Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 591
Filtrar
1.
BMC Complement Med Ther ; 24(1): 144, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575939

RESUMO

BACKGROUND: Mitochondrial dysfunction is one of the distinctive features of neurons in patients with Alzheimer's disease (AD). Intraneuronal autophagosomes selectively phagocytose and degrade the damaged mitochondria, mitigating neuronal damage in AD. Panax notoginseng saponins (PNS) can effectively reduce oxidative stress and mitochondrial damage in the brain of animals with AD, but their exact mechanism of action is unknown. METHODS: Senescence-accelerated mouse prone 8 (SAMP8) mice with age-related AD were treated with PNS for 8 weeks. The effects of PNS on learning and memory abilities, cerebral oxidative stress status, and hippocampus ultrastructure of mice were observed. Moreover, changes of the PTEN-induced putative kinase 1 (PINK1)-Parkin, which regulates ubiquitin-dependent mitophagy, and the recruit of downstream autophagy receptors were investigated. RESULTS: PNS attenuated cognitive dysfunction in SAMP8 mice in the Morris water maze test. PNS also enhanced glutathione peroxidase and superoxide dismutase activities, and increased glutathione levels by 25.92% and 45.55% while inhibiting 8-hydroxydeoxyguanosine by 27.74% and the malondialdehyde production by 34.02% in the brains of SAMP8 mice. Our observation revealed the promotion of mitophagy, which was accompanied by an increase in microtubule-associated protein 1 light chain 3 (LC3) mRNA and 70.00% increase of LC3-II/I protein ratio in the brain tissues of PNS-treated mice. PNS treatment increased Parkin mRNA and protein expression by 62.80% and 43.80%, while increasing the mRNA transcription and protein expression of mitophagic receptors such as optineurin, and nuclear dot protein 52. CONCLUSION: PNS enhanced the PINK1/Parkin pathway and facilitated mitophagy in the hippocampus, thereby preventing cerebral oxidative stress in SAMP8 mice. This may be a mechanism contributing to the cognition-improvement effect of PNS.


Assuntos
Doença de Alzheimer , Panax notoginseng , Saponinas , Humanos , Camundongos , Animais , Lactente , Panax notoginseng/química , Saponinas/farmacologia , Mitofagia , Estresse Oxidativo , Encéfalo/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , RNA Mensageiro/metabolismo
2.
J Ethnopharmacol ; 330: 118148, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38583734

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herb Panax notoginseng (PN) tonifies blood, and its main active ingredient is saponin. PN is processed by different methods, resulting in different compositions and effects. AIM OF THE STUDY: To investigate changes in the microstructure and composition of fresh PN processed by different techniques and the anti-anemia effects on tumor-bearing BALB/c mice after chemotherapy with cyclophosphamide (CTX). MATERIALS AND METHODS: Fresh PN was processed by hot-air drying (raw PN, RPN), steamed at 120 °C for 5 h (steamed PN, SPN), or fried at 130 °C, 160 °C, or 200 °C for 8 min (fried PN, FPN1, FPN2, or FPN3, respectively); then, the microstructures were compared with 3D optical microscopy, quasi-targeted metabolites were detected by liquid chromatography tandem mass spectrometry (LC‒MS/MS), and saponins were detected by high-performance liquid chromatography (HPLC). An anemic mouse model was established by subcutaneous H22 cell injection and treatment with CTX. The antianemia effects of PN after processing via three methods were investigated by measuring peripheral blood parameters, performing HE staining and measuring cell proliferation via immunofluorescence. RESULTS: 3D optical profiling revealed that the surface roughness of the SPN and FPN was greater than that of the other materials. Quasi-targeted metabolomics revealed that SPN and FPN had more differentially abundant metabolites whose abundance increased, while SPN had greater amounts of terpenoids and flavones. Analysis of the composition and content of the targeted saponins revealed that the contents of rare saponins (ginsenoside Rh1, 20(S)-Rg3, 20(R)-Rg3, Rh4, Rk3, Rg5) were greater in the SPN. In animal experiments, the RBC, WBC, HGB and HCT levels in peripheral blood were increased by SPN and FPN. HE staining and immunofluorescence showed that H-SPN and M-FPN promoted bone marrow and spleen cell proliferation. CONCLUSION: The microstructure and components of fresh PN differed after processing via different methods. SPN and FPN ameliorated CTX-induced anemia in mice, but the effects of PN processed by these two methods did not differ.


Assuntos
Anemia , Ciclofosfamida , Camundongos Endogâmicos BALB C , Panax notoginseng , Saponinas , Animais , Ciclofosfamida/toxicidade , Panax notoginseng/química , Camundongos , Saponinas/farmacologia , Anemia/induzido quimicamente , Anemia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Masculino , Linhagem Celular Tumoral , Feminino
3.
Talanta ; 274: 125968, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581849

RESUMO

Panax notoginseng (P. notoginseng), a Chinese herb containing various saponins, benefits immune system in medicines development, which from Wenshan (authentic cultivation) is often counterfeited by others for large demand and limited supply. Here, we proposed a method for identifying P. notoginseng origin combining terahertz (THz) precision spectroscopy and neural network. Based on the comparative analysis of four qualitative identification methods, we chose high-performance liquid chromatography (HPLC) and THz spectroscopy to detect 252 samples from five origins. After classifications using Convolutional Neural Networks (CNNs) model, we found that the performance of THz spectra was superior to that of HPLC. The underlying mechanism is that there are clear nonlinear relations among the THz spectra and the origins due to the wide spectra and multi-parameter characteristics, which makes the accuracy of five-classification origin identification up to 97.62%. This study realizes the rapid, non-destructive and accurate identification of P. notoginseng origin, providing a practical reference for herbal medicine.


Assuntos
Redes Neurais de Computação , Panax notoginseng , Espectroscopia Terahertz , Panax notoginseng/química , Espectroscopia Terahertz/métodos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Algoritmos
4.
Phytomedicine ; 128: 155530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493723

RESUMO

BACKGROUND: Ischemic stroke (IS) ranks as the second common cause of death worldwide. However, a narrow thrombolysis timeframe and ischemia-reperfusion (I/R) injury limits patient recovery. Moreover, anticoagulation and antithrombotic drugs do not meet the clinical requirements. Studies have demonstrated close communication between the brain and gut microbiota in IS. Notoginsenoside R1 (NG-R1), a significant component of the total saponins from Panax notoginseng, has been demonstrated to be effective against cerebral I/R injury. Total saponins have been used to treat IS in Chinese pharmacopoeia. Furthermore, previous research has indicated that the absorption of NG-R1 was controlled by gut microbiota. STUDY DESIGN: This study aimed to access the impact of NG-R1 treatment on neuroinflammation and investigate the microbiota-related mechanisms. RESULTS: NG-R1 significantly reduced neuronal death and neuroinflammation in middle cerebral artery occlusion/reperfusion (MCAO/R) models. 16S rRNA sequencing revealed that NG-R1 treatment displayed the reversal of microbiota related with MCAO/R models. Additionally, NG-R1 administration attenuated intestinal inflammation, gut barrier destruction, and systemic inflammation. Furthermore, microbiota transplantation from NG-R1 exhibited a similar effect in the MCAO/R models. CONCLUSION: In summary, NG-R1 treatment resulted in the restoration of the structure of the blood-brain barrier (BBB) and reduction in neuroinflammation via suppressing the stimulation of astrocytes and microglia in the cerebral ischemic area. Mechanistic research demonstrated that NG-R1 treatment suppressed the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in both the ischemic brain and colon. NG-R1 treatment enhanced microbiota dysbiosis by inhibiting the TLR4 signaling pathway to protect MCAO/R models. These findings elucidate the mechanisms by which NG-R1 improve stroke outcomes and provide some basis for Panax notoginseng saponins in clinical treatment.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Traumatismo por Reperfusão , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , NF-kappa B/metabolismo , Ginsenosídeos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Eixo Encéfalo-Intestino/efeitos dos fármacos , Panax notoginseng/química , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , AVC Isquêmico/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico
5.
Phytother Res ; 38(4): 2007-2022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372176

RESUMO

This review highlights the increasing interest in one of the natural compounds called saponins, for their potential therapeutic applications in addressing inflammation which is a key factor in various chronic diseases. It delves into the molecular mechanisms responsible for the anti-inflammatory effects of these amphiphilic compounds, prevalent in plant-based foods and marine organisms. Their structures vary with soap-like properties influencing historical uses in traditional medicine and sparking renewed scientific interest. Recent research focuses on their potential in chronic inflammatory diseases, unveiling molecular actions such as NF-κB and MAPK pathway regulation and COX/LOX enzyme inhibition. Saponin-containing sources like Panax ginseng and soybeans suggest novel anti-inflammatory therapies. The review explores their emerging role in shaping the gut microbiome, influencing composition and activity, and contributing to anti-inflammatory effects. Specific examples, such as Panax notoginseng and Gynostemma pentaphyllum, illustrate the intricate relationship between saponins, the gut microbiome, and their collective impact on immune regulation and metabolic health. Despite promising findings, the review emphasizes the need for further research to comprehend the mechanisms behind anti-inflammatory effects and their interactions with the gut microbiome, underscoring the crucial role of a balanced gut microbiome for optimal health and positioning saponins as potential dietary interventions for managing chronic inflammatory conditions.


Assuntos
Panax notoginseng , Saponinas , Humanos , Saponinas/uso terapêutico , Panax notoginseng/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , NF-kappa B
6.
Plant Cell Rep ; 43(3): 73, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379012

RESUMO

KEY MESSAGE: PnNAC2 positively regulates saponin biosynthesis by binding the promoters of key biosynthetic genes, including PnSS, PnSE, and PnDS. PnNAC2 accelerates flowering through directly associating with the promoters of FT genes. NAC transcription factors play an important regulatory role in both terpenoid biosynthesis and flowering. Saponins with multiple pharmacological activities are recognized as the major active components of Panax notoginseng. The P. notoginseng flower is crucial for growth and used for medicinal and food purposes. However, the precise function of the P. notoginseng NAC transcription factor in the regulation of saponin biosynthesis and flowering remains largely unknown. Here, we conducted a comprehensive characterization of a specific NAC transcription factor, designated as PnNAC2, from P. notoginseng. PnNAC2 was identified as a nuclear-localized protein with transcription activator activity. The expression profile of PnNAC2 across various tissues mirrored the accumulation pattern of total saponins. Knockdown experiments of PnNAC2 in P. notoginseng calli revealed a significant reduction in saponin content and the expression level of pivotal saponin biosynthetic genes, including PnSS, PnSE, and PnDS. Subsequently, Y1H assays, dual-LUC assays, and electrophoretic mobility shift assays (EMSAs) demonstrated that PnNAC2 exhibits binding affinity to the promoters of PnSS, PnSE and PnDS, thereby activating their transcription. Additionally, an overexpression assay of PnNAC2 in Arabidopsis thaliana witnessed the acceleration of flowering and the induction of the FLOWERING LOCUS T (FT) gene expression. Furthermore, PnNAC2 demonstrated the ability to bind to the promoters of AtFT and PnFT genes, further activating their transcription. In summary, these results revealed that PnNAC2 acts as a multifunctional regulator, intricately involved in the modulation of triterpenoid saponin biosynthesis and flowering processes.


Assuntos
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Panax notoginseng/química , Panax notoginseng/metabolismo , Triterpenos/metabolismo , Flores/genética , Flores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Phytomedicine ; 125: 155244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216446

RESUMO

BACKGROUND: Panax notoginseng saponins (PNS) are the primary active components of an ancient Chinese herb Panax notoginseng. Hypercoagulable state of blood (HCS) is an independent risk factor and a cause of death in chronic obstructive pulmonary disease (COPD). Several vivo studies have demonstrated the use of PNS preparations for treating COPD with HCS. PURPOSE: This study aimed to systematically evaluate the clinical efficacy and safety of PNS preparations in treating COPD with HCS. STUDY DESIGN: Meta-analysis of the randomized controlled trials (RCTs) was conducted to review data. METHODS: RCTs on the treatment of COPD with HCS and PNS preparations were searched from PubMed, Cochrane Library, Embase, Web of Science, Chinese National Knowledge Infrastructure, Vip Information Database, Wanfang data, and Chinese Biomedical Literature Database. Relevant data were extracted from the included studies and methodological quality evaluation was performed. R language (version 4.2.3) was applied for the meta-analysis. RESULTS: Twenty RCTs involving 1831 patients were analyzed. The results revealed that PNS preparations considerably increased the total clinical efficiency, improved forced expiratory volume in one second percent of predicted, and forced expiratory volume/forced vital capacity ratio. Further, PNS preparations improved fibrinogen, plasma d-dimer, whole blood viscosity at high cut, whole blood viscosity at low cut, and plasma viscosity levels. The results obtained for activated partial thromboplastin and prothrombin times were not statistically significant. Finally, PNS preparations increased partial pressure of oxygen and decreased carbon dioxide pressure. CONCLUSION: This is the first relatively comprehensive systematic review of the clinical efficacy and safety of PNS preparations for treating COPD with HCS. The study revealed that PNS preparations considerably improve lung function, hypoxia, and blood hypercoagulability in patients with COPD and HCS without increasing the risk of hemorrhage and has a good safety profile; therefore, it can be used as a new modulating agent and anticoagulant.


Assuntos
Panax notoginseng , Doença Pulmonar Obstrutiva Crônica , Saponinas , Trombofilia , Humanos , Panax notoginseng/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Saponinas/efeitos adversos , Saponinas/uso terapêutico , Trombofilia/tratamento farmacológico , Resultado do Tratamento
8.
Gene ; 901: 148163, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224922

RESUMO

BACKGROUND: Nitrogen (N) is an important macronutrient involved in the biosynthesis of primary and secondary metabolites in plants. However, the metabolic regulatory mechanism of low-N-induced triterpenoid saponin and flavonoid accumulation in rhizomatous medicinal Panax notoginseng (Burk.) F. H. Chen remains unclear. METHODS: To explore the potential regulatory mechanism and metabolic basis controlling the response of P. notoginseng to N deficiency, the transcriptome and metabolome were analysed in the roots. RESULTS: The N content was significantly reduced in roots of N0-treated P. notoginseng (0 kg·N·667 m-2). The C/N ratio was enhanced in the N-deficient P. notoginseng. N deficiency promotes the accumulation of amino acids (L-proline, L-leucine, L-isoleucine, L-norleucine, L-arginine, and L-citrulline) and sugar (arabinose, xylose, glucose, fructose, and mannose), thus providing precursor metabolites for the biosynthesis of flavonoids and triterpenoid saponins. Downregulation of key structural genes (PAL, PAL3, ACC1, CHS2, PPO, CHI3, F3H, DFR, and FGT), in particular with the key genes of F3H, involved in the flavonoid biosynthesis pathway possibly induced the decrease in flavonoid content with increased N supply. Notoginsenoside R1, ginsenoside Re, Rg1, Rd, F1, R1 + Rg1 + Rb1 and total triterpenoid saponins were enhanced in the N0 groups than in the N15 (15 kg·N·667 m-2) plants. Higher phosphoenolpyruvate (an intermediate of glycolyticwith pathway metabolism) and serine (an intermediate of photorespiration) levels induced by N deficiency possibly promote saponin biosynthesis through mevalonic acid (MVA) and methylerythritol (MEP) pathways. Genes (MVD2, HMGS, HMGR1, HMGR2, DXR, and HMGR1) encoding the primary enzymes HMGS, HMGR, DXR, and MVD in the MVA and MEP pathways were significantly upregulated in the N0-treated P. notoginseng. The saponin biosynthesis genes DDS, DDS, CYP716A52, CYP716A47, UGT74AE2, and FPS were upregulated in the N-deficient plants. Upregulation of genes involved in saponin biosynthesis promotes the accumulation of triterpenoid saponins in the N0-grown P. notoginseng. CONCLUSIONS: N deficiency enhances primary metabolisms, such as amino acids and sugar accumulation, laying the foundation for the synthesis of flavonoids and triterpenoid saponins in P. notoginseng. F3H, DDS, FPS, HMGR, HMGS and UGT74AE2 can be considered as candidates for functional characterisation of the N-regulated accumulation of triterpenoid saponins and flavonoids in future.


Assuntos
Panax notoginseng , Saponinas , Saponinas/farmacologia , Panax notoginseng/genética , Panax notoginseng/química , Panax notoginseng/metabolismo , Flavonoides/metabolismo , Nitrogênio/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Aminoácidos/genética , Açúcares/metabolismo
9.
Int J Pharm ; 649: 123668, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38048891

RESUMO

Transfersomes (TFSs) have been extensively investigated to enhance transdermal drug delivery. As a colloidal dispersion system, TFSs are prone to problems such as particle aggregation and sedimentation, oxidation and decomposition of phospholipids. To enhance the stability of panax notoginseng saponins (PNS)-loaded transfersomes (PNS-TFSs) without adverse influences on their skin permeation, we prepared lyophilized PNS-loaded transfersomes (PNS-FD-TFSs), clarified their physicochemical characteristics and investigated their in vitro drug release, ex vivo skin permeation/deposition and in vivo pharmacokinetics. In this study, a simple, fast and controllable process was developed for preparing lyophilized PNS-TFSs. In the optimized PNS-FD-TFS formulation, sucrose and trehalose were added to the PNS-TFS dispersion with a mass ratio of trehalose, sucrose, and phospholipid of 3:2:1, and the mixture was frozen at -80 °C for 12 h followed by lyophilization at -45 °C and 5 Pa for 24 h. The optimized formulation of PNS-FD-TFSs was screened based on the appearance and reconstitution time of the lyophilized products, vesicle size, and PDI of the freshly reconstituted dispersions. It maintained stable physicochemical properties for at least 6 months at 4 °C. The vesicle size of PNS-FD-TFSs was below 100 nm and homogenous with a polydispersity index of 0.2 after reconstitution. The average encapsulation efficiencies of the five index saponins notoginsenoside R1 (NGR1), ginsenoside Rg1 (GRg1), ginsenoside Re (GRe), ginsenoside Rb1 (GRb1) and ginsenoside Rd (GRd) in PNS-FD-TFSs were 68.41 ± 5.77%, 68.95 ± 6.08%, 65.46 ± 10.95%, 91.50 ± 5.62% and 95.78 ± 1.70%, respectively. The reconstituted dispersions of PNS-FD-TFSs were similar to PNS-TFSs in in vitro release, ex vivo skin permeation, and deposition. The pharmacokinetic studies showed that, compared with the PNS liposomes (PNS-LPS), the PNS-FD-TFS-loaded drug could permeate through the skin and enter the blood rapidly. It can be concluded that the lyophilization process can effectively improve the stability of PNS-TFSs without compromising their transdermal absorption properties.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Panax notoginseng , Saponinas , Panax notoginseng/química , Trealose , Ginsenosídeos/química , Medicamentos de Ervas Chinesas/farmacocinética , Fosfolipídeos , Sacarose
10.
J Ethnopharmacol ; 321: 117539, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056541

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax Notoginseng (PN) can disperse blood stasis, hemostasis, and detumescence analgesic, which can be used for hemoptysis, hematemesis and another traumatic bleeding, and it is known as "A miracle hemostatic medicine". Studies show that the chemical composition of PN is relatively comprehensive, however, its hemostatic active ingredients have not been fully clarified. AIM OF STUDY: This study aimed to clarify the hemostatic effective components group (HECG) of PN, provide a foundation for the assessment of PN's quality and its comprehensive development, and for further studies on the pharmacodynamic material basis of other Traditional Chinese Medicines (TCMs). MATERIALS AND METHODS: UPLC-MS was used to establish the fingerprint and identify the common peaks in 44 batches of PN extracts (PNE). In addition, the plasma recalcification time and in vitro coagulation time were measured. For spectrum-effect analysis, bivariate correlation analysis (BCA) and partial least squares regression analysis (PLSR) were used to screen the hemostasis candidate active monomers of PN. The monomers were prepared by combining several preparative chromatography techniques. The efficacy was verified by plasma recalcification time, in vitro coagulation time, and a rat model of gastric hemorrhage. RESULTS: A total of 30 common peaks and hemostatic efficacy indexes of 44 batches of PNE were obtained. A total of 18 components were positively correlated with the comprehensive coagulation index by two statistical methods. Six and eleven monomers were obtained respectively by chromatographic preparation and procurement, and one monomer was eliminated due to preparation difficulty and other reasons. Seven active monomers with direct hemostatic effect and one active monomer with synergistic hemostatic effect were screened through plasma recalcification time, and their combinations were used as candidate HECG for hemostatic effect verification. The results of in vitro experiments showed that plasma recalcification time and in vitro coagulation time were significantly reduced (P < 0.05) in the HECG group, compared to the PNE group. The results of in vivo experiment also indicated that the hemostatic effect of HECG was comparable to that of PNE and PN powder. CONCLUSION: The composition and efficacy of the HECG of PN were screened and verified using the spectral correlation method and in vivo and in vitro efficacy verification; the HECG included Dencichine, Ginsenoside Rg1, Ginsenoside Rd, Ginsenoside Rh1, Ginsenoside F1, Notoginsenoside R1, Notoginsenoside Ft1 and Notoginsenoside Fe. These results laid a foundation for the quality evaluation of PN and provided a reference for the basic research of pharmacodynamic material basis of other TCMs.


Assuntos
Ginsenosídeos , Hemostáticos , Panax notoginseng , Panax , Saponinas , Ratos , Animais , Ginsenosídeos/farmacologia , Panax notoginseng/química , Hemostáticos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Hemostasia , Cromatografia Líquida de Alta Pressão/métodos , Panax/química , Saponinas/farmacologia
11.
J Chromatogr A ; 1709: 464378, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37741221

RESUMO

In this study, an online preparative high-performance liquid chromatography (prep-HPLC) system based on the combination of the enrichment and purification modes for the efficient and systematic separation of Panax notoginseng saponins (PNS) was achieved. Five separation columns were used for the first and second separation of target components, eighteen trap columns were used to capture the effluents from the first separation or loading the trapped sample effluents, and a two-position eight-port valve was used to switch between the first and second separations. The conditions for the first and second separation of PNS were simulated and optimized with the online prep-HPLC system. Then, the PNS were separated using optimized chromatographic conditions. Notably, 14 monomer compounds with >90% purity (11 compounds with purity >97%) were simultaneously isolated from PNS using the above self-developed device, and their chemical structures were identified. Moreover, the separation time was less than 33.0 h. After 6 repeated enrichment and purification, the weight of each compound obtained was more than 5.0 mg, with compound 2 weighing over 900 mg. In brief, the self-developed prep-HPLC system, which integrated enrichment and purification, is suitable for the efficient and systematic separation of PNS and has broad application prospects, especially for the separation of complex chemical components in natural products.


Assuntos
Panax notoginseng , Saponinas , Cromatografia Líquida de Alta Pressão/métodos , Saponinas/análise , Panax notoginseng/química
12.
Phytomedicine ; 119: 154978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37549538

RESUMO

BACKGROUND: Microbiomes and their host plants are closely linked with each other; for example, the microbiome affects plant growth, fitness, nutrient uptake, stress tolerance and pathogen resistance, whereas the host plant supports the photosynthetically carbon-rich nutrition of the microbiome. The importance of the microbiome in plant‒soil ecosystems is unquestioned and has expanded to influence the medicinal application of some herbal plants via the gut microbiota. PURPOSE: Herbal plant-microbiome interactions may provide novel knowledge to enhance the robustness of herbal plant crop performance and medicinal applications, which requires a systematic review and preceding discussion. STUDY DESIGN AND METHODS: The interactions between Panax notoginseng and microorganisms (from soil to host) were reviewed from the literature. The terms "Panax notoginseng" and "microbiota" were used in combination with the keywords "microbiota/microbes", "bacteria/bacterium" or "fungi/fungus" or "endophyte", as well as our targeted bioactive phytochemicals, including saponins and ginsenosides. RESULT: Our study focuses on the famous medicinal herb Panax notoginseng F. H. Chen and proposes that the microbiota is a crucial participant not only in the cultivation of this herbal plant but also in its medicinal application. We also summarize and discuss how these plant‒microbe co-associations shape the assembly of plant-related microbiomes and produce bioactive phytochemicals, as well as influence beneficial herbal traits, such as herbal plant health and pharmacology. In addition, we also highlight future directions. CONCLUSION: The rhizosphere and endophytic microbiome of Panax notoginseng are indirectly or directly involved in plant health, biomass production, and the synthesis/biotransformation of plant secondary metabolites. Harnessing the microbiome to improve the quality of traditional Chinese medicine and improve the value of medicinal plants for human health is highly promising.


Assuntos
Microbioma Gastrointestinal , Panax notoginseng , Panax , Plantas Medicinais , Saponinas , Humanos , Panax notoginseng/química , Ecossistema , Saponinas/farmacologia , Plantas Medicinais/metabolismo , Compostos Fitoquímicos , Panax/química
13.
Sheng Li Xue Bao ; 75(4): 503-511, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37583037

RESUMO

In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.


Assuntos
Hipertensão Pulmonar , Panax notoginseng , Hipertensão Arterial Pulmonar , Saponinas , Animais , Masculino , Ratos , Caspase 3/metabolismo , Colágeno , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Monocrotalina/efeitos adversos , Panax notoginseng/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Artéria Pulmonar/metabolismo , Ratos Sprague-Dawley , Receptor Notch3/genética , RNA Mensageiro , Solução Salina , Transdução de Sinais , Saponinas/farmacologia
14.
Phytother Res ; 37(10): 4690-4705, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37424151

RESUMO

Ulcerative colitis (UC) has emerged as a global healthcare issue due to high prevalence and unsatisfying therapeutic measures. 20(S)- Protopanaxadiol saponins (PDS) from Panax notoginseng with anti-inflammatory properties is a potential anti-colitis agent. Herein, we explored the effects and mechanisms of PDS administration on experimental murine UC. Dextran sulfate sodium-induced murine UC model was employed to investigate anti-colitis effects of PDS, and associated mechanisms were further verified in HMGB1-exposed THP-1 macrophages. Results indicated that PDS administration exerted ameliorative effects against experimental UC. Moreover, PDS administration remarkably downregulated mRNA expressions and productions of related pro-inflammatory mediators, and reversed elevated expressions of proteins related to NLRP3 inflammasome after colitis induction. Furthermore, administration with PDS also suppressed the expression and translocation of HMGB1, interrupting the downstream TLR4/NF-κB pathway. In vitro, ginsenoside CK and 20(S)-protopanaxadiol, the metabolites of PDS, exhibited greater potential in anti-inflammation, and intervened with the TLR4-binding domain of HMGB1 predictably. Expectedly, ginsenoside CK and 20(S)-protopanaxadiol administrations inhibited the activation of TLR4/NF-κB/NLRP3 inflammasome pathway in HMGB1-exposed THP-1 macrophages. Summarily, PDS administration attenuated inflammatory injury in experimental colitis by blocking the binding of HMGB1 to TLR4, majorly attributed to the antagonistic efficacies of ginsenoside CK and 20(S)-protopanaxadiol.


Assuntos
Colite Ulcerativa , Colite , Proteína HMGB1 , Panax notoginseng , Saponinas , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Saponinas/farmacologia , Panax notoginseng/química , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Colite/induzido quimicamente , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/efeitos adversos
15.
J Agric Food Chem ; 71(24): 9391-9403, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294034

RESUMO

Ginseng extracts are extensively used as raw materials for food supplements and herbal medicines. This study aimed to characterize ginsenosides obtained from six Panax plant extracts (Panax ginseng, red ginseng, Panax quinquefolius, Panax notoginseng, Panax japonicus, and Panax japonicus var. major) and compared them with their in vitro metabolic profiles mediated by rat intestinal microbiota. Ultrahigh-performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) with scheduled multiple reaction monitoring (sMRM) quantitation methods were developed to characterize and compare the ginsenoside composition of the different extracts. After in vitro incubation, 248 ginsenosides/metabolites were identified by UHPLC/IM-QTOF-MS in six biotransformed samples. Deglycosylation was determined to be the main metabolic pathway of ginsenosides, and protopanaxadiol-type and oleanolic acid-type saponins were easier to be easily metabolized. Compared with the ginsenosides in plant extracts, those remaining in six biotransformed samples were considerably fewer after biotransformation for 8 h. However, the compositional differences in four subtypes of the ginsenosides among the six Panax plants became more distinct.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos , Panax notoginseng , Ratos , Animais , Ginsenosídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida , Panax notoginseng/química , Extratos Vegetais/química
16.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298809

RESUMO

The quality of Panax Linn products available in the market is threatened by adulteration with different Panax species, such as Panax quinquefolium (PQ), Panax ginseng (PG), and Panax notoginseng (PN). In this paper, we established a 2D band-selective heteronuclear single quantum coherence (bs-HSQC) NMR method to discriminate species and detect adulteration of Panax Linn. The method involves selective excitation of the anomeric carbon resonance region of saponins and non-uniform sampling (NUS) to obtain high-resolution spectra in less than 10 min. The combined strategy overcomes the signal overlap limitation in 1H NMR and the long acquisition time in traditional HSQC. The present results showed that twelve well-separated resonance peaks can be assigned in the bs-HSQC spectra, which are of high resolution, good repeatability, and precision. Notably, the identification accuracy of species was found to be 100% for all tests conducted in the present study. Furthermore, in combination with multivariate statistical methods, the proposed method can effectively determine the composition proportion of adulterants (from 10% to 90%). Based on the PLS-DA models, the identification accuracy was greater than 80% when composition proportion of adulterants was 10%. Thus, the proposed method may provide a fast, practical, and effective analysis technique for food quality control or authenticity identification.


Assuntos
Panax notoginseng , Panax , Saponinas , Panax/química , Panax notoginseng/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética
17.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2059-2067, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282894

RESUMO

Panax notoginseng contains triterpene saponins, flavonoids, amino acids, polysaccharides, volatile oil and other active components, which have the effects of promoting blood circulation, stopping bleeding, removing blood stasis, etc. This study summarized the herbal research, chemical constituents and main pharmacological activities of P. notoginseng, and based on the theory of Q-markers of traditional Chinese medicine, predicted and analyzed the Q-markers of P. notoginseng from the aspects of plant kinship, efficacy, drug properties, measurability of chemical components, etc. It was found that ginsenosides Rg_1, Re, and Rb_1 with specific content ratio, ginsenosides Rb_2, Rb_3, Rc, Rd, Rh_2, and Rg_3, notoginseng R_1, dencichine and quercetin could be used as potential Q-markers of P. notoginseng, which facilitated the formulation of quality standards reflecting the efficacy of P. notoginseng.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Panax notoginseng , Panax , Saponinas , Panax notoginseng/química , Ginsenosídeos/farmacologia , Ginsenosídeos/análise , Saponinas/análise , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Panax/química
18.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175326

RESUMO

Response surface methodology (RSM) was used to determine the optimal conditions for ultrasound-assisted extraction (UAE) of Notoginsenoside Fc (Fc) from panax notoginseng leaves. The experiment utilized a Box-Behnken design (BBD) and separation conditions were optimized. The optimum extraction conditions were as follows: extraction time = 1.5 h, ethanol concentration = 86%, liquid-to-solid ratio = 19:1. The experimentally obtained values were in accordance with the values predicted by the RSM model. We determined that the RSM model was able to successfully simulate the optimal extraction of Fc from the leaves. Further, Fc was enriched from Panax notoginseng through nine macroporous resins, and HPD-100 macroporous resins were selected for preliminary enrichment of Fc due to its economic costs and benefits. Subsequently, octadecyl silane (ODS) column chromatography was used to improve the purity of Fc to over 90% after separation by ODS column chromatography. Fc with a purity greater than 95% can be obtained by recrystallization. This is the first study that has focused on the extraction and enrichment of Fc from Panax notoginseng leaves using macroporous resin combined with ODS column chromatography, which provides the possibility for further application of Fc.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Panax notoginseng , Panax , Panax notoginseng/química , Ginsenosídeos/análise , Folhas de Planta/química , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão
19.
Fitoterapia ; 168: 105541, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178809

RESUMO

Three undescribed dammarane-type triterpene saponins, 20(S)-sanchirhinoside A7-A9 (1-3), together with seventeen known ones, were isolated from the roots of Panax notoginseng (Burk.) F. H. Chen. The chemical structures of the new compounds were determined by HR-MS and NMR experiments along with chemical methods. To the best of our knowledge, compound 1 was the firstly reported fucose-containing triterpene saponin from plants in the genus of Panax. Moreover, the in vitro neuroprotective effects of the isolated compounds were evaluated. Compounds 11-12 displayed remarkable protective effects against PC12 cells injured by 6-hydroxydopamine.


Assuntos
Fármacos Neuroprotetores , Panax notoginseng , Panax , Saponinas , Triterpenos , Ratos , Animais , Saponinas/farmacologia , Saponinas/química , Panax notoginseng/química , Fármacos Neuroprotetores/farmacologia , Estrutura Molecular , Triterpenos/farmacologia , Triterpenos/química , Panax/química , Damaranos
20.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1203-1211, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005804

RESUMO

To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.


Assuntos
Panax notoginseng , Panax , Saponinas , Panax notoginseng/química , Antioxidantes/farmacologia , Saponinas/farmacologia , Glutationa , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA