Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hum Evol ; 130: 1-20, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31010537

RESUMO

Most authors recognize six baboon species: hamadryas (Papio hamadryas), Guinea (Papio papio), olive (Papio anubis), yellow (Papio cynocephalus), chacma (Papio ursinus), and Kinda (Papio kindae). However, there is still debate regarding the taxonomic status, phylogenetic relationships, and the amount of gene flow occurring between species. Here, we present ongoing research on baboon morphological diversity in Gorongosa National Park (GNP), located in central Mozambique, south of the Zambezi River, at the southern end of the East African Rift System. The park exhibits outstanding ecological diversity and hosts more than 200 baboon troops. Gorongosa National Park baboons have previously been classified as chacma baboons (P. ursinus). In accordance with this, two mtDNA samples from the park have been placed in the same mtDNA clade as the northern chacma baboons. However, GNP baboons exhibit morphological features common in yellow baboons (e.g., yellow fur color), suggesting that parapatric gene flow between chacma and yellow baboons might have occurred in the past or could be ongoing. We investigated the phenostructure of the Gorongosa baboons using two approaches: 1) description of external phenotypic features, such as coloration and body size, and 2) 3D geometric morphometric analysis of 43 craniofacial landmarks on 11 specimens from Gorongosa compared to a pan-African sample of 352 baboons. The results show that Gorongosa baboons exhibit a mosaic of features shared with southern P. cynocephalus and P. ursinus griseipes. The GNP baboon phenotype fits within a geographic clinal pattern of replacing allotaxa. We put forward the hypothesis of either past and/or ongoing hybridization between the gray-footed chacma and southern yellow baboons in Gorongosa or an isolation-by-distance scenario in which the GNP baboons are geographically and morphologically intermediate. These two scenarios are not mutually exclusive. We highlight the potential of baboons as a useful model to understand speciation and hybridization in early human evolution.


Assuntos
Face/anatomia & histologia , Papio cynocephalus/anatomia & histologia , Papio ursinus/anatomia & histologia , Crânio/anatomia & histologia , Animais , Feminino , Fluxo Gênico , Masculino , Moçambique , Papio cynocephalus/classificação , Papio cynocephalus/genética , Papio ursinus/classificação , Papio ursinus/genética , Fenótipo , Filogenia
2.
J Hum Evol ; 49(4): 452-67, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16011842

RESUMO

Primates have more distally distributed limb muscle mass compared to most nonprimate mammals. The heavy distal limbs of primates are likely related to their strong manual and pedal grasping abilities, and interspecific differences in limb mass distributions among primates are correlated with the amount of time spent on arboreal supports. Within primate species, individuals at different developmental stages appear to differ in limb mass distribution patterns. For example infant macaques have more distally distributed limb mass at young ages. A shift from distal to proximal limb mass concentrations coincides with a shift from dependent travel (grasping their mother's hair) to independent locomotion. Because the functional demands placed on limbs may differ between taxa, understanding the ontogeny of limb mass distribution patterns is likely an essential element in interpreting the diversity of limb mass distribution patterns present in adult primates. This study examines changes in limb inertial properties during ontogeny in a longitudinal sample of infant baboons (Papio cynocephalus). The results of this study show that infant baboons undergo a transition from distal to proximal limb mass distribution patterns. This transition in limb mass distribution coincides with the transition from dependent to independent locomotion during infant development. Compared to more arboreal macaques, infant baboons undergo a faster transition to more proximal limb mass distribution patterns. These results suggest that functional demands placed on the limbs during ontogeny have a strong impact on the development of limb mass distribution patterns.


Assuntos
Evolução Biológica , Extremidades/anatomia & histologia , Extremidades/fisiologia , Macaca mulatta/fisiologia , Modelos Biológicos , Papio cynocephalus/anatomia & histologia , Papio cynocephalus/fisiologia , Animais , Fenômenos Biomecânicos , Pesos e Medidas Corporais , Extremidades/crescimento & desenvolvimento , Feminino , Antebraço/anatomia & histologia , Perna (Membro)/anatomia & histologia , Macaca mulatta/anatomia & histologia , Macaca mulatta/classificação , Macaca mulatta/crescimento & desenvolvimento , Masculino , Modelos Anatômicos , Papio cynocephalus/classificação , Papio cynocephalus/crescimento & desenvolvimento , Fisiologia Comparada , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA