Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Int J Mol Sci ; 25(20)2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39456772

RESUMO

Individuals with pancreatic-related health conditions usually show lower diversity and different composition of bacterial and viral species between the gut and oral microbiomes compared to healthy individuals. We performed a thorough microbiome analysis, using deep shotgun sequencing of stool and saliva samples obtained from patients with chronic pancreatitis (CP), pancreatic ductal adenocarcinoma (PDAC), and healthy controls (HCs).We observed similar microbiota composition at the species level in both the gut and oral samples in PDAC patients compared to HCs, among which the most distinctive finding was that the abundance of oral-originated Fusobacterium nucleatum species did not differ between the oral and the gut samples. Moreover, comparing PDAC patients with HCs, Klebsiella oxytoca was significantly more abundant in the stool samples of PDAC patients, while Streptococcus spp. showed higher abundance in both the oral and stool samples of PDAC patients. Finally, the most important finding was the distinctive gut phage-bacterial interactome pattern among PDAC patients. CrAssphages, particularly Blohavirus, showed mutual exclusion with K. oxytoca species, while Burzaovirus showed co-occurrence with Enterobacteriaceae spp., which have been shown to be capable of inducing DNA damage in human pancreatic cells ex vivo. The interactome findings warrant further mechanistic studies, as our findings may provide new insights into developing microbiota-based diagnostic and therapeutic methods for pancreatic diseases.


Assuntos
Bacteriófagos , Fezes , Microbioma Gastrointestinal , Metagenômica , Humanos , Metagenômica/métodos , Bacteriófagos/genética , Fezes/microbiologia , Neoplasias Pancreáticas/microbiologia , Neoplasias Pancreáticas/metabolismo , Masculino , Boca/microbiologia , Saliva/microbiologia , Saliva/metabolismo , Feminino , Pessoa de Meia-Idade , Carcinoma Ductal Pancreático/microbiologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/virologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Metagenoma , Pancreatite Crônica/microbiologia , Pancreatite Crônica/metabolismo , Pancreatite Crônica/virologia , Pancreatopatias/microbiologia , Pancreatopatias/metabolismo , Pancreatopatias/virologia , Idoso , Microbiota/genética , Adulto
2.
J Gastroenterol ; 59(11): 1037-1051, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39145797

RESUMO

BACKGROUND: Pancreatic fibrosis is the main pathological feature of chronic pancreatitis. There is a lack of medications that effectively alleviate or reverse pancreatic fibrosis and thus cure chronic pancreatitis. METHODS: We screened drugs that could alleviate pancreatic fibrosis from 80 traditional Chinese medicine monomers and verified their efficacy and mechanisms. RESULTS: We preliminarily identified corynoline as an antifibrotic candidate by drug screening among 80 compounds. In vitro, corynoline dose-dependently reduces collagen I synthesis in pancreatic stellate cells induced by TGF-ß1 and inhibits its activation. Furthermore, we found that corynoline could alleviate the morphological disruption, such as acinar cell atrophy, collagen deposition etc., as well as reduced pancreatic weight in mice with chronic pancreatitis. We further validated the antifibrotic effect of corynoline in mRNA and protein levels. We also found that corynoline could inhibit NF-κB signaling pathway in vitro and in vivo. Next, we identified PSMA2 as the binding protein of corynoline by Lip-SMap and validated it using DARTS. Moreover, the siRNA of PSMA2 disrupts the anti-fibrotic effect of corynoline. CONCLUSION: In conclusion, corynoline is a promising agent for the treatment of pancreatic fibrosis and chronic pancreatitis.


Assuntos
Fibrose , Pâncreas , Células Estreladas do Pâncreas , Pancreatite Crônica , Transdução de Sinais , Animais , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/patologia , Pancreatite Crônica/metabolismo , Camundongos , Masculino , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Humanos , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética
3.
Adv Sci (Weinh) ; 11(38): e2402550, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39119875

RESUMO

Chronic pancreatitis (CP) is a complex disease with genetic and environmental factors at play. Through trio exome sequencing, a de novo SEC16A frameshift variant in a Chinese teenage CP patient is identified. Subsequent targeted next-generation sequencing of the SEC16A gene in 1,061 Chinese CP patients and 1,196 controls reveals a higher allele frequency of rare nonsynonymous SEC16A variants in patients (4.90% vs 2.93%; odds ratio [OR], 1.71; 95% confidence interval [CI], 1.26-2.33). Similar enrichments are noted in a French cohort (OR, 2.74; 95% CI, 1.67-4.50) and in a biobank meta-analysis (OR, 1.16; 95% CI, 1.04-1.31). Notably, Chinese CP patients with SEC16A variants exhibit a median onset age 5 years earlier than those without (40.0 vs 45.0; p = 0.012). Functional studies using three CRISPR/Cas9-edited HEK293T cell lines show that loss-of-function SEC16A variants disrupt coat protein complex II (COPII) formation, impede secretory protein vesicles trafficking, and induce endoplasmic reticulum (ER) stress due to protein overload. Sec16a+/- mice, which demonstrate impaired zymogen secretion and exacerbated ER stress compared to Sec16a+/+, are further generated. In cerulein-stimulated pancreatitis models, Sec16a+/- mice display heightened pancreatic inflammation and fibrosis compared to wild-type mice. These findings implicate a novel pathogenic mechanism predisposing to CP.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Pancreatite Crônica , Adolescente , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , China , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Predisposição Genética para Doença/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/genética , Células HEK293 , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo
4.
Cell Mol Gastroenterol Hepatol ; 18(5): 101389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39128653

RESUMO

BACKGROUND & AIMS: The apical-basal polarity of pancreatic acinar cells is essential for maintaining tissue architecture. However, the mechanisms by which polarity proteins regulate acinar pancreas injury and regeneration are poorly understood. METHODS: Cerulein-induced pancreatitis was induced in mice with conditional deletion of the polarity protein Par3 in the pancreas. The impact of Par3 loss on pancreas injury and regeneration was assessed by histologic analyses and transcriptional profiling by RNA sequencing. Mice were pretreated with the bromodomain and extraterminal domain (BET) inhibitor JQ1 before cotreatment with cerulein to determine the effect of BET inhibition on pancreas injury and regeneration. RESULTS: Initially, we show that Par3 is increased in acinar-ductal metaplasia (ADM) lesions present in human and mouse chronic pancreatitis specimens. Although Par3 loss disrupts tight junctions, Par3 is dispensable for pancreatogenesis. However, with aging, Par3 loss results in low-grade inflammation, acinar degeneration, and pancreatic lipomatosis. Par3 loss exacerbates acute pancreatitis-induced injury and chronic pancreatitis-induced acinar cell loss, promotes pancreatic lipomatosis, and prevents regeneration. Par3 loss also results in suppression of chronic pancreatitis-induced ADM and primary ciliogenesis. Notably, targeting BET proteins attenuates chronic pancreatitis-induced loss of primary cilia and promotes ADM in mice lacking pancreatic Par3. Targeting BET proteins also attenuates cerulein-induced acinar cell loss and enhances recovery of acinar cell mass and body weight of mice lacking pancreatic Par3. CONCLUSIONS: Combined, this study demonstrates how Par3 restrains chronic pancreatitis-induced changes in the pancreas and identifies a potential role for BET inhibitors to attenuate pancreas injury and facilitate regeneration.


Assuntos
Células Acinares , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Metaplasia , Pancreatite Crônica , Animais , Camundongos , Células Acinares/patologia , Células Acinares/metabolismo , Células Acinares/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Pancreatite Crônica/patologia , Pancreatite Crônica/metabolismo , Pancreatite Crônica/induzido quimicamente , Metaplasia/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Humanos , Ceruletídeo , Triazóis/farmacologia , Azepinas/farmacologia , Modelos Animais de Doenças , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Regeneração/efeitos dos fármacos , Masculino , Camundongos Knockout
5.
Int J Mol Sci ; 25(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39201422

RESUMO

Chronic pancreatitis (CP) in young individuals may lead to disease-related secondary sarcopenia (SSARC), characterized by muscle loss and systemic inflammation. In this study, CP was induced in young pigs, and serum levels of key hormones, muscle fiber diameters in various muscles, and the mRNA expression of genes related to oxidative stress and programmed cell death were assessed. A decrease in muscle fiber diameters was observed in SSARC pigs, particularly in the longissimus and diaphragm muscles. Hormonal analysis revealed alterations in dehydroepiandrosterone, testosterone, oxytocin, myostatin, and cortisol levels, indicating a distinct hormonal response in SSARC pigs compared to controls. Oxytocin levels in SSARC pigs were significantly lower and myostatin levels higher. Additionally, changes in the expression of catalase (CAT), caspase 8 (CASP8), B-cell lymphoma 2 (BCL2), and BCL2-associated X protein (BAX) mRNA suggested a downregulation of oxidative stress response and apoptosis regulation. A reduced BAX/BCL2 ratio in SSARC pigs implied potential caspase-independent cell death pathways. The findings highlight the complex interplay between hormonal changes and muscle degradation in SSARC, underscoring the need for further research into the apoptotic and inflammatory pathways involved in muscle changes due to chronic organ inflammation in young individuals.


Assuntos
Modelos Animais de Doenças , Estresse Oxidativo , Pancreatite Crônica , Sarcopenia , Animais , Sarcopenia/metabolismo , Sarcopenia/patologia , Suínos , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Pancreatite Crônica/genética , Apoptose , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Masculino
6.
Mol Ther ; 32(8): 2624-2640, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38956871

RESUMO

Chronic pancreatitis (CP) is marked by progressive fibrosis and the activation of pancreatic stellate cells (PSCs), accompanied by the destruction of pancreatic parenchyma, leading to the loss of acinar cells (ACs). Few research studies have explored the mechanism by which damaged ACs (DACs) contribute to PSCs activation and pancreatic fibrosis. Currently, there are no effective drugs for curing CP or limiting the progression of pancreatic fibrosis. In this research, co-culture with intact acinar cells (IACs) suppressed PSC activation, while co-culture with DACs did the opposite. Krüppel-like factor 4 (KLF4) was significantly upregulated in DACs and was established as the key molecule that switches ACs from PSCs-suppressor to PSCs-activator. We revealed the exosomes of IACs contributed to the anti-activated function of IACs-CS on PSCs. MiRNome profiling showed that let-7 family is significantly enriched in IAC-derived exosomes (>30% miRNome), which partially mediates IACs' suppressive impacts on PSCs. Furthermore, it has been observed that the enrichment of let-7 in exosomes was influenced by the expression level of KLF4. Mechanistic studies demonstrated that KLF4 in ACs upregulated Lin28A, thereby decreasing let-7 levels in AC-derived exosomes, and thus promoting PSCs activation. We utilized an adeno-associated virus specifically targeting KLF4 in ACs (shKLF4-pAAV) to suppress PSCs activation in CP, resulting in reduced pancreatic fibrosis. IAC-derived exosomes hold potential as potent weapons against PSCs activation via let-7s, while activated KLF4/Lin28A signaling in DACs diminished such functions. ShKLF4-pAAV holds promise as a novel therapeutic approach for CP.


Assuntos
Células Acinares , Exossomos , Fibrose , Fator 4 Semelhante a Kruppel , MicroRNAs , Células Estreladas do Pâncreas , Pancreatite Crônica , Fator 4 Semelhante a Kruppel/metabolismo , Animais , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Exossomos/metabolismo , Pancreatite Crônica/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , MicroRNAs/genética , Células Acinares/metabolismo , Células Acinares/patologia , Dependovirus/genética , Camundongos , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Masculino , Técnicas de Cocultura , Pâncreas/metabolismo , Pâncreas/patologia , Terapia Genética/métodos
7.
Am J Pathol ; 194(10): 1879-1897, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39032603

RESUMO

In healthy pancreas, pancreatic stellate cells (PaSCs) synthesize the basement membrane, which is mainly composed of type IV collagen and laminin. In chronic pancreatitis (CP), PaSCs are responsible for the production of a rigid extracellular matrix (ECM) that is mainly composed of fibronectin and type I/III collagen. Reactive oxygen species evoke the formation of the rigid ECM by PaSCs. One source of reactive oxygen species is NADPH oxidase (Nox) enzymes. Nox1 up-regulates the expression of Twist1 and matrix metalloproteinase-9 (MMP-9) in PaSCs from mice with CP. This study determined the functional relationship between Twist1 and MMP-9, and other PaSC-produced proteins, and the extent to which Twist1 regulates digestion of ECM proteins in CP. Twist1 induced the expression of MMP-9 in mouse PaSCs. The action of Twist1 was not selective to MMP-9 because Twist1 induced the expression of types I and IV collagen, fibronectin, transforming growth factor, and α-smooth muscle actin. Luciferase assay indicated that Twist1 in human primary PaSCs increased the expression of MMP-9 at the transcriptional level in an NF-κB dependent manner. The digestion of type I/III collagen by MMP-9 secreted by PaSCs from mice with CP depended on Twist1. Thus, Twist1 in PaSCs from mice with CP induced rigid ECM production and MMP-9 transcription in an NF-κB-dependent mechanism that selectively displayed proteolytic activity toward type I/III collagen.


Assuntos
Metaloproteinase 9 da Matriz , Células Estreladas do Pâncreas , Pancreatite Crônica , Proteína 1 Relacionada a Twist , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Matriz Extracelular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Proteína 1 Relacionada a Twist/metabolismo , Feminino
8.
Eur J Intern Med ; 128: 112-118, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38871564

RESUMO

AIMS: Chronic pancreatitis (CP) is - along with acute pancreatitis - the most frequent cause of diabetes of the exocrine pancreas (DEP). Although insulin deficiency is widely accepted as the major feature of DEP, it is still unclear whether diabetes associated with CP is characterized by additional or different functional defects of the insulin secretory machinery. To identify possible functional defects specifically induced by CP, we performed a cross-sectional study in individuals with normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and diabetes mellitus (DM) comparing patients with and without CP (CP vs. NCP). METHODS: We administered an oral glucose tolerance test (OGTT) to all participants and, according to their glucose tolerance, classified them as NGT, IGT and DM. Insulin sensitivity and beta-cell functional parameters were derived from OGTT, hyperglycemic clamp and hyperinsulinemic euglycemic clamp. RESULTS: Studying 146 subjects, we found that beta-cell function and insulin secretion were significantly lower in CP compared to NCP patients. However, when we classified the subjects according to OGTT-derived glucose tolerance, we found no differences in beta-cell function or in insulin sensitivity between CP and NCP with the same glucose tolerance status. Of note, we found that arginine-stimulated insulin secretion is reduced only in subjects with CP and DM compared to NCP subjects with DM. CONCLUSIONS: Patients with CP had no specific alterations in insulin secretion and beta-cell function. However, in patients diagnosed with diabetes, we found a lower arginine-stimulated insulin secretion, a marker of reduced functional mass.


Assuntos
Glicemia , Intolerância à Glucose , Teste de Tolerância a Glucose , Resistência à Insulina , Células Secretoras de Insulina , Insulina , Pancreatite Crônica , Humanos , Pancreatite Crônica/metabolismo , Masculino , Células Secretoras de Insulina/metabolismo , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Intolerância à Glucose/metabolismo , Insulina/metabolismo , Insulina/sangue , Glicemia/metabolismo , Técnica Clamp de Glucose , Secreção de Insulina , Idoso , Diabetes Mellitus/metabolismo
9.
Clin Transl Med ; 14(6): e1733, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877637

RESUMO

BACKGROUND AND AIMS: Smoking is recognised as an independent risk factor in the development of chronic pancreatitis (CP). Cystic fibrosis transmembrane conductance regulator (CFTR) function and ductal fluid and bicarbonate secretion are also known to be impaired in CP, so it is crucial to understand the relationships between smoking, pancreatic ductal function and the development of CP. METHODS: We measured sweat chloride (Cl-) concentrations in patients with and without CP, both smokers and non-smokers, to assess CFTR activity. Serum heavy metal levels and tissue cadmium concentrations were determined by mass spectrometry in smoking and non-smoking patients. Guinea pigs were exposed to cigarette smoke, and cigarette smoke extract (CSE) was prepared to characterise its effects on pancreatic HCO3 - and fluid secretion and CFTR function. We administered cerulein to both the smoking and non-smoking groups of mice to induce pancreatitis. RESULTS: Sweat samples from smokers, both with and without CP, exhibited elevated Cl- concentrations compared to those from non-smokers, indicating a decrease in CFTR activity due to smoking. Pancreatic tissues from smokers, regardless of CP status, displayed lower CFTR expression than those from non-smokers. Serum levels of cadmium and mercury, as well as pancreatic tissue cadmium, were increased in smokers. Smoking, CSE, cadmium, mercury and nicotine all hindered fluid and HCO3 - secretion and CFTR activity in pancreatic ductal cells. These effects were mediated by sustained increases in intracellular calcium ([Ca2+]i), depletion of intracellular ATP (ATPi) and mitochondrial membrane depolarisation. CONCLUSION: Smoking impairs pancreatic ductal function and contributes to the development of CP. Heavy metals, notably cadmium, play a significant role in the harmful effects of smoking. KEY POINTS: Smoking and cigarette smoke extract diminish pancreatic ductal fluid and HCO3 - secretion as well as the expression and function of CFTR Cd and Hg concentrations are significantly higher in the serum samples of smokers Cd accumulates in the pancreatic tissue of smokers.


Assuntos
Metais Pesados , Pancreatite Crônica , Humanos , Pancreatite Crônica/metabolismo , Pancreatite Crônica/induzido quimicamente , Animais , Metais Pesados/metabolismo , Masculino , Camundongos , Feminino , Pessoa de Meia-Idade , Cobaias , Adulto , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fumar/efeitos adversos , Fumar/metabolismo , Modelos Animais de Doenças
10.
Sci Adv ; 10(23): eadk3081, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848367

RESUMO

Clinical outcomes for total-pancreatectomy followed by intraportal islet autotransplantation (TP-IAT) to treat chronic pancreatitis (CP) are suboptimal due to pancreas inflammation, oxidative stress during islet isolation, and harsh engraftment conditions in the liver's vasculature. We describe a thermoresponsive, antioxidant macromolecule poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) to protect islet redox status and function and to enable extrahepatic omentum islet engraftment. PPCN solution transitions from a liquid to a hydrogel at body temperature. Islets entrapped in PPCN and exposed to oxidative stress remain functional and support long-term euglycemia, in contrast to islets entrapped in a plasma-thrombin biologic scaffold. In the nonhuman primate (NHP) omentum, PPCN is well-tolerated and mostly resorbed without fibrosis at 3 months after implantation. In NHPs, autologous omentum islet transplantation using PPCN restores normoglycemia with minimal exogenous insulin requirements for >100 days. This preclinical study supports TP-IAT with PPCN in patients with CP and highlights antioxidant properties as a mechanism for islet function preservation.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Omento , Estresse Oxidativo , Transplante das Ilhotas Pancreáticas/métodos , Omento/metabolismo , Animais , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácido Cítrico/farmacologia , Humanos , Antioxidantes/farmacologia , Pancreatite Crônica/metabolismo , Pancreatite Crônica/cirurgia , Pancreatite Crônica/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Masculino , Transição de Fase
11.
Biomed Pharmacother ; 177: 116977, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901203

RESUMO

BACKGROUND: Pancreatic cancer (PanCa), ranked as the 4th leading cause of cancer-related death worldwide, exhibits an dismal 5-year survival rate of less than 5 %. Chronic pancreatitis (CP) is a known major risk factor for PanCa. Brusatol (BRT) possesses a wide range of biological functions, including the inhibition of PanCa proliferation. However, its efficacy in halting the progression from CP to pancreatic carcinogenesis remains unexplored. METHODS: We assess the effects of BRT against pancreatic carcinogenesis from CP using an experimentally induced CP model with cerulein, and further evaluate the therapeutic efficacy of BRT on PanCa by employing Krastm4TyjTrp53tm1BrnTg (Pdx1-cre/Esr1*) #Dam/J (KPC) mouse model. RESULTS: Our finding demonstrated that BRT mitigated the severity of cerulein-induced pancreatitis, reduced pancreatic fibrosis and decreased the expression of α-smooth muscle actin (α-SMA), which is a biomarker for pancreatic fibrosis. In addition, BRT exerted effects against cerulein-induced pancreatitis via inactivation of NLRP3 inflammasome. Moreover, BRT significantly inhibited tumor growth and impeded cancer progression. CONCLUSIONS: The observed effect of BRT on impeding pancreatic carcinogenesis through targeting NLRP3 inflammasome suggests its good potential as a potential agent for treatment of PanCa.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Neoplasias Pancreáticas , Pancreatite Crônica , Animais , Masculino , Camundongos , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinogênese/genética , Ceruletídeo , Modelos Animais de Doenças , Fibrose , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Pancreatite Crônica/patologia , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pancreatite Crônica/genética , Quassinas , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
12.
Pancreas ; 53(9): e760-e773, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710022

RESUMO

OBJECTIVES: Diabetes secondary to chronic pancreatitis (CP) presents clinical challenges due to lack of understanding on factor(s) triggering insulin secretory defects. Therefore, we aimed to delineate the molecular mechanism of ß-cell dysfunction in CP. MATERIALS AND METHODS: Transcriptomic analysis was conducted to identify endocrine-specific receptor expression in mice and human CP on microarray. The identified receptor (NR4A1) was overexpressed in MIN6 cells using PEI linear transfection. RNA-Seq analysis of NR4A1-overexpressed (OE) MIN6 cells on NovaSeq6000 identified aberrant metabolic pathways. Upstream trigger for NR4A1OE was studied by InBio Discover and cytokine exposure, whereas downstream effect was examined by Fura2 AM-based fluorimetric and imaging studies. Mice with CP were treated with IFN-γ-neutralizing monoclonal antibodies to assess NR4A1 expression and insulin secretion. RESULTS: Increased expression of NR4A1 associated with decreased insulin secretion in islets (humans: controls 9 ± 0.2, CP 3.7 ± 0.2, mice: controls 8.5 ± 0.2, CP 2.1 ± 0.1 µg/L). NR4A1OE in MIN6 cells (13.2 ± 0.1) showed reduction in insulin secretion (13 ± 5 to 0.2 ± 0.1 µg/mg protein per minute, P = 0.001) and downregulation of calcium and cAMP signaling pathways. IFN-γ was identified as upstream signal for NR4A1OE in MIN6. Mice treated with IFN-γ-neutralizing antibodies showed decreased NR4A1 expression 3.4 ± 0.11-fold ( P = 0.03), showed improved insulin secretion (4.4 ± 0.2-fold, P = 0.01), and associated with increased Ca 2+ levels (2.39 ± 0.06-fold, P = 0.009). CONCLUSIONS: Modulating NR4A1 expression can be a promising therapeutic strategy to improve insulin secretion in CP.


Assuntos
Modelos Animais de Doenças , Secreção de Insulina , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Pancreatite Crônica , Animais , Pancreatite Crônica/metabolismo , Pancreatite Crônica/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Humanos , Camundongos , Masculino , Células Secretoras de Insulina/metabolismo , Camundongos Endogâmicos C57BL , Insulina/metabolismo , Interferon gama/metabolismo , Linhagem Celular
13.
Nat Commun ; 15(1): 4099, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816352

RESUMO

Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Fator Regulador 3 de Interferon , Interleucina-33 , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinases , Quinolinas , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inflamação/prevenção & controle , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interleucina-33/efeitos dos fármacos , Interleucina-33/metabolismo , Ácido Mevalônico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Pancreáticas/prevenção & controle , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Pancreatite Crônica/prevenção & controle , Pancreatite Crônica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
14.
Pancreas ; 53(7): e595-e602, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696350

RESUMO

OBJECTIVE: This study primarily aimed to assess the expression of MUC4 in patients with pancreatic ductal adenocarcinoma (PDAC) as compared with controls and assess its clinical relevance. MATERIALS AND METHODS: Serum MUC4 levels and MUC4 gene expression in snap-frozen tissue were analyzed through surface plasmon resonance and quantitative polymerase chain reaction, respectively. Tumor tissues and control tissues were analyzed for MUC4 and other mucins through immunohistochemistry. RESULT: MUC4 expression in tumor tissue was found to be significantly elevated in PDAC patients as compared with chronic pancreatitis tissues and normal pancreatic tissues. Periampullary carcinoma and cholangiocarcinoma tissue also showed increased expression of MUC4 and other mucins. CONCLUSIONS: Differential expression of MUC4 in pancreatic tumor tissues can help to differentiate PDAC from benign conditions.


Assuntos
Carcinoma Ductal Pancreático , Colangiocarcinoma , Imuno-Histoquímica , Mucina-4 , Neoplasias Pancreáticas , Humanos , Mucina-4/metabolismo , Mucina-4/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/diagnóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/sangue , Adulto , Pancreatite Crônica/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/diagnóstico , Pancreatite Crônica/sangue , Estudos de Casos e Controles , Ampola Hepatopancreática/metabolismo , Ampola Hepatopancreática/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias do Ducto Colédoco/metabolismo , Neoplasias do Ducto Colédoco/genética , Neoplasias do Ducto Colédoco/diagnóstico , Neoplasias do Ducto Colédoco/patologia , Relevância Clínica
15.
Am J Physiol Endocrinol Metab ; 326(6): E856-E868, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656128

RESUMO

Chronic pancreatitis (CP) is a progressive inflammatory disease with an increasing global prevalence. In recent years, a strong association between CP and metabolic bone diseases (MBDs), especially osteoporosis, has been identified, attracting significant attention in the research field. Epidemiological data suggest a rising trend in the incidence of MBDs among CP patients. Notably, recent studies have highlighted a profound interplay between CP and altered nutritional and immune profiles, offering insights into its linkage with MBDs. At the molecular level, CP introduces a series of biochemical disturbances that compromise bone homeostasis. One critical observation is the disrupted metabolism of vitamin D and vitamin K, both essential micronutrients for maintaining bone integrity, in CP patients. In this review, we provide physio-pathological perspectives on the development and mechanisms of CP-related MBDs. We also outline some of the latest therapeutic strategies for treating patients with CP-associated MBDs, including stem cell transplantation, monoclonal antibodies, and probiotic therapy. In summary, CP-associated MBDs represent a rising medical challenge, involving multiple tissues and organs, complex disease mechanisms, and diverse treatment approaches. More in-depth studies are required to understand the complex interplay between CP and MBDs to facilitate the development of more specific and effective therapeutic approaches.


Assuntos
Doenças Ósseas Metabólicas , Pancreatite Crônica , Humanos , Pancreatite Crônica/epidemiologia , Pancreatite Crônica/metabolismo , Pancreatite Crônica/complicações , Doenças Ósseas Metabólicas/epidemiologia , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/metabolismo , Vitamina D/metabolismo , Vitamina D/uso terapêutico , Vitamina K/metabolismo , Animais
16.
Sci Rep ; 14(1): 9382, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654064

RESUMO

Acute Pancreatitis (AP) is associated with high mortality and current treatment options are limited to supportive care. We found that blockade of activin A (activin) in mice improves outcomes in two murine models of AP. To test the hypothesis that activin is produced early in response to pancreatitis and is maintained throughout disease progression to stimulate immune cells, we first performed digital spatial profiling (DSP) of human chronic pancreatitis (CP) patient tissue. Then, transwell migration assays using RAW264.7 mouse macrophages and qPCR analysis of "neutrophil-like" HL-60 cells were used for functional correlation. Immunofluorescence and western blots on cerulein-induced pancreatitis samples from pancreatic acinar cell-specific Kras knock-in (Ptf1aCreER™; LSL-KrasG12D) and functional WT Ptf1aCreER™ mouse lines mimicking AP and CP to allow for in vivo confirmation. Our data suggest activin promotes neutrophil and macrophage activation both in situ and in vitro, while pancreatic activin production is increased as early as 1 h in response to pancreatitis and is maintained throughout CP in vivo. Taken together, activin is produced early in response to pancreatitis and is maintained throughout disease progression to promote neutrophil and macrophage activation.


Assuntos
Ativinas , Movimento Celular , Macrófagos , Ativação de Neutrófilo , Pancreatite , Transdução de Sinais , Animais , Ativinas/metabolismo , Camundongos , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Pancreatite/metabolismo , Pancreatite/patologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Modelos Animais de Doenças , Células RAW 264.7 , Ativação de Macrófagos , Células HL-60 , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Masculino
18.
Pancreas ; 53(5): e416-e423, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530954

RESUMO

OBJECTIVES: Chronic pancreatitis (CP) is an inflammatory disease affecting the absorption of fat-soluble nutrients. Signaling in pancreatic cells that lead to inflammation may be influenced by fatty acids (FAs) through diet and de novo lipogenesis. Here, we investigated the relationship between plasma FA composition in CP with heterogeneity of etiology and complications of CP. MATERIALS AND METHODS: Blood and clinical parameters were collected from subjects with CP (n = 47) and controls (n = 22). Plasma was analyzed for FA composition using gas chromatography and compared between controls and CP and within CP. RESULTS: Palmitic acid increased, and linoleic acid decreased in CP compared with controls. Correlations between age or body mass index and FAs are altered in CP compared with controls. Diabetes, pancreatic calcifications, and substance usage, but not exocrine pancreatic dysfunction, were associated with differences in oleic acid and linoleic acid relative abundance in CP. De novo lipogenesis index was increased in the plasma of subjects with CP compared with controls and in calcific CP compared with noncalcific CP. CONCLUSIONS: Fatty acids that are markers of de novo lipogenesis and linoleic acid are dysregulated in CP depending on the etiology or complication. These results enhance our understanding of CP and highlight potential pathways targeting FAs for treating CP.


Assuntos
Ácidos Graxos , Ácido Linoleico , Pancreatite Crônica , Humanos , Projetos Piloto , Pancreatite Crônica/sangue , Pancreatite Crônica/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Ácidos Graxos/sangue , Ácido Linoleico/sangue , Estudos de Casos e Controles , Lipogênese , Idoso , Ácido Palmítico/sangue , Ácido Oleico/sangue , Biomarcadores/sangue
19.
Cell Signal ; 118: 111135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479555

RESUMO

BACKGROUND: Pancreatic fibrosis is one of the most important pathological features of chronic pancreatitis (CP) and pancreatic stellate cells (PSCs) are the key cells of fibrosis. As an extracellular matrix (ECM) glycoprotein, cartilage oligomeric matrix protein (COMP) is critical for collagen assembly and ECM stability and recent studies showed that COMP exert promoting fibrosis effect in the skin, lungs and liver. However, the role of COMP in activation of PSCs and pancreatic fibrosis remain unclear. We aimed to investigate the role and specific mechanisms of COMP in regulating the profibrotic phenotype of PSCs and pancreatic fibrosis. METHODS: ELISA method was used to determine serum COMP in patients with CP. Mice model of CP was established by repeated intraperitoneal injection of cerulein and pancreatic fibrosis was evaluated by Hematoxylin-Eosin staining (H&E) and Sirius red staining. Immunohistochemical staining was used to detect the expression changes of COMP and fibrosis marker such as α-SMA and Fibronectin in pancreatic tissue of mice. Cell Counting Kit-8, Wound Healing and Transwell assessed the proliferation and migration of human pancreatic stellate cells (HPSCs). Western blotting, qRT-PCR and immunofluorescence staining were performed to detect the expression of fibrosis marker, AKT and MAPK family proteins in HPSCs. RNA-seq omics analysis as well as small interfering RNA of COMP, recombinant human COMP (rCOMP), MEK inhibitors and PI3K inhibitors were used to study the effect and mechanism of COMP on activation of HPSCs. RESULTS: ELISA showed that the expression of COMP significantly increased in the serum of CP patients. H&E and Sirius red staining analysis showed that there was a large amount of collagen deposition in the mice in the CP model group and high expression of COMP, α-SMA, Fibronectin and Vimentin were observed in fibrotic tissues. TGF-ß1 stimulates the activation of HPSCs and increases the expression of COMP. Knockdown of COMP inhibited proliferation and migration of HPSCs. Further, RNA-seq omics analysis and validation experiments in vitro showed that rCOMP could significantly promote the proliferation and activation of HPSCs, which may be due to promoting the phosphorylation of ERK and AKT through membrane protein receptor CD36. rCOMP simultaneously increased the expression of α-SMA, Fibronectin and Collagen I in HPSCs. CONCLUSION: In conclusion, this study showed that COMP was up-regulated in CP fibrotic tissues and COMP induced the activation, proliferation and migration of PSCs through the CD36-ERK/AKT signaling pathway. COMP may be a potential therapeutic candidate for the treatment of CP. Interfering with the expression of COMP or the communication between COMP and CD36 on PSCs may be the next direction for therapeutic research.


Assuntos
Pancreatopatias , Pancreatite Crônica , Animais , Humanos , Camundongos , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/farmacologia , Proteína de Matriz Oligomérica de Cartilagem/uso terapêutico , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Fibrose , Pancreatopatias/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
20.
Eur J Pharmacol ; 967: 176374, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309676

RESUMO

Pancreatic stellate cells (PSCs) are activated following loss of cytoplasmic vitamin A (retinol)-containing lipid droplets, which is a key event in the process of fibrogenesis of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDCA). PSCs are the major source of cancer-associated fibroblasts (CAFs) that produce stroma to induce PDAC cancer cell growth, invasion, and metastasis. As an active metabolite of retinol, retinoic acid (RA) can regulate target gene expression in PSCs through its nuclear receptor complex (RAR/RXR or RXR/RXR) or transcriptional intermediary factor. Additionally, RA also has extranuclear and non-transcriptional effects. In vitro studies have shown that RA induces PSC deactivation which reduces extracellular matrix production through multiple modes of action, such as inhibiting TßRⅡ, PDGFRß, ß-catenin and Wnt production, downregulating ERK1/2 and JNK phosphorylation and suppressing active TGF-ß1 release. RA alone or in combination with other reagents have been demonstrated to have an effective anti-fibrotic effect on cerulein-induced mouse CP models in vivo studies. Clinical trial data have shown that repurposing all-trans retinoic acid (ATRA) as a stromal-targeting agent for human pancreatic cancer is safe and tolerable, suggesting the possibility of using RA for the treatment of CP and PDCA in humans. This review focuses on RA signaling pathways in PSCs and the effects and mechanisms of RA in PSC-mediated fibrogenesis as well as the anti-fibrotic and anti-tumor effects of RA targeting PSCs or CAFs in vitro and in vivo, highlighting the potential therapies of RA against CP and PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite Crônica , Camundongos , Humanos , Animais , Tretinoína/uso terapêutico , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Vitamina A/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA