Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Future Microbiol ; 14: 969-980, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31382783

RESUMO

Aim: A structural model of chorismate synthase (CS) from the pathogenic fungus Candida albicans was used for virtual screening simulations. Methods: Docking, molecular dynamics, cell growth inhibition and protein binding assays were used for search and validation. Results: Two molecules termed CS8 and CaCS02 were identified. Further studies of the minimal inhibitory concentration demonstrated fungicidal activity against Paracoccidioides brasiliensis with a minimal inhibitory concentration and minimal fungicidal concentration of 512 and 32 µg·ml-1 for CS8 and CaCS02, respectively. In addition, CaCS02 showed a strong synergistic effect in combination with amphotericin B without cytotoxic effects. In vitro studies using recombinant CS from P. brasiliensis showed IC50 of 29 µM for CaCS02 supporting our interpretation that inhibition of CS causes the observed fungicidal activity.


Assuntos
Antifúngicos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Paracoccidioides/efeitos dos fármacos , Fósforo-Oxigênio Liases/antagonistas & inibidores , Sequência de Aminoácidos , Anfotericina B/farmacologia , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Candida albicans/enzimologia , Chlorocebus aethiops , Sinergismo Farmacológico , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Paracoccidioides/enzimologia , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Ligação Proteica , Células Vero
2.
Future Microbiol ; 14: 1589-1606, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31990208

RESUMO

Aim: To perform virtual screening of compounds based on natural products targeting isocitrate lyase of Paracoccidioides brasiliensis. Materials & methods: Homology modeling and molecular dynamics simulations were applied in order to obtain conformational models for virtual screening. The selected hits were tested in vitro against enzymatic activity of ICL of the dimorphic fungus P. brasiliensis and growth of the Paracoccidioides spp. The cytotoxicity and selectivity index of the compounds were defined. Results & conclusion: Carboxamide, lactone and ß-carboline moieties were identified as interesting chemical groups for the design of new antifungal compounds. The compounds inhibited ICL of the dimorphic fungus P. brasiliensis activity. The compound 4559339 presented minimum inhibitory concentration of 7.3 µg/ml in P. brasiliensis with fungicidal effect at this concentration. Thus, a new potential antifungal against P. brasiliensis is proposed.


Assuntos
Antifúngicos/farmacologia , Isocitrato Liase/antagonistas & inibidores , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/enzimologia , Animais , Antifúngicos/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Descoberta de Drogas , Fibroblastos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular
3.
PLoS Negl Trop Dis ; 12(9): e0006806, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30260953

RESUMO

Paracoccidioidomycosis (PCM) is the most prevalent deep mycosis in Latin America and is caused by fungi from the Paracoccidioides genus. Virulence factors are important fungal characteristics that support the development of disease. Aspartyl proteases (Saps) are virulence factors in many human fungal pathogens that play an important role in the host invasion process. We report here that immunization with recombinant Sap from Paracoccidioides brasiliensis (rPbSap) imparted a protective effect in an experimental PCM model. The rPbSap-immunized mice had decreased fungal loads, and their lung parenchyma were notably preserved. An aspartyl protease inhibitor (pepstatin A) significantly decreased pulmonary injury and reduced fungal loads in the lung. Additionally, we observed that pepstatin A enhanced the fungicidal and phagocytic profile of macrophages against P. brasiliensis. Furthermore, PbSAP expression was highly altered by environmental conditions, including thermal stress, dimorphism switching and low pH. Hence, our data suggest that PbSap is an important virulence regulator in P. brasiliensis.


Assuntos
Ácido Aspártico Proteases/metabolismo , Paracoccidioides/enzimologia , Paracoccidioides/patogenicidade , Paracoccidioidomicose/patologia , Fatores de Virulência/metabolismo , Animais , Ácido Aspártico Proteases/imunologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Imunização , Pulmão/patologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos BALB C , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/microbiologia , Virulência , Fatores de Virulência/imunologia
4.
Virulence ; 8(7): 1417-1434, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28704618

RESUMO

Paracoccidoides brasiliensis and Paracoccidioides lutzii, the etiologic agents of paracoccidioidomycosis, cause disease in healthy and immunocompromised persons in Latin America. We developed a method for harvesting P. brasiliensis yeast cells from infected murine lung to facilitate in vivo transcriptional and proteomic profiling. P. brasiliensis harvested at 6 h post-infection were analyzed using RNAseq and LC-MSE. In vivo yeast cells had 594 differentially expressed transcripts and 350 differentially expressed proteins. Integration of transcriptional and proteomic data indicated that early in infection (6 h), P. brasiliensis yeast cells underwent a shift in metabolism from glycolysis to ß-oxidation, upregulated detoxifying enzymes to defend against oxidative stress, and repressed cell wall biosynthesis. Bioinformatics and functional analyses also demonstrated that a serine proteinase was upregulated and secreted in vivo. To our knowledge this is the first study depicting transcriptional and proteomic data of P. brasiliensis yeast cells upon 6 h post-infection of mouse lung.


Assuntos
Proteínas Fúngicas/metabolismo , Paracoccidioides/fisiologia , Paracoccidioidomicose/microbiologia , Serina Proteases/metabolismo , Animais , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Paracoccidioides/enzimologia , Paracoccidioides/genética , Transporte Proteico , Proteômica , Serina Proteases/genética
5.
Fungal Genet Biol ; 100: 22-32, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28093309

RESUMO

Dimorphic human pathogenic fungi interact with host effector cells resisting their microbicidal mechanisms. Yeast cells are able of surviving within the tough environment of the phagolysosome by expressing an antioxidant defense system that provides protection against host-derived reactive oxygen species (ROS). This includes the production of catalases (CATs). Here we identified and analyzed the role of CAT isoforms in Paracoccidioides, the etiological agent of paracoccidioidomycosis. Firstly, we found that one of these isoforms was absent in the closely related dimorphic pathogen Coccidioides and dermatophytes, but all of them were conserved in Paracoccidioides, Histoplasma and Blastomyces species. We probed the contribution of CATs in Paracoccidioides by determining the gene expression levels of each isoform through quantitative RT-qPCR, in both the yeast and mycelia phases, and during the morphological switch (transition and germination), as well as in response to oxidative agents and during interaction with neutrophils. PbCATP was preferentially expressed in the pathogenic yeast phase, and was associated to the response against exogenous H2O2. Therefore, we created and analyzed the virulence defects of a knockdown strain for this isoform, and found that CATP protects yeast cells from H2O2 generated in vitro and is relevant during lung infection. On the other hand, CATA and CATB seem to contribute to ROS homeostasis in Paracoccidioides cells, during endogenous oxidative stress. CAT isoforms in Paracoccidioides might be coordinately regulated during development and dimorphism, and differentially expressed in response to different stresses to control ROS homeostasis during the infectious process, contributing to the virulence of Paracoccidioides.


Assuntos
Antioxidantes/metabolismo , Catalase/metabolismo , Estresse Oxidativo/genética , Paracoccidioidomicose/metabolismo , Catalase/genética , Regulação Fúngica da Expressão Gênica , Histoplasma/genética , Humanos , Peróxido de Hidrogênio/química , Micélio/genética , Paracoccidioides/enzimologia , Paracoccidioidomicose/enzimologia , Paracoccidioidomicose/microbiologia , Espécies Reativas de Oxigênio/metabolismo
6.
Med Microbiol Immunol ; 206(2): 149-156, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27995367

RESUMO

Paracoccidioides brasiliensis is one of the etiological agents of the human systemic mycosis paracoccidioidomycosis. Protease-activated receptors (PARs) are expressed in many cell types and comprise a family of G protein-coupled receptors (PAR-1, PAR-2, and PAR-4), which may be activated by proteases secreted by several pathogens. In the present study, we showed that the pathogenic fungus P. brasiliensis secretes components that promote interleukin (IL)-6 and IL-8 secretion by the lung epithelial cell line A549. Cytokine secretion was reduced by antagonistic peptides for PAR-1 and PAR-2, but not for PAR-4. P. brasiliensis proteases were isolated from fungal culture supernatants in a p-aminomethylbenzamidine-Sepharose column. The obtained fractions were tested for enzymatic activity against fluorescence resonance energy transfer (FRET) peptides derived from sequences that spanned the activation sites of human PARs. The eluted fraction, termed PbP, contained protease activities that were able to hydrolyze the FRET peptides. PbP also induced IL-6 and IL-8 secretion in A549 epithelial cells, which was reduced upon heat inactivation of PbP, incubation with antagonistic peptides for PAR-1 and PAR-2, and the protease inhibitors aprotinin, leupeptin, and E-64. Together, these results show for the first time that P. brasiliensis yeasts secrete proteases that activate PARs in lung epithelial cells, leading to cytokine secretion.


Assuntos
Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Paracoccidioides , Receptores Ativados por Proteinase/metabolismo , Células A549 , Linhagem Celular , Sobrevivência Celular/imunologia , Endopeptidases/metabolismo , Células Epiteliais/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Paracoccidioides/enzimologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/metabolismo , Paracoccidioidomicose/microbiologia , Peptídeos/metabolismo , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos
7.
FEMS Yeast Res ; 16(7)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634774

RESUMO

Paracoccidioides spp., which are temperature-dependent dimorphic fungi, are responsible for the most prevalent human systemic mycosis in Latin America, the paracoccidioidomycosis. The aim of this study was to characterise the involvement of elongation factor Tu (EF-Tu) in Paracoccidioides brasiliensis-host interaction. Adhesive properties were examined using recombinant PbEF-Tu proteins and the respective polyclonal anti-rPbEF-Tu antibody. Immunogold analysis demonstrated the surface location of EF-Tu in P. brasiliensis. Moreover, PbEF-Tu was found to bind to fibronectin and plasminogen by enzyme-linked immunosorbent assay, and it was determined that the binding to plasminogen is at least partly dependent on lysine residues and ionic interactions. To verify the participation of EF-Tu in the interaction of P. brasiliensis with pneumocytes, we blocked the respective protein with an anti-rPbEF-Tu antibody and evaluated the consequences on the interaction index by flow cytometry. During the interaction, we observed a decrease of 2- and 3-fold at 8 and 24 h, respectively, suggesting the contribution of EF-Tu in fungal adhesion/invasion.


Assuntos
Interações Hospedeiro-Patógeno , Paracoccidioides/enzimologia , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Virulência/metabolismo , Células Epiteliais Alveolares/microbiologia , Adesão Celular , Linhagem Celular , Fibronectinas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Paracoccidioides/fisiologia , Plasminogênio/metabolismo , Ligação Proteica
8.
FEMS Yeast Res ; 16(5)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27268997

RESUMO

Paracoccidioides brasiliensis and P. lutzii, thermally dimorphic fungi, are the causative agents of paracoccidioidomycosis (PCM). Paracoccidioides infection occurs when conidia or mycelium fragments are inhaled by the host, which causes the Paracoccidioides cells to transition to the yeast form. The development of disease requires conidia inside the host alveoli to differentiate into yeast cells in a temperature-dependent manner. We describe the presence of a two-component signal transduction system in P. brasiliensis, which we investigated by expression analysis of a hypothetical protein gene (PADG_07579) that showed high similarity with the dimorphism-regulating histidine kinase (DRK1) gene of Blastomyces dermatitidis and Histoplasma capsulatum This gene was sensitive to environmental redox changes, which was demonstrated by a dose-dependent decrease in transcript levels after peroxide stimulation and a subtler decrease in transcript levels after NO stimulation. Furthermore, the higher PbDRK1 levels after treatment with increasing NaCl concentrations suggest that this histidine kinase can play a role as osmosensing. In the mycelium-yeast (M→Y) transition, PbDRK1 mRNA expression increased 14-fold after 24 h incubation at 37°C, consistent with similar observations in other virulent fungi. These results demonstrate that the PbDRK1 gene is differentially expressed during the dimorphic M→Y transition. Finally, when P. brasiliensis mycelium cells were exposed to a histidine kinase inhibitor and incubated at 37°C, there was a delay in the dimorphic M→Y transition, suggesting that histidine kinases could be targets of interest for PCM therapy.


Assuntos
Regulação Fúngica da Expressão Gênica , Histidina Quinase/metabolismo , Paracoccidioides/citologia , Paracoccidioides/genética , Oxidantes/metabolismo , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/enzimologia , Transdução de Sinais , Cloreto de Sódio/metabolismo , Temperatura
9.
PLoS Negl Trop Dis ; 10(3): e0004481, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26963091

RESUMO

The ability of Paracoccidioides to defend itself against reactive oxygen species (ROS) produced by host effector cells is a prerequisite to survive. To counteract these radicals, Paracoccidioides expresses, among different antioxidant enzymes, superoxide dismutases (SODs). In this study, we identified six SODs isoforms encoded by the Paracoccidioides genome. We determined gene expression levels of representative isolates of the phylogenetic lineages of Paracoccidioides spp. (S1, PS2, PS3 and Pb01-like) using quantitative RT-PCR. Assays were carried out to analyze SOD gene expression of yeast cells, mycelia cells, the mycelia-to-yeast transition and the yeast-to-mycelia germination, as well as under treatment with oxidative agents and during interaction with phagocytic cells. We observed an increased expression of PbSOD1 and PbSOD3 during the transition process, exposure to oxidative agents and interaction with phagocytic cells, suggesting that these proteins could assist in combating the superoxide radicals generated during the host-pathogen interaction. Using PbSOD1 and PbSOD3 knockdown strains we showed these genes are involved in the response of the fungus against host effector cells, particularly the oxidative stress response, and in a mouse model of infection. Protein sequence analysis together with functional analysis of knockdown strains seem to suggest that PbSOD3 expression is linked with a pronounced extracellular activity while PbSOD1 seems more related to intracellular requirements of the fungus. Altogether, our data suggests that P. brasiliensis actively responds to the radicals generated endogenously during metabolism and counteracts the oxidative burst of immune cells by inducing the expression of SOD isoforms.


Assuntos
Paracoccidioides/enzimologia , Paracoccidioides/patogenicidade , Paracoccidioidomicose/patologia , Superóxido Dismutase/metabolismo , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
10.
PLoS One ; 10(11): e0142926, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26569405

RESUMO

The prevalence of invasive fungal infections worldwide has increased in the last decades. The development of specific drugs targeting pathogenic fungi without producing collateral damage to mammalian cells is a daunting pharmacological challenge. Indeed, many of the toxicities and drug interactions observed with contemporary antifungal therapies can be attributed to "nonselective" interactions with enzymes or cell membrane systems found in mammalian host cells. A computer-aided screening strategy against the TRR1 protein of Paracoccidioides lutzii is presented here. Initially, a bank of commercially available compounds from Life Chemicals provider was docked to model by virtual screening simulations. The small molecules that interact with the model were ranked and, among the best hits, twelve compounds out of 3,000 commercially-available candidates were selected. These molecules were synthesized for validation and in vitro antifungal activity assays for Paracoccidioides lutzii and P. brasiliensis were performed. From 12 molecules tested, 3 harbor inhibitory activity in antifungal assays against the two pathogenic fungi. Corroborating these findings, the molecules have inhibitory activity against the purified recombinant enzyme TRR1 in biochemical assays. Therefore, a rational combination of molecular modeling simulations and virtual screening of new drugs has provided a cost-effective solution to an early-stage medicinal challenge. These results provide a promising technique to the development of new and innovative drugs.


Assuntos
Antifúngicos/farmacologia , Paracoccidioides/enzimologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Animais , Bioensaio , Morte Celular/efeitos dos fármacos , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Ensaios Enzimáticos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Ligantes , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/isolamento & purificação , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Tiorredoxina Dissulfeto Redutase/isolamento & purificação , Tiorredoxina Dissulfeto Redutase/metabolismo
11.
PLoS One ; 10(9): e0136866, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26334875

RESUMO

The human pathogenic fungus Paracoccidioides brasiliensis (Pb) undergoes a morphological transition from a saprobic mycelium to pathogenic yeast that is controlled by the cAMP-signaling pathway. There is a change in the expression of the Gß-protein PbGpb1, which interacts with adenylate cyclase, during this morphological transition. We exploited the fact that the cAMP-signaling pathway of Saccharomyces cerevisiae does not include a Gß-protein to probe the functional role of PbGpb1. We present data that indicates that PbGpb1 and the transcriptional regulator PbTupA both bind to the PKA protein PbTpk2. PbTPK2 was able to complement a TPK2Δ strain of S. cerevisiae, XPY5a/α, which was defective in pseudohyphal growth. Whilst PbGPB1 had no effect on the parent S. cerevisiae strain, MLY61a/α, it repressed the filamentous growth of XPY5a/α transformed with PbTPK2, behaviour that correlated with a reduced expression of the floculin FLO11. In vitro, PbGpb1 reduced the kinase activity of PbTpk2, suggesting that inhibition of PbTpk2 by PbGpb1 reduces the level of expression of Flo11, antagonizing the filamentous growth of the cells. In contrast, expressing the co-regulator PbTUPA in XPY5a/α cells transformed with PbTPK2, but not untransformed cells, induced hyperfilamentous growth, which could be antagonized by co-transforming the cells with PbGPB1. PbTUPA was unable to induce the hyperfilamentous growth of a FLO8Δ strain, suggesting that PbTupA functions in conjunction with the transcription factor Flo8 to control Flo11 expression. Our data indicates that P. brasiliensis PbGpb1 and PbTupA, both of which have WD/ß-propeller structures, bind to PbTpk2 to act as antagonistic molecular switches of cell morphology, with PbTupA and PbGpb1 inducing and repressing filamentous growth, respectively. Our findings define a potential mechanism for controlling the morphological switch that underpins the virulence of dimorphic fungi.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Paracoccidioides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Teste de Complementação Genética , Morfogênese , Paracoccidioides/enzimologia , Paracoccidioides/genética , Paracoccidioides/crescimento & desenvolvimento , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
12.
Antimicrob Agents Chemother ; 59(9): 5581-94, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26124176

RESUMO

Paracoccidioides is the agent of paracoccidioidomycosis. Malate synthase plays a crucial role in the pathogenicity and virulence of various fungi, such as those that are human pathogens. Thus, an inhibitor of this enzyme may be used as a powerful antifungal without side effects in patients once these enzymes are absent in humans. Here, we searched for compounds with inhibitory capacity against the malate synthase of Paracoccidioides species (PbMLS). The three-dimensional (3D) structure of PbMLS was determined using the I-TASSER server. Compounds were selected from the ZINC database. Based on the mechanism underlying the interaction of the compounds with PbMLS, it was possible to identify ß-carboline moiety as a standard key structure. The compounds with ß-carboline moiety that are available in our laboratories were investigated. A total of nine alkaloid compounds were selected. The primary mechanisms of interaction of the alkaloid compounds in the binding pocket of PbMLS were identified and compared with the mechanism of interaction of acetyl coenzyme A (acetyl-CoA). We discovered that the amphipathic nature of the compounds, concomitant with the presence of ß-carboline moiety, was crucial for their stability in the binding pocket of PbMLS. In addition, the importance of a critical balance of the polar and nonpolar contacts of the compounds in this region was observed. Four ß-carboline alkaloid compounds showed the ability to inhibit recombinant PbMLS (PbMLSr) activity, Paracoccidioides species growth, and adhesion of the fungus and PbMLSr to the extracellular matrix components. The cytotoxicity of the alkaloids was also evaluated.


Assuntos
Alcaloides/farmacologia , Antifúngicos/farmacologia , Malato Sintase/antagonistas & inibidores , Paracoccidioides/enzimologia , Adesão Celular/efeitos dos fármacos
13.
Virulence ; 6(6): 642-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26055497

RESUMO

Paracoccidioides species are dimorphic fungi that initially infect the lungs but can also spread throughout the body. The spreading infection is most likely due to the formation of a biofilm that makes it difficult for the host to eliminate the infection. Biofilm formation is crucial for the development of infections and confines the pathogen to an extracellular matrix. Its presence is associated with antimicrobial resistance and avoidance of host defenses. This current study provides the first description of biofilm formation by Paracoccidioides brasiliensis (Pb18) and an analysis of gene expression, using real-time PCR, associated with 3 adhesins and 2 hydrolytic enzymes that could be associated with the virulence profile. Biofilm formation was analyzed using fluorescence microscopy, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Metabolic activity was determined using the XTT reduction assay. P. brasiliensis was able to form mature biofilm in 144 h with a thickness of 100 µm. The presence of a biofilm was found to be associated with an increase in the expression of adhesins and enzymes. GP43, enolase, GAPDH and aspartyl proteinase genes were over-expressed, whereas phospholipase was down-regulated in biofilm. The characterization of biofilm formed by P. brasiliensis may contribute to a better understanding of the pathogenesis of paracoccidioidomycosis as well as the search for new therapeutic alternatives; while improving the effectiveness of treatment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Hidrolases/análise , Paracoccidioides/enzimologia , Paracoccidioides/fisiologia , Fatores de Virulência/análise , Células Cultivadas , Formazans/análise , Humanos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Oxirredução , Paracoccidioides/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sais de Tetrazólio/metabolismo
14.
BMC Microbiol ; 15: 53, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25888027

RESUMO

BACKGROUND: Despite being important thermal dimorphic fungi causing Paracoccidioidomycosis, the pathogenic mechanisms that underlie the genus Paracoccidioides remain largely unknown. Microbial pathogens express molecules that can interact with human plasminogen, a protein from blood plasma, which presents fibrinolytic activity when activated into plasmin. Additionally, plasmin exhibits the ability of degrading extracellular matrix components, favoring the pathogen spread to deeper tissues. Previous work from our group demonstrated that Paracoccidioides presents enolase, as a protein able to bind and activate plasminogen, increasing the fibrinolytic activity of the pathogen, and the potential for adhesion and invasion of the fungus to host cells. By using proteomic analysis, we aimed to identify other proteins of Paracoccidioides with the ability of binding to plasminogen. RESULTS: In the present study, we employed proteomic analysis of the secretome, in order to identify plasminogen-binding proteins of Paracoccidioides, Pb01. Fifteen proteins were present in the fungal secretome, presenting the ability to bind to plasminogen. Those proteins are probable targets of the fungus interaction with the host; thus, they could contribute to the invasiveness of the fungus. For validation tests, we selected the protein fructose 1,6-bisphosphate aldolase (FBA), described in other pathogens as a plasminogen-binding protein. The protein FBA at the fungus surface and the recombinant FBA (rFBA) bound human plasminogen and promoted its conversion to plasmin, potentially increasing the fibrinolytic capacity of the fungus, as demonstrated in fibrin degradation assays. The addition of rFBA or anti-rFBA antibodies was capable of reducing the interaction between macrophages and Paracoccidioides, possibly by blocking the binding sites for FBA. These data reveal the possible participation of the FBA in the processes of cell adhesion and tissue invasion/dissemination of Paracoccidioides. CONCLUSIONS: These data indicate that Paracoccidioides is a pathogen that has several plasminogen-binding proteins that likely play important roles in pathogen-host interaction. In this context, FBA is a protein that might be involved somehow in the processes of invasion and spread of the fungus during infection.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Paracoccidioides/enzimologia , Plasminogênio/metabolismo , Fibrina/metabolismo , Fibrinolisina/metabolismo , Frutose-Bifosfato Aldolase/genética , Interações Hospedeiro-Patógeno , Humanos , Paracoccidioides/genética , Ligação Proteica , Proteólise , Proteômica/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Med Mycol ; 53(3): 205-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631476

RESUMO

Paracoccidioides brasiliensis is the etiologic agent of one of the most common systemic mycoses in Latin America. As a dimorphic fungus, it must adapt to different environments during its life cycle, either in nature or within the host, enduring external stresses such as temperature or host-induced oxidative stress. In this study we addressed the role of alternative oxidase (PbAOX) in cellular homeostasis during batch culture growth and the morphological transition of P. brasiliensis. Using a PbAOX-antisense-RNA (PbAOX-aRNA) strain with a 70% reduction in gene expression, we show that PbAOX is crucial for maintaining cell viability and vitality during batch culture growth of yeast cells, in what appears to be a pH-dependent manner. We also show that silencing of PbAOX drastically reduced expression levels of other detoxifying enzymes (PbY20 and PbMSOD). In addition, our data indicate that PbAOX plays a role during the morphological transition, namely, during the yeast-to-mycelia germination and mycelia/conidia-to-yeast transition, essential events during the establishment of infection by dimorphic fungal pathogens. Altogether, our findings support the hypothesis that PbAOX is important for the maintenance of cellular homeostasis, possibly by assisting redox balancing during cell growth and the morphological switch of P. brasiliensis.


Assuntos
Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Paracoccidioides/enzimologia , Paracoccidioides/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Meios de Cultura/química , Técnicas de Silenciamento de Genes , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Micélio/citologia , Micélio/crescimento & desenvolvimento , Paracoccidioides/citologia , Paracoccidioides/genética , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento
16.
Planta Med ; 80(18): 1746-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25412318

RESUMO

As part of our continuing chemical and biological analyses of Rubiaceae species from Cerrado, we isolated novel alkaloids 1 and 2, along with known compounds epicatechin, ursolic acid, and oleanolic acid, from Galianthe ramosa. Alkaloid 2 inhibited malate synthase from the pathogenic fungus Paracoccidioides spp. This enzyme is considered an important molecular target because it is not found in humans. Molecular docking simulations were used to describe the interactions between the alkaloids and malate synthase.


Assuntos
Antifúngicos/farmacologia , Carbolinas/farmacologia , Inibidores Enzimáticos/farmacologia , Malato Sintase/antagonistas & inibidores , Paracoccidioides/enzimologia , Alcaloides/química , Alcaloides/farmacologia , Antifúngicos/química , Carbolinas/química , Inibidores Enzimáticos/química , Proteínas Fúngicas/metabolismo , Concentração Inibidora 50 , Malato Sintase/química , Malato Sintase/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/patogenicidade , Componentes Aéreos da Planta/química , Rubiaceae/química
17.
PLoS Negl Trop Dis ; 8(8): e3111, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166744

RESUMO

BACKGROUND: Paracoccidioides brasiliensis and P. lutzii cause paracoccidioidomycosis (PCM). P. brasiliensis main diagnostic antigen is glycoprotein gp43, and its peptide sequence is 81% identical with a P. lutzii ortholog here called Plp43. P. lutzii ("Pb01-like") apparently predominates in Midwestern/Northern Brazil, where high percentages of false-negative reactions using P. brasiliensis antigens have recently been reported. The aim of this work was to produce recombinant Plp43 to study its antigenic identity with gp43. METHODOLOGY: We expressed rPlp43 as a secreted major component in Pichia pastoris and studied its reactivity in immunoblot with PCM patients' sera from Southwestern and Midwestern Brazil. PRINCIPAL FINDINGS: We showed that rPlp43 is not glycosylated and bears glucanase activity. The protein did not react with anti-gp43 monoclonal antibodies in immunoblot, suggesting absence of the corresponding gp43 epitopes. Nevertheless, common epitope(s) might exist, considering that gp43-positive PCM sera recognized rPlp43 in immunoblot, while gp43-negative sera (33 out of 51) from patients resident in Midwestern Brazil were also rPlp43-negative. Two genotyped P. lutzii were from patients with gp43-negative sera, suggesting that non-reactive sera are from patients infected with this species. CONCLUSION: Our data suggest that gp43 and Plp43 bear one or only a few common epitopes and that gp43 cannot be used in diagnosis of PCM patients infected with P. lutzii probably because Plp43 is poorly expressed during infection.


Assuntos
Antígenos de Fungos , Proteínas Fúngicas , Glicoproteínas , Glicosídeo Hidrolases , Paracoccidioides , Sequência de Aminoácidos , Antígenos de Fungos/química , Antígenos de Fungos/imunologia , Antígenos de Fungos/metabolismo , Epitopos , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Glicoproteínas/química , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/imunologia , Glicosídeo Hidrolases/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Paracoccidioides/química , Paracoccidioides/classificação , Paracoccidioides/enzimologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/microbiologia
18.
PLoS One ; 9(4): e94832, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24752170

RESUMO

The dimorphic fungus Paracoccidioides spp. is responsible for paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America, causing serious public health problems. Adequate treatment of mycotic infections is difficult, since fungi are eukaryotic organisms with a structure and metabolism similar to those of eukaryotic hosts. In this way, specific fungus targets have become important to search of new antifungal compound. The role of the glyoxylate cycle and its enzymes in microbial virulence has been reported in many fungal pathogens, including Paracoccidioides spp. Here, we show the action of argentilactone and its semi-synthetic derivative reduced argentilactone on recombinant and native isocitrate lyase from Paracoccidioides lutzii Pb01 (PbICL) in the presence of different carbon sources, acetate and glucose. Additionally, argentilactone and its semi-synthetic derivative reduced argentilactone exhibited relevant inhibitory activity against P. lutzii Pb01 yeast cells and dose-dependently influenced the transition from the mycelium to yeast phase. The other oxygenated derivatives tested, epoxy argentilactone and diol argentilactone-, did not show inhibitory action on the fungus. The results were supported by in silico experiments.


Assuntos
Inibidores Enzimáticos/farmacologia , Isocitrato Liase/antagonistas & inibidores , Lactonas/farmacologia , Paracoccidioides/enzimologia , Sítios de Ligação , Inibidores Enzimáticos/química , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Lactonas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Micélio/citologia , Micélio/efeitos dos fármacos , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/crescimento & desenvolvimento , Solventes/química , Homologia Estrutural de Proteína , Termodinâmica
19.
Yeast ; 31(1): 1-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155051

RESUMO

The cell wall of Paracoccidioides brasiliensis, which consists of a network of polysaccharides and glycoproteins, is essential for fungal pathogenesis. We have previously reported that N-glycosylation of proteins such as N-acetyl-ß-D-glucosaminidase is required for the growth and morphogenesis of P. brasiliensis. In the present study, we investigated the influence of tunycamicin (TM)-mediated inhibition of N-linked glycosylation on α- and ß-(1,3)-glucanases and on α-(1,4)-amylase in P. brasiliensis yeast and mycelium cells. The addition of 15 µg/ml TM to the fungal cultures did not interfere with either α- or ß-(1,3)-glucanase production and secretion. Moreover, incubation with TM did not alter α- and ß-(1,3)-glucanase activity in yeast and mycelium cell extracts. In contrast, α-(1,4)-amylase activity was significantly reduced in underglycosylated yeast and mycelium extracts after exposure to TM. In spite of its importance for fungal growth and morphogenesis, N-glycosylation was not required for glucanase activities. This is surprising because these activities are directed to wall components that are crucial for fungal morphogenesis. On the other hand, N-glycans were essential for α-(1,4)-amylase activity involved in the production of malto-oligosaccharides that act as primer molecules for the biosynthesis of α-(1,3)-glucan. Our results suggest that reduced fungal α-(1,4)-amylase activity affects cell wall composition and may account for the impaired growth of underglycosylated yeast and mycelium cells.


Assuntos
Anti-Infecciosos/farmacologia , Glucana 1,3-beta-Glucosidase/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosilação/efeitos dos fármacos , Paracoccidioides/crescimento & desenvolvimento , Tunicamicina/farmacologia , alfa-Amilases/metabolismo , Paracoccidioides/citologia , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/enzimologia
20.
Mem Inst Oswaldo Cruz ; 108(6): 808-11, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24037207

RESUMO

Phospholipase is an important virulence factor for pathogenic fungi. In this study, we demonstrate the following: (i) the Paracoccidioides brasiliensis pld gene is preferentially expressed in mycelium cells, (ii) the plb1 gene is mostly up-regulated by infection after 6 h of co-infection of MH-S cells or during BALB/c mice lung infection, (iii) during lung infection, plb1, plc and pld gene expression are significantly increased 6-48 h post-infection compared to 56 days after infection, strongly suggesting that phospholipases play a role in the early events of infection, but not during the chronic stages of pulmonary infection by P. brasiliensis.


Assuntos
Macrófagos Alveolares/microbiologia , Paracoccidioides , Paracoccidioidomicose , Fosfolipases/genética , Fatores de Virulência/genética , Animais , Expressão Gênica , Masculino , Camundongos Endogâmicos BALB C , Paracoccidioides/citologia , Paracoccidioides/enzimologia , Paracoccidioides/patogenicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA