Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38869374

RESUMO

The central sulcus divides the primary motor and somatosensory cortices in many anthropoid primate brains. Differences exist in the surface area and depth of the central sulcus along the dorso-ventral plane in great apes and humans compared to other primate species. Within hominid species, there are variations in the depth and aspect of their hand motor area, or knob, within the precentral gyrus. In this study, we used post-image analyses on magnetic resonance images to characterize the central sulcus shape of humans, chimpanzees (Pan troglodytes), gorillas (Gorilla gorilla), and orangutans (Pongo pygmaeus and Pongo abelii). Using these data, we examined the morphological variability of central sulcus in hominids, focusing on the hand region, a significant change in human evolution. We show that the central sulcus shape differs between great ape species, but all show similar variations in the location of their hand knob. However, the prevalence of the knob location along the dorso-ventral plane and lateralization differs between species and the presence of a second ventral motor knob seems to be unique to humans. Humans and orangutans exhibit the most similar and complex central sulcus shapes. However, their similarities may reflect divergent evolutionary processes related to selection for different positional and habitual locomotor functions.


Assuntos
Evolução Biológica , Gorilla gorilla , Hominidae , Imageamento por Ressonância Magnética , Córtex Motor , Pan troglodytes , Filogenia , Animais , Humanos , Masculino , Pan troglodytes/anatomia & histologia , Pan troglodytes/fisiologia , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Feminino , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Córtex Motor/diagnóstico por imagem , Hominidae/anatomia & histologia , Hominidae/fisiologia , Adulto , Mãos/fisiologia , Mãos/anatomia & histologia , Adulto Jovem , Pongo pygmaeus/anatomia & histologia , Pongo pygmaeus/fisiologia , Especificidade da Espécie , Pongo abelii/anatomia & histologia , Pongo abelii/fisiologia
2.
Commun Biol ; 7(1): 682, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877299

RESUMO

Although the gross morphology of the heart is conserved across mammals, subtle interspecific variations exist in the cardiac phenotype, which may reflect evolutionary divergence among closely-related species. Here, we compare the left ventricle (LV) across all extant members of the Hominidae taxon, using 2D echocardiography, to gain insight into the evolution of the human heart. We present compelling evidence that the human LV has diverged away from a more trabeculated phenotype present in all other great apes, towards a ventricular wall with proportionally greater compact myocardium, which was corroborated by post-mortem chimpanzee (Pan troglodytes) hearts. Speckle-tracking echocardiographic analyses identified a negative curvilinear relationship between the degree of trabeculation and LV systolic twist, revealing lower rotational mechanics in the trabeculated non-human great ape LV. This divergent evolution of the human heart may have facilitated the augmentation of cardiac output to support the metabolic and thermoregulatory demands of the human ecological niche.


Assuntos
Ventrículos do Coração , Hominidae , Fenótipo , Animais , Humanos , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/diagnóstico por imagem , Hominidae/anatomia & histologia , Ecocardiografia , Evolução Biológica , Pan troglodytes/anatomia & histologia , Masculino , Feminino
3.
Nat Methods ; 21(6): 1122-1130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831210

RESUMO

Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution.


Assuntos
Encéfalo , Conectoma , Pan troglodytes , Substância Branca , Pan troglodytes/anatomia & histologia , Animais , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Conectoma/métodos , Masculino , Vias Neurais/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Feminino , Mapeamento Encefálico/métodos
4.
Neuroimage ; 295: 120652, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797384

RESUMO

Accurate processing and analysis of non-human primate (NHP) brain magnetic resonance imaging (MRI) serves an indispensable role in understanding brain evolution, development, aging, and diseases. Despite the accumulation of diverse NHP brain MRI datasets at various developmental stages and from various imaging sites/scanners, existing computational tools designed for human MRI typically perform poor on NHP data, due to huge differences in brain sizes, morphologies, and imaging appearances across species, sites, and ages, highlighting the imperative for NHP-specialized MRI processing tools. To address this issue, in this paper, we present a robust, generic, and fully automated computational pipeline, called non-human primates Brain Extraction and Segmentation Toolbox (nBEST), whose main functionality includes brain extraction, non-cerebrum removal, and tissue segmentation. Building on cutting-edge deep learning techniques by employing lifelong learning to flexibly integrate data from diverse NHP populations and innovatively constructing 3D U-NeXt architecture, nBEST can well handle structural NHP brain MR images from multi-species, multi-site, and multi-developmental-stage (from neonates to the elderly). We extensively validated nBEST based on, to our knowledge, the largest assemblage dataset in NHP brain studies, encompassing 1,469 scans with 11 species (e.g., rhesus macaques, cynomolgus macaques, chimpanzees, marmosets, squirrel monkeys, etc.) from 23 independent datasets. Compared to alternative tools, nBEST outperforms in precision, applicability, robustness, comprehensiveness, and generalizability, greatly benefiting downstream longitudinal, cross-sectional, and cross-species quantitative analyses. We have made nBEST an open-source toolbox (https://github.com/TaoZhong11/nBEST) and we are committed to its continual refinement through lifelong learning with incoming data to greatly contribute to the research field.


Assuntos
Encéfalo , Aprendizado Profundo , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Macaca mulatta , Neuroimagem/métodos , Pan troglodytes/anatomia & histologia , Envelhecimento/fisiologia
5.
Am J Biol Anthropol ; 184(4): e24942, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38602254

RESUMO

OBJECTIVES: This study tests if femoral and humeral cross-sectional geometry (CSG) and cross-sectional properties (CSPs) in an ontogenetic series of wild-caught chimpanzees (Pan troglodytes ssp.) reflect locomotor behavior during development. The goal is to clarify the relationship between limb bone structure and locomotor behavior during ontogeny in Pan. MATERIALS AND METHODS: The latex cast method was used to reconstruct cross sections at the midshaft femur and mid-distal humerus. Second moments of area (SMAs) (Ix, Iy, Imax, Imin), which are proportional to bending rigidity about a specified axis, and the polar SMA (J), which is proportional to average bending rigidity, were calculated at section locations. Cross-sectional shape (CSS) was assessed from Ix/Iy and Imax/Imin ratios. Juvenile and adult subsamples were compared. RESULTS: Juveniles and adults have significantly greater femoral J compared to humeral J. Mean interlimb proportions of J are not significantly different between the groups. There is an overall decreasing trend in diaphyseal circularity between the juvenile phase of development and adulthood, although significant differences are only found in the humerus. DISCUSSION: Juvenile chimpanzee locomotion includes forelimb- and hindlimb-biased behaviors. Juveniles and adults preferentially load their hindlimbs relative to their forelimbs. This may indicate similar locomotor behavior, although other explanations including a diversity of hindlimb-biased locomotor behaviors in juveniles cannot be ruled out. Different ontogenetic trends in forelimb and hindlimb CSS are consistent with limb bone CSG reflecting functional adaptation, albeit the complex nature of bone functional adaptation requires cautious interpretations of skeletal functional morphology from biomechanical analyses.


Assuntos
Diáfises , Fêmur , Úmero , Pan troglodytes , Animais , Pan troglodytes/crescimento & desenvolvimento , Pan troglodytes/anatomia & histologia , Úmero/anatomia & histologia , Úmero/crescimento & desenvolvimento , Úmero/fisiologia , Diáfises/anatomia & histologia , Diáfises/crescimento & desenvolvimento , Diáfises/fisiologia , Fêmur/anatomia & histologia , Fêmur/crescimento & desenvolvimento , Fêmur/fisiologia , Feminino , Masculino , Locomoção/fisiologia
6.
Am J Biol Anthropol ; 184(3): e24937, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38644542

RESUMO

OBJECTIVES: Low-energy vertebral fractures are a common health concern, especially in elderly people. Interestingly, African apes do not seem to experience as many vertebral fractures and the low-energy ones are even rarer. One potential explanation for this difference is the lower bone density in humans. Yet, only limited research has been done on the vertebral bone density of the great apes and these have mainly included only single vertebrae. Hence the study aim is to expand our understanding of the vertebral microstructure of African apes in multiple spinal segments. MATERIALS: Bone density in the vertebral body of C7, T12, and L3 was measured from 32 Pan troglodytes and 26 Gorilla gorilla using peripheral quantitative computed tomography (pQCT). RESULTS: There was a clear difference between the three individual vertebrae and consequently the spinal segments in terms of trabecular density and cortical density and thickness. The variation of these bone parameters between the vertebrae differed between the apes but was also different from those reported for humans. The chimpanzees were observed to have overall higher trabecular density, but gorillas had higher cortical density and thickness. Cortical thickness had a relatively strong association with the vertebral size. DISCUSSION: Despite the similarity in locomotion and posture, the results show slight differences in the bone parameters and their variation between spinal segments in African apes. This variation also differs from humans and appears to indicate a complex influence of locomotion, posture, and body size on the different spinal segments.


Assuntos
Densidade Óssea , Gorilla gorilla , Pan troglodytes , Tomografia Computadorizada por Raios X , Animais , Densidade Óssea/fisiologia , Gorilla gorilla/anatomia & histologia , Feminino , Masculino , Pan troglodytes/anatomia & histologia , Antropologia Física , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/anatomia & histologia
7.
Am J Biol Anthropol ; 184(3): e24931, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38491922

RESUMO

OBJECTIVES: Integration reflects the level of coordinated variation of the phenotype. The integration of postcranial elements can be studied from a functional perspective, especially with regards to locomotion. This study investigates the link between locomotion, femoral structural properties, and femur-pelvis complex morphology. MATERIALS AND METHODS: We measured (1) morphological integration between femoral and pelvic morphologies using geometric morphometrics, and (2) covariation between femoral/pelvic morphologies and femoral diaphyseal cross-sectional properties, which we defined as morpho-structural integration. Morphological and morpho-structural integration patterns were measured among humans (n = 19), chimpanzees and bonobos (n = 16), and baboons (n = 14), whose locomotion are distinct. RESULTS: Baboons show the highest magnitude of morphological integration and the lowest of morpho-structural integration. Chimpanzees and bonobos show intermediate magnitude of morphological and morpho-structural integration. Yet, body size seems to have a considerable influence on both integration patterns, limiting the interpretations. Finally, humans present the lowest morphological integration and the highest morpho-structural integration between femoral morphology and structural properties but not between pelvic morphology and femur. DISCUSSION: Morphological and morpho-structural integration depict distinct strategies among the samples. A strong morphological integration among baboon's femur-pelvis module might highlight evidence for long-term adaptation to quadrupedalism. In humans, it is likely that distinct selective pressures associated with the respective function of the pelvis and the femur tend to decrease morphological integration. Conversely, high mechanical loading on the hindlimbs during bipedal locomotion might result in specific combination of structural and morphological features within the femur.


Assuntos
Fêmur , Locomoção , Animais , Fêmur/anatomia & histologia , Fêmur/fisiologia , Feminino , Masculino , Humanos , Locomoção/fisiologia , Pelve/anatomia & histologia , Pelve/fisiologia , Pan paniscus/fisiologia , Pan paniscus/anatomia & histologia , Pan troglodytes/anatomia & histologia , Pan troglodytes/fisiologia , Antropologia Física , Ossos Pélvicos/anatomia & histologia , Ossos Pélvicos/fisiologia , Adulto , Papio/fisiologia , Papio/anatomia & histologia
8.
J Anat ; 245(1): 156-180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38381116

RESUMO

Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.


Assuntos
Osso Esponjoso , Fêmur , Hominidae , Animais , Masculino , Feminino , Fêmur/anatomia & histologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Humanos , Osso Esponjoso/anatomia & histologia , Locomoção/fisiologia , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Pan troglodytes/anatomia & histologia , Pan troglodytes/fisiologia
9.
J Anat ; 244(6): 977-994, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38293709

RESUMO

Morphological studies typically avoid using osteological samples that derive from captive animals because it is assumed that their morphology is not representative of wild populations. Rearing environments indeed differ between wild and captive individuals. For example, mechanical properties of the diets provided to captive animals can be drastically different from the food present in their natural habitats, which could impact cranial morphology and dental health. Here, we examine morphological differences in the maxillae of wild versus captive chimpanzees (Pan troglodytes) given the prominence of this species in comparative samples used in human evolution research and the key role of the maxilla in such studies. Size and shape were analysed using three-dimensional geometric morphometric methods based on computed tomography scans of 94 wild and 30 captive specimens. Captive individuals have on average larger and more asymmetrical maxillae than wild chimpanzees, and significant differences are present in their maxillary shapes. A large proportion of these shape differences are attributable to static allometry, but wild and captive specimens still differ significantly from each other after allometric size adjustment of the shape data. Levels of shape variation are higher in the captive group, while the degree of size variation is likely similar in our two samples. Results are discussed in the context of ontogenetic growth trajectories, changes in dietary texture, an altered social environment, and generational differences. Additionally, sample simulations show that size and shape differences between chimpanzees and bonobos (Pan paniscus) are exaggerated when part of the wild sample is replaced with captive chimpanzees. Overall, this study confirms that maxillae of captive chimpanzees should not be included in morphological or taxonomic analyses when the objective is to characterise the species.


Assuntos
Maxila , Pan troglodytes , Animais , Pan troglodytes/anatomia & histologia , Maxila/anatomia & histologia , Maxila/diagnóstico por imagem , Masculino , Feminino , Animais Selvagens/anatomia & histologia , Tomografia Computadorizada por Raios X , Animais de Zoológico/anatomia & histologia
10.
Am J Biol Anthropol ; 183(3): e24800, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37377134

RESUMO

OBJECTIVES: The shape of the trapezium and first metacarpal (Mc1) markedly influence thumb mobility, strength, and the manual abilities of extant hominids. Previous research has typically focused solely on trapezium-Mc1 joint shape. Here we investigate how morphological integration and shape covariation between the entire trapezium (articular and non-articular surfaces) and the entire Mc1 reflect known differences in thumb use in extant hominids. MATERIALS AND METHODS: We analyzed shape covariation in associated trapezia and Mc1s across a large, diverse sample of Homo sapiens (n = 40 individuals) and other extant hominids (Pan troglodytes, n = 16; Pan paniscus, n = 13; Gorilla gorilla gorilla, n = 27; Gorilla beringei, n = 6; Pongo pygmaeus, n = 14; Pongo abelii, n = 9) using a 3D geometric morphometric approach. We tested for interspecific significant differences in degree of morphological integration and patterns of shape covariation between the entire trapezium and Mc1, as well as within the trapezium-Mc1 joint specifically. RESULTS: Significant morphological integration was only found in the trapezium-Mc1 joint of H. sapiens and G. g. gorilla. Each genus showed a specific pattern of shape covariation between the entire trapezium and Mc1 that was consistent with different intercarpal and carpometacarpal joint postures. DISCUSSION: Our results are consistent with known differences in habitual thumb use, including a more abducted thumb during forceful precision grips in H. sapiens and a more adducted thumb in other hominids used for diverse grips. These results will help to infer thumb use in fossil hominins.


Assuntos
Hominidae , Ossos Metacarpais , Pongo abelii , Animais , Humanos , Hominidae/anatomia & histologia , Polegar , Ossos Metacarpais/anatomia & histologia , Gorilla gorilla/anatomia & histologia , Pan troglodytes/anatomia & histologia , Pan paniscus , Pongo pygmaeus/anatomia & histologia
11.
Am J Biol Anthropol ; 183(1): 157-164, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37724468

RESUMO

OBJECTIVES: Studying rib torsion is crucial for understanding the evolution of the hominid ribcage. Interestingly, there are variables of the rib cross section that could be associated with rib torsion and, consequently, with the morphology of the thorax. The aim of this research is to conduct a comparative study of the shape and mineralized tissues of the rib cross section in different hominids to test for significant differences and, if possible, associate them to different thoracic morphotypes. MATERIALS AND METHODS: The sample consists of the rib cross sections at the midshaft taken from 10 Homo sapiens and 10 Pan troglodytes adult individuals, as well as from A. africanus Sts 14. The shape of these rib cross sections was quantified using geometric morphometrics, while the mineralized tissues were evaluated using the compartmentalization index. Subsequently, covariation between both parameters was tested by a Spearman's ρ test, a permutation test and a linear regression. RESULTS: Generally, P. troglodytes individuals exhibit rib cross sections that are rounder and more mineralized compared to those of H. sapiens. However, the covariation between both parameters was only observed in typical ribs (levels 3-10). Although covariation was not found in the rib cross sections of Sts 14, their parameters are closer to P. troglodytes. DISCUSSION: On the one hand, the differences observed in the rib cross sections between H. sapiens and P. troglodytes might be related to different degrees of rib torsion and, consequently, to different thoracic 3D configurations. These findings can be functionally explained by considering their distinct modes of breathing and locomotion. On the other hand, although the rib cross sections belonging to Sts 14 are more similar to those of P. troglodytes, previous publications determined that their overall morphology is closer to modern humans. This discrepancy could reflect a diversity of post-cranial adaptations in Australopithecus.


Assuntos
Hominidae , Pan troglodytes , Adulto , Animais , Humanos , Pan troglodytes/anatomia & histologia , Hominidae/anatomia & histologia , Tórax/anatomia & histologia , Costelas/anatomia & histologia , Crânio
12.
Anat Rec (Hoboken) ; 307(8): 2816-2833, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38112056

RESUMO

The evolution of human pelvic form is primarily studied using disarticulated osteological material of living and fossil primates that need rearticulation to approximate anatomical position. To test whether this technique introduces errors that impact biological signals, virtual rearticulations of the pelvis in anatomical position from computed tomography scans were compared with rearticulated models from the same individuals for one female and one male of Homo sapiens, Pan troglodytes, Macaca mulatta, Lepilemur mustelinus, Galago senegalensis, and Nycticebus pygmaeus. "Cadaveric" pelvic bones were first analyzed in anatomical position, then the three bones were segmented individually, intentionally scattered, and "rearticulated" to test for rearticulation error. Three-dimensional landmarks and linear measurements were used to characterize the overall pelvis shape. Cadaveric and rearticulated pelves were not identical, but inter-specific and intra-specific shape differences were higher than the landmarking error in the cadaveric individuals and the landmarking/rearticulation error in the rearticulated pelves, demonstrating that the biological signal is stronger than the noise introduced by landmarking and rearticulation. The rearticulation process, however, underestimates the medio-lateral pelvic measurements in species with a substantial pubic gap (e.g., G. senegalensis, N. pygmaeus) possibly because the greater contribution of soft tissue to the pelvic girdle introduces higher uncertainty during rearticulation. Nevertheless, this discrepancy affects only the caudal-most part of the pelvis. This study demonstrates that the rearticulation of pelvic bones does not substantially affect the biological signal in comparative 3D morphological studies but suggests that anatomically connected pelves of species with wide pubic gaps should be preferentially included in these studies.


Assuntos
Ossos Pélvicos , Animais , Humanos , Feminino , Masculino , Ossos Pélvicos/anatomia & histologia , Ossos Pélvicos/diagnóstico por imagem , Pelve/anatomia & histologia , Pelve/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Primatas/anatomia & histologia , Reprodutibilidade dos Testes , Pan troglodytes/anatomia & histologia , Macaca mulatta/anatomia & histologia
13.
Sci Rep ; 13(1): 20732, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007561

RESUMO

The anatomy of the auditory region of fossil hominins may shed light on the emergence of human spoken language. Humans differ from other great apes in several features of the external, middle and inner ear (e.g., short external ear canal, small tympanic membrane, large oval window). However, the functional implications of these differences remain poorly understood as comparative audiometric data from great apes are scarce and conflicting. Here, we measure the sound transfer function of the external and middle ears of humans, chimpanzees and bonobos, using laser-Doppler vibrometry and finite element analysis. This sound transfer function affects auditory thresholds, which relate to speech reception thresholds in humans. Unexpectedly we find that external and middle ears of chimpanzees and bonobos transfer sound better than human ones in the frequency range of spoken language. Our results suggest that auditory thresholds of the last common ancestor of Homo and Pan were already compatible with speech reception as observed in humans. Therefore, it seems unlikely that the morphological evolution observed in the bony auditory region of fossil hominins was driven by the emergence of spoken language. Instead, the peculiar human configuration may be a by-product of morpho-functional constraints linked to brain expansion.


Assuntos
Hominidae , Pan troglodytes , Animais , Humanos , Pan troglodytes/anatomia & histologia , Limiar Auditivo , Pan paniscus , Fala , Hominidae/anatomia & histologia
14.
FASEB J ; 37(9): e23137, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566489

RESUMO

The anatomical underpinnings of primate facial expressions are essential to exploring their evolution. Traditionally, it has been accepted that the primate face exhibits a "scala natura" morphocline, ranging from primitive to derived characteristics. At the primitive end, the face consists of undifferentiated muscular sheets, while at the derived end there is greater complexity with more muscles and insertion points. Among these, the role of the human modiolus ("knoten" in German) has been emphasized. Recent studies have challenged this view by revealing significant complexity in the faces of several non-human primates, thereby rejecting the linear notion of facial evolution. However, our knowledge of the facial architecture in gorillas, the second closest living relatives to modern humans, remains a significant gap in the literature. Here, we present new findings based on dissection and histological analysis of one gorilla craniofacial specimen, alongside 30 human hemifaces. Our results indicate that while the number and overall arrangement of facial muscles in the gorilla are comparable to those of chimpanzees and modern humans, several orofacial features distinguish the gorilla's anatomy from that of hominins. Among these are the absence of a modiolus, the continuity of muscular fibers over the region of the mouth corner, the flat (uncurving) sheet of the orbicularis oris muscle, and the insertion of direct labial tractors both anterior and posterior to it. Collectively, the anatomical characteristics observed in the gorilla suggest that the complex anatomy of the hominin face should be considered synapomorphic (shared-derived) within the Pan-Homo clade.


Assuntos
Hominidae , Animais , Gorilla gorilla/anatomia & histologia , Músculos Faciais/anatomia & histologia , Músculos Faciais/fisiologia , Face , Pan troglodytes/anatomia & histologia
15.
Am J Biol Anthropol ; 182(1): 69-81, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37504383

RESUMO

OBJECTIVES: Morphological intraspecific variation is due to the balance between skeletal plasticity and genetic constraint on the skeleton. Osteogenic responses to external stimuli, such as locomotion, have been well documented interspecifically across the primate order, but less so at the intraspecific level. Here, we examine the differences in cross-sectional variability of the femur, humerus, radius, and tibia in Pan troglodytes troglodytes versus Gorilla gorilla gorilla. We investigate whether there are sex, species, bone, and trait differences in response to variable body size and locomotion. MATERIALS AND METHODS: Adult male and female P. t. troglodytes and G. g. gorilla long bones from the Cleveland Museum of Natural History were scanned with a peripheral quantitative computer tomography system. Scans were taken at the midshaft of each bone according to functional bone length. Coefficients of variation were used to provide a size-independent measure of variation. We applied a Bonferroni correction to account for the multiple pairwise tests. RESULTS: There were limited significant differences between males and females, however, females tended to be more variable than males. Variation in Gorilla, when significant, was greater than in Pan, although significant differences were limited. There were no differences between bone variability in male and female Gorilla, and female Pan. DISCUSSION: Increased female variability may be due to more variable locomotor behavior, particularly during periods of pregnancy, lactation, and caring for an offspring compared to consistent locomotion over the life course by males. Body size may be a contributing factor to variability; more work is needed to understand this relationship.


Assuntos
Gorilla gorilla , Hominidae , Animais , Masculino , Feminino , Gorilla gorilla/anatomia & histologia , Pan troglodytes/anatomia & histologia , Hominidae/anatomia & histologia , Osso e Ossos , Locomoção/fisiologia
16.
Commun Biol ; 6(1): 586, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264068

RESUMO

Recent studies identify a surprising coupling between evolutionarily new sulci and the functional organization of human posteromedial cortex (PMC). Yet, no study has compared this modern PMC sulcal patterning between humans and non-human hominoids. To fill this gap in knowledge, we first manually defined over 2500 PMC sulci in 120 chimpanzee (Pan Troglodytes) hemispheres and 144 human hemispheres. We uncovered four new sulci, and quantitatively identified species differences in sulcal incidence, depth, and surface area. Interestingly, some sulci are more common in humans and others, in chimpanzees. Further, we found that the prominent marginal ramus of the cingulate sulcus differs significantly between species. Contrary to classic observations, the present results reveal that the surface anatomy of PMC substantially differs between humans and chimpanzees-findings which lay a foundation for better understanding the evolution of neuroanatomical-functional and neuroanatomical-behavioral relationships in this highly expanded region of the human cerebral cortex.


Assuntos
Hominidae , Pan troglodytes , Animais , Humanos , Pan troglodytes/anatomia & histologia , Córtex Cerebral/anatomia & histologia
17.
Nature ; 617(7959): 45-54, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138108

RESUMO

The naming of Australopithecus africanus in 1925, based on the Taung Child, heralded a new era in human evolutionary studies and turned the attention of the then Eurasian-centric palaeoanthropologists to Africa, albeit with reluctance. Almost one hundred years later, Africa is recognized as the cradle of humanity, where the entire evolutionary history of our lineage prior to two million years ago took place-after the Homo-Pan split. This Review examines data from diverse sources and offers a revised depiction of the genus and characterizes its role in human evolution. For a long time, our knowledge of Australopithecus came from both A. africanus and Australopithecus afarensis, and the members of this genus were portrayed as bipedal creatures that did not use stone tools, with a largely chimpanzee-like cranium, a prognathic face and a brain slightly larger than that of chimpanzees. Subsequent field and laboratory discoveries, however, have altered this portrayal, showing that Australopithecus species were habitual bipeds but also practised arboreality; that they occasionally used stone tools to supplement their diet with animal resources; and that their infants probably depended on adults to a greater extent than what is seen in apes. The genus gave rise to several taxa, including Homo, but its direct ancestor remains elusive. In sum, Australopithecus had a pivotal bridging role in our evolutionary history owing to its morphological, behavioural and temporal placement between the earliest archaic putative hominins and later hominins-including the genus Homo.


Assuntos
Evolução Biológica , Hominidae , Animais , Humanos , Fósseis , Hominidae/anatomia & histologia , Hominidae/classificação , Pan troglodytes/anatomia & histologia , Pan troglodytes/classificação , Crânio/anatomia & histologia , Comportamento de Utilização de Ferramentas , Envelhecimento
18.
Am J Biol Anthropol ; 181(1): 29-44, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807569

RESUMO

OBJECTIVES: Chimpanzees (Pan troglodytes) possess a relatively generalized molar morphology allowing them to access a wide range of foods. Comparisons of crown and cusp morphology among the four subspecies have suggested relatively large intraspecific variability. Here, we compare molar crown traits and cusp wear of two geographically close populations of Western chimpanzees, P. t. verus, to provide further information on intraspecific dental variability. MATERIALS AND METHODS: Micro-CT reconstructions of high-resolution replicas of first and second molars of two Western chimpanzee populations from Ivory Coast (Taï National Park) and Liberia, respectively were used for this study. First, we analyzed projected tooth and cusp 2D areas as well as the occurrence of cusp six (C6) on lower molars. Second, we quantified the molar cusp wear three-dimensionally to infer how the individual cusps alter with advancing wear. RESULTS: Both populations are similar in their molar crown morphology, except for a higher appearance rate of a C6 in Taï chimpanzees. In Taï chimpanzees, lingual cusps of upper molars and buccal cusps of lower molars possess an advanced wear pattern compared to the remaining cusps, while in Liberian chimpanzees this wear gradient is less pronounced. DISCUSSION: The similar crown morphology between both populations fits with previous descriptions for Western chimpanzees and provides additional data on dental variation within this subspecies. The wear pattern of the Taï chimpanzees are in concordance with their observed tool rather than tooth use to open nuts/seeds, while the Liberian chimpanzees may have consumed hard food items crushed between their molars.


Assuntos
Hominidae , Dente , Animais , Pan troglodytes/anatomia & histologia , Coroa do Dente/diagnóstico por imagem , Coroas
19.
Anthropol Anz ; 80(1): 1-12, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36006051

RESUMO

Wrist shape varies greatly across primates and previous studies indicate that the numerous morphological differences among them are related to a complex mixture of phylogeny and function. However, little is known about whether the variation in these various anatomical differences is linked and to what extent the wrist bones vary independently. Here, we used 3D geometric morphometrics on a sample of extant hominines (Homo sapiens, Pan troglodytes, Gorilla gorilla, and Gorilla beringei), to find the model that best describes the covariation patterns among four of the eight carpals (i.e., capitate, lunate, scaphoid, and trapezium). For this purpose, 15 modular hypotheses were tested using the Covariance Ratio. Results indicate that there is a covariation structure common to all hominines, which corresponds to stronger covariation within each carpal as compared to the covariation between carpals. However, the results also indicate that that there is a degree of codependence in the variation of some carpals, which is unique in humans, chimpanzees, and gorillas, respectively. In humans there is evidence of associated shape changes between the lunate and capitate, and between the scaphoid and trapezium. This covariation between lunate and capitate is also apparent in gorillas, while chimpanzees display the greatest disassociation among carpals, showing low covariation values in all pairwise comparisons. Our analyses indicate that carpals have an important level of variational independence which might suggest a high degree of independent evolvability in the wrists of hominines, and that although weak, the structure of associated changes of these four carpals varies across genera. To our knowledge this is the first report on the patterns of modularity between these four wrist bones in the Homininae and future studies might attempt to investigate whether the anatomical shape associations among carpals are functionally related to locomotion and manipulation.


Assuntos
Ossos do Carpo , Hominidae , Animais , Humanos , Punho/anatomia & histologia , Gorilla gorilla/anatomia & histologia , Pan troglodytes/anatomia & histologia , Hominidae/anatomia & histologia , Ossos do Carpo/anatomia & histologia
20.
J Hum Evol ; 171: 103239, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36095909

RESUMO

Previous research has suggested that magnitudes of integration may be distinct in the postcranium of hominoids when compared to other primate species. To test this hypothesis, we estimated and compared magnitudes of integration of eight postcranial bones from three-dimensional surface scans for 57 Hylobates lar, 58 Gorilla gorilla, 60 Pan troglodytes, 60 Homo sapiens, 60 Chlorocebus pygerythrus, and 60 Macaca fascicularis. We tested the hypotheses that 1) magnitudes of integration would be distinct in the postcranium of hominoids compared to cercopithecoids, with the explicit prediction that magnitudes of integration would be lower in hominoids than in cercopithecoids, and 2) girdle elements (scapula, os coxa) would have lower magnitudes of integration across all taxa. Integration was quantified using the integration coefficient of variation from interlandmark distances reflecting anatomical and developmental modules defined according to a priori criteria. A resampling protocol was employed to generate distributions of integration values that were then compared statistically using Mann-Whitney U tests with Bonferroni adjustment. Support for hypothesis 1 was mixed: with the exception of Gorilla, hominoid taxa were less integrated than the cercopithecoids for all anatomical modules. However, Homo, Gorilla, and, to a lesser extent, Pan showed higher integration than Hylobates and the cercopithecoids for homologous limb elements, with magnitudes of integration for both modules being lowest for Hylobates. These results generally support the hypothesis of distinct patterns of magnitudes of integration in the hominoid postcranium. The high integration of Gorilla may be explained by the effects of overall body size. The results supported the predictions of the second hypothesis. Regardless of taxon, the os coxa and scapula were generally the least integrated skeletal elements, while the femur and radius were the most integrated. The lower integration of the girdle elements suggests that the geometric complexities of particular elements may significantly influence study outcomes.


Assuntos
Hominidae , Hylobates , Animais , Chlorocebus aethiops , Gorilla gorilla , Hominidae/anatomia & histologia , Hylobates/anatomia & histologia , Pan troglodytes/anatomia & histologia , Primatas , Escápula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA