Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298953

RESUMO

A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using Pantoea agglomerans strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a gene encoding a preQ0 DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC-MS/MS analysis indicates 2'-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of Pantoea phages. Thus, the data presented in this study provide new information on Pantoea-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.


Assuntos
DNA Viral , Genoma Viral , Guanosina , Fases de Leitura Aberta , Pantoea/virologia , Siphoviridae , Proteínas Virais , DNA Viral/genética , DNA Viral/metabolismo , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Arch Virol ; 165(9): 2111-2114, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556600

RESUMO

A novel myovirus, vB_PagM_AAM22 (AAM22), was isolated in Lithuania using Pantoea agglomerans as the host for phage propagation. The 49,744-bp genome of AAM22 has a G + C content of 48.4% and contains 96 probable protein-encoding genes and no genes for tRNA. In total, 34 ORFs were given a putative functional annotation, including genes associated with virion morphogenesis, DNA metabolism, and phage-host interactions. Based on comparative phylogenetic analysis, AAM22 cannot be assigned to any genus currently recognized by the ICTV and is a potential candidate to form a new genus within the family Myoviridae.


Assuntos
Bacteriófagos/isolamento & purificação , Genoma Viral , Myoviridae/isolamento & purificação , Pantoea/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Composição de Bases , Sequência de Bases , DNA Viral/genética , Myoviridae/classificação , Myoviridae/genética , Fases de Leitura Aberta , Filogenia
3.
Viruses ; 12(4)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340233

RESUMO

A novel cold-adapted siphovirus, vB_PagS_AAS21 (AAS21), was isolated in Lithuania using Pantoea agglomerans as the host for phage propagation. AAS21 has an isometric head (~85 nm in diameter) and a non-contractile flexible tail (~174 × 10 nm). With a genome size of 116,649 bp, bacteriophage AAS21 is the largest Pantoea-infecting siphovirus sequenced to date. The genome of AAS21 has a G+C content of 39.0% and contains 213 putative protein-encoding genes and 29 genes for tRNAs. A comparative sequence analysis revealed that 89 AAS21 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 63 AAS21 ORFs were functionally annotated, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. Proteomic analysis led to the experimental identification of 19 virion proteins, including 11 that were predicted by bioinformatics approaches. Based on comparative phylogenetic analysis, AAS21 cannot be assigned to any genus currently recognized by ICTV and may represents a new branch of viruses within the family Siphoviridae.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/fisiologia , Pantoea/virologia , Adaptação Biológica , Bacteriófagos/ultraestrutura , Temperatura Baixa , Genoma Viral , Genômica/métodos , Fases de Leitura Aberta , Filogenia , Siphoviridae
4.
Virology ; 535: 59-73, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31276862

RESUMO

Erwinia and Pantoea are closely related bacterial plant pathogens in the Gram negative Enterobacteriales order. Sixty tailed bacteriophages capable of infecting these pathogens have been completely sequenced by investigators around the world and are in the current databases, 30 of which were sequenced by our lab. These 60 were compared to 991 other Enterobacteriales bacteriophage genomes and found to be, on average, just over twice the overall average length. These Erwinia and Pantoea phages comprise 20 clusters based on nucleotide and protein sequences. Five clusters contain only phages that infect the Erwinia and Pantoea genera, the other 15 clusters are closely related to bacteriophages that infect other Enterobacteriales; however, within these clusters the Erwinia and Pantoea phages tend to be distinct, suggesting ecological niche may play a diversification role. The failure of many of their encoded proteins to have predicted functions highlights the need for further study of these phages.


Assuntos
Bacteriófagos/genética , Erwinia/virologia , Genoma Viral , Pantoea/virologia , Bacteriófagos/isolamento & purificação , Análise por Conglomerados , Genômica , Filogenia , Sequenciamento Completo do Genoma
5.
Viruses ; 10(11)2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366363

RESUMO

A novel low-temperature siphovirus, vB_PagS_Vid5 (Vid5), was isolated in Lithuania using Pantoea agglomerans isolate for the phage propagation. The 61,437 bp genome of Vid5 has a G⁻C content of 48.8% and contains 99 probable protein encoding genes and one gene for tRNASer. A comparative sequence analysis revealed that 46 out of 99 Vid5 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 33 Vid5 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a cluster of genes possibly involved in the biosynthesis of 7-deazaguanine derivatives was identified. Notably, one of these genes encodes a putative preQ0/preQ1 transporter, which has never been detected in bacteriophages to date. A proteomic analysis led to the experimental identification of 11 virion proteins, including nine that were predicted by bioinformatics approaches. Based on the phylogenetic analysis, Vid5 cannot be assigned to any genus currently recognized by ICTV, and may represent a new one within the family of Siphoviridae.


Assuntos
Bacteriófagos/genética , Bacteriófagos/metabolismo , Pantoea/virologia , Bacteriófagos/ultraestrutura , Temperatura Baixa , Biologia Computacional , Genes Virais , Genoma Viral , Genômica/métodos , Guanosina/análogos & derivados , Guanosina/biossíntese , Especificidade de Hospedeiro , Família Multigênica , Filogenia , Proteômica/métodos , Análise de Sequência de DNA , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
FEMS Microbiol Lett ; 362(7)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25714551

RESUMO

Erwinia amylovora is a Gram-negative plant pathogenic bacteria causing fire blight disease in many Rosaceae species. A novel E. amylovora bacteriophage, phiEa2809, was isolated from symptomless apple leaf sample collected in Belarus. This phage was also able to infect Pantoea agglomerans strains. The genome of phiEa2809 is a double-stranded linear DNA 162,160 bp in length, including 145 ORFs and one tRNA gene. The phiEa2809 genomic sequence is similar to the genomes of the Serratia plymutica phage MAM1, Shigella phage AG-3, Dickeya phage vB DsoM LIMEstone1 and Salmonella phage ViI and lacks similarity to described E. amylovora phage genomes. Based on virion morphology (an icosahedral head, long contractile tail) and genome structure, phiEa2809 was classified as a member of Myoviridae, ViI-like bacteriophages group. PhiEa2809 is the firstly characterized ViI-like bacteriophage able to lyse E. amylovora.


Assuntos
Erwinia amylovora/virologia , Genoma Viral , Myoviridae/classificação , Myoviridae/isolamento & purificação , Pantoea/virologia , Myoviridae/genética , Myoviridae/ultraestrutura , Fases de Leitura Aberta , Doenças das Plantas/microbiologia , Alinhamento de Sequência , Análise de Sequência de DNA , Vírion
7.
Microb Biotechnol ; 8(3): 510-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25678125

RESUMO

Lytic bacteriophages are in development as biological control agents for the prevention of fire blight disease caused by Erwinia amylovora. Temperate phages should be excluded as biologicals since lysogeny produces the dual risks of host resistance to phage attack and the transduction of virulence determinants between bacteria. The extent of lysogeny was estimated in wild populations of E. amylovora and Pantoea agglomerans with real-time polymerase chain reaction primers developed to detect E. amylovora phages belonging to the Myoviridae and Podoviridae families. Pantoea agglomerans, an orchard epiphyte, is easily infected by Erwinia spp. phages, and it serves as a carrier in the development of the phage-mediated biological control agent. Screening of 161 E. amylovora isolates from 16 distinct geographical areas in North America, Europe, North Africa and New Zealand and 82 P. agglomerans isolates from southern Ontario, Canada showed that none possessed prophage. Unstable phage resistant clones or lysogens were produced under laboratory conditions. Additionally, a stable lysogen was recovered from infection of bacterial isolate Ea110R with Podoviridae phage ΦEa35-20. These laboratory observations suggested that while lysogeny is possible in E. amylovora, it is rare or absent in natural populations, and there is a minimal risk associated with lysogenic conversion and transduction by Erwinia spp. phages.


Assuntos
Erwinia amylovora/virologia , Lisogenia , Pantoea/virologia , Prófagos/genética , África , Erwinia amylovora/genética , Europa (Continente) , Myoviridae/genética , Myoviridae/isolamento & purificação , Nova Zelândia , América do Norte , Pantoea/genética , Podoviridae/genética , Podoviridae/isolamento & purificação , Prófagos/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real
8.
Mikrobiol Z ; 75(5): 67-75, 2013.
Artigo em Russo | MEDLINE | ID: mdl-24479316

RESUMO

Phage populations of isolates from quince and pear affected with fire blight disease were studied using electron microscopy, restriction analysis and both agarose gel electrophoresis of particles and host range scoping method. The isolate from quince (pMA1) comprises at least three phage populations and two phage variants that can be detected on different bacterial indicators. After titration of this isolate on Erwinia amylovora the bacteriophage KEY of B1 morphotype with the genome size of 82.4 kb was identified. The isolate pMA1 also includes a unique phage population 4*, which can be identified on the test bacteria Pantoea agglomerans (Pag) g150. Two analogous populations being also present in the isolate pMA1 that appeared to be close phage variants with almost identical Hpal-restriction patterns can be identified using Pag g157 and 9/7-1. The situation is similar in the case of phage isolates from pear, pMG. Three phage populations identified in it using three different indicators represent the same phage of C1 morphotype (TT10-27) with a genome size of 71.4 kb. At least two other phage populations were also detected in the same isolate using P. agglomerans 9/7-2 as an indicator. A model system allowing the most efficient analysis of the isolates for the presence of different phage populations and phage variants in plants infected by fire blight disease has been developed. It provides for using three indicator enterobacterial species closely associated with the plants: E. amylovora, Erwinia "horticola" and Pagglomerans and ignoring of the phage cloning procedure.


Assuntos
Bacteriófagos/genética , Erwinia amylovora/virologia , Genoma Viral , Pantoea/virologia , Doenças das Plantas/virologia , Pyrus/virologia , Rosaceae/virologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Enzimas de Restrição do DNA/metabolismo , Tamanho do Genoma , Microscopia Eletrônica , Tipagem Molecular , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Pyrus/microbiologia , Rosaceae/microbiologia
9.
Microb Biotechnol ; 4(6): 735-45, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21791029

RESUMO

For possible control of fire blight affecting apple and pear trees, we characterized Erwinia amylovora phages from North America and Germany. The genome size determined by electron microscopy (EM) was confirmed by sequence data and major coat proteins were identified from gel bands by mass spectroscopy. By their morphology from EM data, φEa1h and φEa100 were assigned to the Podoviridae and φEa104 and φEa116 to the Myoviridae. Host ranges were essentially confined to E. amylovora, strains of the species Erwinia pyrifoliae, E. billingiae and even Pantoea stewartii were partially sensitive. The phages φEa1h and φEa100 were dependent on the amylovoran capsule of E. amylovora, φEa104 and φEa116 were not. The Myoviridae efficiently lysed their hosts and protected apple flowers significantly better than the Podoviridae against E. amylovora and should be preferred in biocontrol experiments. We have also isolated and partially characterized E. amylovora phages from apple orchards in Germany. They belong to the Podoviridae or Myoviridae with a host range similar to the phages isolated in North America. In EM measurements, the genome sizes of the Podoviridae were smaller than the genomes of the Myoviridae from North America and from Germany, which differed from each other in corresponding nucleotide sequences.


Assuntos
Bacteriófagos/genética , Bacteriófagos/fisiologia , Erwinia amylovora/virologia , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/isolamento & purificação , DNA Viral/química , DNA Viral/genética , Eletroforese , Erwinia amylovora/isolamento & purificação , Genoma Viral , Alemanha , Especificidade de Hospedeiro , Malus , Microscopia Eletrônica , Dados de Sequência Molecular , Peso Molecular , Myoviridae/genética , Myoviridae/crescimento & desenvolvimento , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , América do Norte , Pantoea/virologia , Doenças das Plantas/microbiologia , Podoviridae/genética , Podoviridae/crescimento & desenvolvimento , Podoviridae/isolamento & purificação , Podoviridae/fisiologia , Pyrus , Análise de Sequência de DNA , Proteínas Virais/análise
10.
Appl Environ Microbiol ; 77(10): 3443-50, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21421778

RESUMO

Pantoea agglomerans is a common soil bacterium used in the biocontrol of fungi and bacteria but is also an opportunistic human pathogen. It has been described extensively in this context, but knowledge of bacteriophages infecting this species is limited. Bacteriophages LIMEzero and LIMElight of P. agglomerans are lytic phages, isolated from soil samples, belonging to the Podoviridae and are the first Pantoea phages of this family to be described. The double-stranded DNA (dsDNA) genomes (43,032 bp and 44,546 bp, respectively) encode 57 and 55 open reading frames (ORFs). Based on the presence of an RNA polymerase in their genomes and their overall genome architecture, these phages should be classified in the subfamily of the Autographivirinae, within the genus of the "phiKMV-like viruses." Phylogenetic analysis of all the sequenced members of the Autographivirinae supports the classification of phages LIMElight and LIMEzero as members of the "phiKMV-like viruses" and corroborates the subdivision into the different genera. These data expand the knowledge of Pantoea phages and illustrate the wide host diversity of phages within the "phiKMV-like viruses."


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Pantoea/virologia , Podoviridae/classificação , Podoviridae/genética , Bacteriólise , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Análise por Conglomerados , DNA/genética , DNA Viral/genética , Ordem dos Genes , Microscopia Eletrônica , Fases de Leitura Aberta , Filogenia , Podoviridae/isolamento & purificação , Microbiologia do Solo , Vírion/ultraestrutura
11.
Microbiology (Reading) ; 156(Pt 1): 240-247, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19778959

RESUMO

A phage (PhiOT8) isolated on Serratia sp. ATCC 39006 was shown to be flagellum-dependent, and to mediate generalized transduction with high efficiency (up to 10(-4) transductants per p.f.u.). PhiOT8 was shown to have a broad host range because it also infected a strain of Pantoea agglomerans isolated from the rhizosphere. Transduction of plasmid-borne antibiotic resistance between the two bacterial genera was demonstrated, consistent with purported ecological roles of phages in dissemination of genes between bacterial genera. Serratia sp. ATCC 39006 and P. agglomerans produce a number of interesting secondary metabolites that have potential applications in cancer therapy and biocontrol of fungal infections. PhiOT8 has utility as a powerful functional genomics tool in these bacteria.


Assuntos
Bacteriófagos/fisiologia , Flagelos/fisiologia , Pantoea/virologia , Serratia/virologia , Transdução Genética , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , DNA Viral/genética , Mutagênese , Pantoea/genética , Serratia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA