabolites from P. polymyxa, EPS exhibits many activities, for example, antioxidant, immunomodulating, anti-tumor and many others. EPS has various applications in food, agriculture, environmental protection. Particularly, in the field of sustainable agriculture, P. polymyxa EPS can be served as a biofilm to colonize microbes, and also can act as a nutrient sink on the roots of plants in the rhizosphere. Therefore, this paper would provide a comprehensive review of the advancements of diverse aspects of EPS from P. polymyxa, including the production, extraction, structure, biosynthesis, bioactivity and applications, etc. It would provide a direction for future research on P. polymyxa EPS.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolismo , Paenibacillus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo
5.
Appl Microbiol Biotechnol ; 108(1): 17, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170316

RESUMO

Polymyxins are cationic peptide antibiotics and regarded as the "final line of defense" against multidrug-resistant bacterial infections. Meanwhile, some polymyxin-resistant strains and the corresponding resistance mechanisms have also been reported. However, the response of the polymyxin-producing strain Paenibacillus polymyxa to polymyxin stress remains unclear. The purpose of this study was to investigate the stress response of gram-positive P. polymyxa SC2 to polymyxin B and to identify functional genes involved in the stress response process. Polymyxin B treatment upregulated the expression of genes related to basal metabolism, transcriptional regulation, transport, and flagella formation and increased intracellular ROS levels, flagellar motility, and biofilm formation in P. polymyxa SC2. Adding magnesium, calcium, and iron alleviated the stress of polymyxin B on P. polymyxa SC2, furthermore, magnesium and calcium could improve the resistance of P. polymyxa SC2 to polymyxin B by promoting biofilm formation. Meanwhile, functional identification of differentially expressed genes indicated that an ABC superfamily transporter YwjA was involved in the stress response to polymyxin B of P. polymyxa SC2. This study provides an important reference for improving the resistance of P. polymyxa to polymyxins and increasing the yield of polymyxins. KEY POINTS: • Phenotypic responses of P. polymyxa to polymyxin B was performed and indicated by RNA-seq • Forming biofilm was a key strategy of P. polymyxa to alleviate polymyxin stress • ABC transporter YwjA was involved in the stress resistance of P. polymyxa to polymyxin B.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genética , Polimixina B/farmacologia , Polimixina B/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Cálcio/metabolismo , Magnésio , Polimixinas/farmacologia
6.
Arch Biochem Biophys ; 751: 109837, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007074

RESUMO

Reactive oxygen species (ROS) are unstable metabolites produced during cellular respiration that can cause extensive damage to the body. Here we report a unique structural metalloprotein called RSAPp for the first time, which exhibits robust ROS-scavenging activity, high thermostability, and stress resistance. RSAPp is a previously uncharacterized DUF2935 (domain of unknown function, accession number: cl12705) family protein from Paenibacillus, containing a highly conserved four-helix bundle with binding sites for variable-valence metal ions (Mn2+/Fe2+/Zn2+). Enzymatic characterization results indicated that RSAPp displays the functionality of three different antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). In particular, RSAPp exhibits a significant SOD-like activity that is remarkably effective in eliminating superoxide radicals (up to kcat/KM = 2.27 × 1011 mol-1 s-1), and maintains the catalytical active in a wide range of temperatures (25-100 °C) and pH (pH 2.0-9.0), as well as resistant to high temperature, alkali and acidic pH, and 55 different concentrations of detergent agents, chemical solvents, and inhibitors. These properties make RSAPp an attractive candidate for various industrial applications, including cosmetics, food, and pharmaceuticals.


Assuntos
Metaloproteínas , Paenibacillus , Espécies Reativas de Oxigênio/metabolismo , Paenibacillus/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Catalase/metabolismo , Antioxidantes/metabolismo
7.
J Proteomics ; 294: 105061, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154550

RESUMO

Paenibacillus sonchi SBR5T is a Gram-positive, endospore-forming facultative aerobic diazotrophic bacterium that can fix nitrogen via an alternative Fe-only nitrogenase (AnfHDGK). In several bacteria, this alternative system is expressed under molybdenum (Mo)-limiting conditions when the conventional Mo-dependent nitrogenase (NifHDK) production is impaired. The regulatory mechanisms, metabolic processes, and cellular functions of N2 fixation by alternative and/or conventional systems are poorly understood in the Paenibacillus genus. We conducted a comparative proteomic profiling study of P. sonchi SBR5T grown under N2-fixing conditions with and without Mo supply through an LC-MS/MS and label-free quantification analysis to address this gap. Protein abundances revealed overrepresented processes related to anaerobiosis growth adaption, Fe-S cluster biosynthesis, ammonia assimilation, electron transfer, and sporulation under N2-fixing conditions compared to non-fixing control. Under Mo limitation, the Fe-only nitrogenase components were overrepresented together with the Mo-transporter system, while the dinitrogenase component (NifDK) of Mo­nitrogenase was underrepresented. The dinitrogenase reductase component (NifH) and accessory proteins encoded by the nif operon had no significant differential expression, suggesting post-transcriptional regulation of nif gene products in this strain. Overall, this was the first comprehensive proteomic analysis of a diazotrophic strain from the Paenibacillaceae family, and it provided insights related to alternative N2-fixation by Fe-only nitrogenase. SIGNIFICANCE: In this work, we try to understand how the alternative nitrogen fixation system, presented by some diazotrophic bacteria, works. For this, we used the SBR5 lineage of P. sonchi, which presents the alternative system in which the nitrogenase cofactor is composed only of iron. In addition, we tried to unravel the proteome of this strain in different situations of nitrogen fixation, since, for Gram-positive bacteria, these systems are little known. The results achieved, through LC-MS/MS and label-free quantitative analysis, showed an overrepresentation of proteins related to different processes involved with growth under stressful conditions in situations of nitrogen deficiency, in addition to suggesting that some encoded proteins by the nif operon may be regulated at post-transcriptional levels. Our findings represent important steps toward the elucidation of nitrogen fixation systems in Gram-positive diazotrophic bacteria.


Assuntos
Fixação de Nitrogênio , Paenibacillus , Proteoma/metabolismo , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Nitrogenase/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Molibdênio/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo
8.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005185

RESUMO

Glycosidases are essential for the industrial production of functional oligosaccharides and many biotech applications. A novel ß-galactosidase/α-L-arabinopyranosidase (PpBGal42A) of the glycoside hydrolase family 42 (GH42) from Paenibacillus polymyxa KF-1 was identified and functionally characterized. Using pNPG as a substrate, the recombinant PpBGal42A (77.16 kD) was shown to have an optimal temperature and pH of 30 °C and 6.0. Using pNPαArap as a substrate, the optimal temperature and pH were 40 °C and 7.0. PpBGal42A has good temperature and pH stability. Furthermore, Na+, K+, Li+, and Ca2+ (5 mmol/L) enhanced the enzymatic activity, whereas Mn2+, Cu2+, Zn2+, and Hg2+ significantly reduced the enzymatic activity. PpBGal42A hydrolyzed pNP-ß-D-galactoside and pNP-α-L-arabinopyranoside. PpBGal42A liberated galactose from ß-1,3/4/6-galactobiose and galactan. PpBGal42A hydrolyzed arabinopyranose at C20 of ginsenoside Rb2, but could not cleave arabinofuranose at C20 of ginsenoside Rc. Meanwhile, the molecular docking results revealed that PpBGal42A efficiently recognized and catalyzed lactose. PpBGal42A hydrolyzes lactose to galactose and glucose. PpBGal42A exhibits significant degradative activity towards citrus pectin when combined with pectinase. Our findings suggest that PpBGal42A is a novel bifunctional enzyme that is active as a ß-galactosidase and α-L-arabinopyranosidase. This study expands on the diversity of bifunctional enzymes and provides a potentially effective tool for the food industry.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolismo , Lactose , Simulação de Acoplamento Molecular , Galactose , Glicosídeo Hidrolases/metabolismo , Clonagem Molecular , beta-Galactosidase/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Paenibacillus/genética , Paenibacillus/metabolismo
9.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4682-4693, 2023 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-38013192

RESUMO

D-mannose has many functional activities and is widely used in food, medicine, agriculture and other industries. D-mannitol oxidase that can efficiently convert D-mannitol into D-mannose has potential application in the enzymatic preparation of D-mannose. A D-mannitol oxidase (PsOX) was found from Paenibacillus sp. HGF5. The similarity between PsOX and the D-mannitol oxidase (AldO) from Streptomyces coelicolor was 50.94%. The molecular weight of PsOX was about 47.4 kDa. A recombinant expression plasmid pET-28a-PsOX was constructed and expressed in Escherichia coli BL21(DE3). The Km and kcat/Km values of PsOX for D-mannitol were 5.6 mmol/L and 0.68 L/(s·mmol). Further characterization of PsOX showed its optimal pH and temperature were 7.0 and 35 ℃, respectively, while its enzyme activity could be stably remained below 60 ℃. The molar conversion rate of 400 mmol/L D-mannitol by PsOX was 95.2%. The whole cells of PsOX and AldO were used to catalyze 73 g/L D-mannitol respectively. The reaction catalyzed by PsOX completed in 9 h and 70 g/L D-mannose was produced. PsOX showed a higher catalytic efficiency compared to that of AldO. PsOX may facilitate the enzymatic preparation of D-mannose as a novel D-mannose oxidase.


Assuntos
Paenibacillus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Manose/metabolismo , Escherichia coli/metabolismo , Manitol/metabolismo
10.
Int J Biol Macromol ; 253(Pt 4): 126919, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37717863

RESUMO

Currently, alginate oligosaccharides (AOS) become attractive due to their excellent physiological effects. AOS has been widely used in food, pharmaceutical, and cosmetic industries. Generally, AOS can be produced from alginate using alginate lyase (ALyase) as the biocatalyst. However, most ALyase display poor thermostability. In this study, a thermostable ALyase from Paenibacillus sp. YN15 (Payn ALyase) was characterized. It belonged to the polysaccharide lyase (PL) 31 family and displayed poly ß-D-mannuronate (Poly M) preference. Under the optimum condition (pH 8.0, 55 °C, 50 mM NaCl), it exhibited maximum activity of 90.3 U/mg and efficiently degraded alginate into monosaccharides and AOS with polymerization (DP) of 2-4. Payn ALyase was relatively stable at 55 °C, but the thermostability dropped rapidly at higher temperatures. To further improve its thermostability, rational design mutagenesis was carried out based on a combination of FireProt, Consensus Finder, and PROSS analysis. Finally, a triple-point mutant K71P/Y129G/S213G was constructed. The optimum temperature was increased from 55 to 70 °C, and the Tm was increased from 62.7 to 64.1 °C. The residual activity after 30 min incubation at 65 °C was enhanced from 36.0 % to 83.3 %. This study provided a promising ALyase mutant for AOS industrial production.


Assuntos
Paenibacillus , Paenibacillus/genética , Paenibacillus/metabolismo , Proteínas de Bactérias/química , Alginatos/metabolismo , Especificidade por Substrato , Concentração de Íons de Hidrogênio , Temperatura , Polissacarídeo-Liases/química , Oligossacarídeos/metabolismo
11.
Int Microbiol ; 26(4): 1087-1101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37097489

RESUMO

Recent research shows that Dicranum species can be used to ameliorate the negative effects of honeybee bacterial diseases and that novel compounds isolated from these species may have the potential to treat bacterial diseases. This study aimed to investigate the efficacy of Dicranum polysetum Sw. against American Foulbrood using toxicity and larval model. The effectiveness of D. polysetum Sw. ethanol extract in combating AFB was investigated in vitro and in vivo. This study is important in finding an alternative treatment or prophylactic method to prevent American Foulbrood disease in honey bee colonies. Spore and vegetative forms of Paenibacillus larvae PB31B with ethanol extract of D. polysetum were tested on 2040 honey bee larvae under controlled conditions. Total phenolic and flavonoid contents of D. polysetum ethanol extracts were determined as 80.72 mg/GAE(Gallic acid equivalent) and 303.20 µg/mL, respectively. DPPH(2,2-diphenyl-1-picrylhydrazyl) radical scavenging percent inhibition value was calculated as 4.32%. In Spodoptera frugiperda (Sf9) and Lymantria dispar (LD652) cell lines, the cytotoxic activities of D. polysetum extract were below 20% at 50 µg/mL. The extract was shown to considerably decrease infection in the larvae, and the infection was clinically halted when the extract was administered during the first 24 h after spore contamination. The fact that the extract contains potent antimicrobial/antioxidant activity does not reduce larval viability and live weight, and does not interact with royal jelly is a promising development, particularly regarding its use to treat early-stage AFB infection.


Assuntos
Infecções Bacterianas , Paenibacillus larvae , Paenibacillus , Abelhas , Animais , Estados Unidos , Paenibacillus larvae/fisiologia , Larva/microbiologia , Etanol/metabolismo , Fenóis/farmacologia , Fenóis/metabolismo , Paenibacillus/metabolismo
12.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902209

RESUMO

An increasing number of scientists working to raise agricultural productivity see the potential in the roots and the soil adjacent to them, together with a wealth of micro-organisms. The first mechanisms activated in the plant during any abiotic or biotic stress concern changes in the oxidative status of the plant. With this in mind, for the first time, an attempt was made to check whether the inoculation of seedlings of the model plant Medicago truncatula with rhizobacteria belonging to the genus Pseudomonas (P. brassicacearum KK5, P. corrugata KK7), Paenibacillus borealis KK4 and a symbiotic strain Sinorhizobium meliloti KK13 would change the oxidative status in the days following inoculation. Initially, an increase in H2O2 synthesis was observed, which led to an increase in the activity of antioxidant enzymes responsible for regulating hydrogen peroxide levels. The main enzyme involved in the reduction of H2O2 content in the roots was catalase. The observed changes indicate the possibility of using the applied rhizobacteria to induce processes related to plant resistance and thus to ensure protection against environmental stress factors. In the next stages, it seems reasonable to check whether the initial changes in the oxidative state affect the activation of other pathways related to plant immunity.


Assuntos
Medicago truncatula , Paenibacillus , Sinorhizobium meliloti , Sinorhizobium , Sinorhizobium/metabolismo , Plântula/metabolismo , Medicago truncatula/metabolismo , Peróxido de Hidrogênio/metabolismo , Pseudomonas/metabolismo , Raízes de Plantas/metabolismo , Estresse Oxidativo , Paenibacillus/metabolismo , Simbiose/fisiologia
13.
J Agric Food Chem ; 71(4): 2038-2048, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661321

RESUMO

Endo-chitosanases (EC 3.2.1.132) are generally considered to selectively release functional chito-oligosaccharides (COSs) with degrees of polymerization (DPs) ≥ 2. Although numerous endo-chitosanases have been characterized, the digestion specificity of endo-chitosanases needs to be further explored. In this study, a GH46 endo-chitosanase OUC-CsnPa was cloned, expressed, and characterized from Paenibacillus sp. 1-18. The digestion pattern analysis indicated that OUC-CsnPa could produce monosaccharides from chitotetraose [(GlcN)4], the smallest recognized substrate, in a random endo-acting manner. Especially, the enzyme specificities during chitosan digestion including the regulation of product abundance through a transglycosylation reaction were also evaluated. It was hypothesized that an insertion region in OUC-CsnPa may form a strong force to be involved in stabilizing (GlcN)4 at its negative subsite for efficient hydrolysis. This is the first comprehensive report to reveal the digestion specificity and subsite specificity of monosaccharide production by endo-chitosanases. Overall, OUC-CsnPa described here highlights the previously unknown digestion properties of the endo-acting chitosanases and provides a unique example of possible structure-function relationships.


Assuntos
Quitosana , Paenibacillus , Glicosídeo Hidrolases/química , Quitosana/química , Paenibacillus/genética , Paenibacillus/metabolismo , Oligossacarídeos/química , Digestão , Especificidade por Substrato
14.
Proteomics ; 23(1): e2200146, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946602

RESUMO

American foulbrood (AFB) is a devastating disease of honey bees. There remains a gap in the understanding of the interactions between the causative agent and host, so we used shotgun proteomics to gain new insights. Nano-LC-MS/MS analysis preceded visual description and Paenibacillus larvae identification in the same individual sample. A further critical part of our methodology was that larvae before capping were used as the model stage. The identification of the virulence factors SplA, PlCBP49, enolase, and DnaK in all P. larvae-positive samples was consistent with previous studies. Furthermore, the results were consistent with the array of virulence factors identified in an in vitro study of P. larvae exoprotein fractions. Although an S-layer protein and a putative bacteriocin were highlighted as important, the microbial collagenase ColA and InhA were not found in our samples. The most important virulence factor identified was isoform of neutral metalloproteinase (UniProt: V9WB82), a major protein marker responsible for the shift in the PCA biplot. This protein is associated with larval decay and together with other virulence factors (bacteriocin) can play a key role in protection against secondary invaders. Overall, this study provides new knowledge on host-pathogen interactions and a new methodical approach to study the disease.


Assuntos
Bacteriocinas , Paenibacillus larvae , Paenibacillus , Abelhas , Animais , Estados Unidos , Larva , Paenibacillus larvae/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Fatores de Virulência/metabolismo , Bacteriocinas/metabolismo , Paenibacillus/metabolismo
15.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3404-3412, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38511380

RESUMO

Mangrove soil is a reliable source for screening cellulose-degrading bacteria due to the high diversity of microbes. To effectively utilize crop straw resources, a cellulolytic bacterium, Paenibacillus silvae strain CH2 was isolated from mangrove soil. We determined the carboxymethyl cellulose (CMC) and filter paper assay (FPA) activities of CH2 at different incubation times, NaCl concentrations, pH and temperatures, estimated the degradation efficiencies of rice and maize straw by CH2, sequenced and analyzed the whole genome of CH2. The results showed that along with the increases of incubation time, NaCl concentration, pH and temperature, the CMC and FPA activities increased first and then decreased . The highest CMC and FPA activities were observed at incubation time of 72-84 h, NaCl concentration of 6.0 g·L-1, pH of 7 and temperature of 36 ℃. Degradation of straw assays revealed that CH2 could effectively degrade rice and maize straw. At 0 g·L-1 NaCl (the control), the 10-day degradation rates of rice and maize straw were 30.4% and 47.0%, respectively. In the presence of 15 g·L-1 NaCl, the degradation rates were not significantly different from the control, indicating that CH2 had a high tolerance to salts. The whole genome of P. silvae CH2 was 6797325 bp, containing 6312 coding genes. P. silvae CH2 contained multiple genes encoding cellulose and hemicellulose degrading enzymes. These enzymes mainly belonged to the GH family, including endo-1,4-ß-xylanase, Xylan 1,4-ß-xylosidase, ß-glucosidase, and endoglucanase. The results indicated that the bacterium had the potential to be used in crop straw degradation.


Assuntos
Paenibacillus , Cloreto de Sódio , Celulose , Paenibacillus/genética , Paenibacillus/metabolismo , Genômica , Solo
16.
Mol Phylogenet Evol ; 177: 107624, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084857

RESUMO

Paenibacillus sonchi genomovar Riograndensis is a nitrogen-fixing bacteria isolated from wheat that displays diverse plant growth-promoting abilities. Beyond conventional Mo-nitrogenase, this organism also harbors an alternative Fe-nitrogenase, whose many aspects related to regulation, physiology, and evolution remain to be elucidated. In this work, the origins of this alternative system were investigated, exploring the distribution and diversification of nitrogenases in the Panibacillaceae family. Our analysis showed that diazotrophs represent 17% of Paenibacillaceae genomes, of these, only 14.4% (2.5% of all Paenibacillaceae genomes) also contained Fe or V- nitrogenases. Diverse nif-like sequences were also described, occurring mainly in genomes that also harbor the alternative systems. The analysis of genomes containing Fe-nitrogenase showed a conserved cluster of nifEN anfHDGK across three genera: Gorillibacterium, Fontibacillus, and Paenibacillus. A phylogeny of anfHDGK separated the Fe-nitrogenases into three main groups. Our analysis suggested that Fe-nitrogenase was acquired by the ancestral lineage of Fontibacillus, Gorillibacterium, and Paenibacillus genera via horizontal gene transfer (HGT), and further events of transfer and gene loss marked the evolution of this alternative nitrogenase in these groups. The species phylogeny of N-fixing Paenibacillaceae separated the diazotrophs into five clades, one of these containing all occurrences of strains harboring alternative nitrogenases in the Paenibacillus genus. The pangenome of this clade is open and composed of more than 96% of accessory genes. Diverse functional categories were enriched in the flexible genome, including functions related to replication and repair. The latter involved diverse genes related to HGT, suggesting that such events may have an important role in the evolution of diazotrophic Paenibacillus. This study provided an insight into the organization, distribution, and evolution of alternative nitrogenase genes in Paenibacillaceae, considering different genomic aspects.


Assuntos
Nitrogenase , Paenibacillus , Fixação de Nitrogênio/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Filogenia
17.
Sci Rep ; 12(1): 15830, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138114

RESUMO

Pectin is one of the main structural components in fruits and an indigestible fiber made of D-galacturonic acid units with α (1-4) linkage. This study investigates the microbial degradation of pectin in apple waste and the production of bioactive compounds. Firstly, pectin-degrading bacteria were isolated and identified, then pectinolytic activity was assessed by DNS. The products were evaluated by TLC and LC-MS-ESI. The antioxidative effects were investigated using DPPH and anti-cancer effects and cytotoxicity were analyzed by MTT and flow cytometry. In this study two new bacterial isolates, Alcaligenes faecalis AGS3 and Paenibacillus polymyxa S4 with the pectinolytic enzyme were introduced. Structure analysis showed that the products of enzymatic degradation include unsaturated mono, di, tri, and penta galacturonic acids with 74% and 69% RSA at 40 mg/mL for A. faecalis and P. polymyxa S4, respectively. The results of anti-tumor properties on MCF-7 cells by MTT assay, for products of AGS3 and S4 at 40 mg/mL after 48 h, showed 7% and 9% survival, respectively. In the flow cytometric assessment, the compounds of AGS3 at 40 mg/mL were 100% lethal in 48 h and regarding S4 isolate caused 98% death. Cytotoxicity evaluation on L-929 cells showed no significant toxicity on living cells.


Assuntos
Alcaligenes faecalis , Malus , Paenibacillus polymyxa , Paenibacillus , Alcaligenes faecalis/metabolismo , Ácidos Hexurônicos , Malus/metabolismo , Paenibacillus/metabolismo , Paenibacillus polymyxa/metabolismo , Pectinas/metabolismo , Poligalacturonase/metabolismo
18.
Amino Acids ; 54(11): 1477-1489, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35864259

RESUMO

Bacteria from the genus Paenibacillus make a variety of antimicrobial compounds, including lipopeptides produced by a non-ribosomal synthesis mechanism (NRPS). In the present study, we show the genomic and phenotypical characterization of Paenibacillus elgii AC13 which makes three groups of small molecules: the antimicrobial pelgipeptins and two other families of peptides that have not been described in P. elgii. A family of lipopeptides with [M + H]+ 1664, 1678, 1702, and 1717 m/z was purified from the culture cell fraction. Partial characterization revealed that they are similar to tridecaptin from P. terrae. However, they present amino acid chain modifications in positions 3, 7, and 10. These new variants were named tridecaptin G1, G2, G3, and G4. Furthermore, a gene cluster was identified in P. elgii AC13 genome, revealing high similarity to the tridecaptin-NRPS gene cluster from P. terrae. Tridecaptin G1 and G2 showed in vitro antimicrobial activity against Escherichia coli, Klebsiella pneumonia (including a multidrug-resistant strain), Staphylococcus aureus, and Candida albicans. Tri G3 did not show antimicrobial activity against S. aureus and C. albicans at all tested concentrations. An intriguing feature of this family of lipopeptides is that it was only observed in the cell fraction of the P. elgii AC13 culture, which could be a result of the amino acid sequence modifications presented in these variants.


Assuntos
Lipopeptídeos , Paenibacillus , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Staphylococcus aureus , Paenibacillus/genética , Paenibacillus/metabolismo , Antibacterianos/química , Escherichia coli/metabolismo
19.
Mar Drugs ; 20(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35736191

RESUMO

Carbohydrate-active enzymes (CAZymes) are an important characteristic of bacteria in marine systems. We herein describe the CAZymes of Paenibacillus algicola HB172198T, a novel type species isolated from brown algae in Qishui Bay, Hainan, China. The genome of strain HB172198T is a 4,475,055 bp circular chromosome with an average GC content of 51.2%. Analysis of the nucleotide sequences of the predicted genes shows that strain HB172198T encodes 191 CAZymes. Abundant putative enzymes involved in the degradation of polysaccharides were identified, such as alginate lyase, agarase, carrageenase, xanthanase, xylanase, amylases, cellulase, chitinase, fucosidase and glucanase. Four of the putative polysaccharide lyases from families 7, 15 and 38 were involved in alginate degradation. The alginate lyases of strain HB172198T exhibited the maximum activity 152 U/mL at 50 °C and pH 8.0, and were relatively stable at pH 7.0 and temperatures lower than 40 °C. The average degree of polymerization (DP) of the sodium alginate oligosaccharide (AOS) degraded by the partially purified alginate lyases remained around 14.2, and the thin layer chromatography (TCL) analysis indicated that it contained DP2-DP8 oligosaccharides. The complete genome sequence of P. algicola HB172198T will enrich our knowledge of the mechanism of polysaccharide lyase production and provide insights into its potential applications in the degradation of polysaccharides such as alginate.


Assuntos
Paenibacillus , Polissacarídeo-Liases , Polissacarídeos , Alginatos/metabolismo , Oligossacarídeos/metabolismo , Paenibacillus/metabolismo , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato
20.
Environ Sci Pollut Res Int ; 29(45): 68692-68706, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35543785

RESUMO

In this study, a novel biocontrol bacterium was isolated and identified as Paenibacillus sp. LYX-1 from soils in the peach orchard. Both Cd2+ resistance and biosorption behavior of strain LYX-1 was explored. Meanwhile, the Cd2+ resistance and biosorption mechanisms were further identified by Cd-resistant genes, SEM-EDS, FTIR, XPS, and TEM analysis. The results showed that strain LYX-1 could resist 50 mg/L Cd2+ and had the CzcD gene responsible for Cd2+ efflux. Under pH 8.0 and at a dose of 1.0 g/L sorbent dose, the removal efficiencies of living and dead cells were as high as 90.39% and 75.67% at 20 mg/L Cd2+, respectively. For the adsorption isotherm test, results revealed that both Langmuir (R2 = 0.9704) and Freundlich (R2 = 0.9915) model could describe the Cd2+ biosorption well for living strain LYX-1. The maximum equilibrium biosorption capacities of living and dead biomass were 30.6790 and 24.3752 mg/g, respectively. In the adsorption kinetic test, the adsorption process of both living and dead strain LYX-1 all satisfied the pseudo-second kinetic equation. A desorption study showed that strain LYX-1 sorbents could be recycled and regenerated by eluents efficiently. SEM-EDS analysis reflected that Cd2+ was bound to the cell wall. Besides, the biosorption process was controlled by chemisorption with the participation of the -OH, -NH, -C = O, O = C-O, C-N, S2-, and phosphate functional groups on the cell surface of strain LYX-1, which were identified by FTIR and XPS. Bioaccumulation also made a contribution to the Cd2+ removal during the biosorption process of living sorbent. The above results indicated that strain LYX-1 had higher Cd2+ tolerance and Cd2+ removal capacity. This strain exhibits promising application to the removal of Cd2+ in the Cd-contaminated environment.


Assuntos
Paenibacillus , Poluentes Químicos da Água , Adsorção , Biomassa , Cádmio/análise , Concentração de Íons de Hidrogênio , Cinética , Paenibacillus/metabolismo , Fosfatos/análise , Solo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA