Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMJ Case Rep ; 20182018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866669

RESUMO

Hyperkalaemic periodic paralysis is a rare skeletal muscle disorder which is characterised by episodic muscle paralysis associated with hyperkalaemia. Although it is an autosomal-dominant disease, cases of de novo mutations have been reported. We report the case of a 30-year-old woman, gravida 5 para 3+1, who was planned for an elective repeated caesarean section at 38 weeks and 3 days of pregnancy. She developed recurrent episodes of hyperkalaemic periodic paralysis after receiving corticosteroids. Intravenous calcium gluconate was administered to normalise potassium levels (from 6.3 mmol/L to 4.1 mmol/L). Extra anaesthetic precautions were taken during the caesarean delivery. Postoperatively, she was well and discharged from the ward. She encountered similar symptoms in her third pregnancy, and there was no family history of muscle weakness which suggested a de novo mutation. Pregnancy seemed to result in vulnerability to hyperkalaemic attacks as she was never symptomatic outside pregnancy.


Assuntos
Paralisia Periódica Hiperpotassêmica/diagnóstico , Complicações na Gravidez/diagnóstico , Corticosteroides/uso terapêutico , Adulto , Gluconato de Cálcio/uso terapêutico , Cesárea/métodos , Procedimentos Cirúrgicos Eletivos , Feminino , Humanos , Paralisia Periódica Hiperpotassêmica/tratamento farmacológico , Paralisia Periódica Hiperpotassêmica/metabolismo , Gravidez , Complicações na Gravidez/tratamento farmacológico , Complicações na Gravidez/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(17): 4495-4500, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29636418

RESUMO

Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3-S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.


Assuntos
Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Neurotoxinas/toxicidade , Paralisia Periódica Hiperpotassêmica/metabolismo , Estrutura Secundária de Proteína , Venenos de Aranha/toxicidade , Substituição de Aminoácidos , Animais , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico , Canal de Sódio Disparado por Voltagem NAV1.4/química , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hiperpotassêmica/patologia , Xenopus laevis
3.
J Gen Physiol ; 146(6): 509-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26621775

RESUMO

The diaphragm muscle of hyperkalemic periodic paralysis (HyperKPP) patients and of the M1592V HyperKPP mouse model rarely suffers from the myotonic and paralytic symptoms that occur in limb muscles. Enigmatically, HyperKPP diaphragm expresses the mutant NaV1.4 channel and, more importantly, has an abnormally high Na(+) influx similar to that in extensor digitorum longus (EDL) and soleus, two hindlimb muscles suffering from the robust HyperKPP abnormalities. The objective was to uncover the physiological mechanisms that render HyperKPP diaphragm asymptomatic. A first mechanism involves efficient maintenance of resting membrane polarization in HyperKPP diaphragm at various extracellular K(+) concentrations compared with larger membrane depolarizations in HyperKPP EDL and soleus. The improved resting membrane potential (EM) results from significantly increased Na(+) K(+) pump electrogenic activity, and not from an increased protein content. Action potential amplitude was greater in HyperKPP diaphragm than in HyperKPP soleus and EDL, providing a second mechanism for the asymptomatic behavior of the HyperKPP diaphragm. One suggested mechanism for the greater action potential amplitude is lower intracellular Na(+) concentration because of greater Na(+) K(+) pump activity, allowing better Na(+) current during the action potential depolarization phase. Finally, HyperKPP diaphragm had a greater capacity to generate force at depolarized EM compared with wild-type diaphragm. Action potential amplitude was not different between wild-type and HyperKPP diaphragm. There was also no evidence for an increased activity of the Na(+)-Ca(2+) exchanger working in the reverse mode in the HyperKPP diaphragm compared with the wild-type diaphragm. So, a third mechanism remains to be elucidated to fully understand how HyperKPP diaphragm generates more force compared with wild type. Although the mechanism for the greater force at depolarized resting EM remains to be determined, this study provides support for the modulation of the Na(+) K(+) pump as a component of therapy to alleviate weakness in HyperKPP.


Assuntos
Diafragma/metabolismo , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Paralisia Periódica Hiperpotassêmica/metabolismo , Potenciais de Ação , Animais , Diafragma/efeitos dos fármacos , Diafragma/fisiopatologia , Potenciais da Membrana , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hiperpotassêmica/fisiopatologia , Potássio/metabolismo , Potássio/farmacologia , Sódio/metabolismo
4.
Physiol Genomics ; 46(11): 385-97, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24714718

RESUMO

Hyperkalemic periodic paralysis (HyperKPP) is characterized by myotonic discharges that occur between episodic attacks of paralysis. Individuals with HyperKPP rarely suffer respiratory distress even though diaphragm muscle expresses the same defective Na(+) channel isoform (NaV1.4) that causes symptoms in limb muscles. We tested the hypothesis that the extent of the HyperKPP phenotype (low force generation and shift toward oxidative type I and IIA fibers) in muscle is a function of 1) the NaV1.4 channel content and 2) the Na(+) influx through the defective channels [i.e., the tetrodotoxin (TTX)-sensitive Na(+) influx]. We measured NaV1.4 channel protein content, TTX-sensitive Na(+) influx, force generation, and myosin isoform expression in four muscles from knock-in mice expressing a NaV1.4 isoform corresponding to the human M1592V mutant. The HyperKPP flexor digitorum brevis muscle showed no contractile abnormalities, which correlated well with its low NaV1.4 protein content and by far the lowest TTX-sensitive Na(+) influx. In contrast, diaphragm muscle expressing the HyperKPP mutant contained high levels of NaV1.4 protein and exhibited a TTX-sensitive Na(+) influx that was 22% higher compared with affected extensor digitorum longus (EDL) and soleus muscles. Surprisingly, despite this high burden of Na(+) influx, the contractility phenotype was very mild in mutant diaphragm compared with the robust abnormalities observed in EDL and soleus. This study provides evidence that HyperKPP phenotype does not depend solely on the NaV1.4 content or Na(+) influx and that the diaphragm does not depend solely on Na(+)-K(+) pumps to ameliorate the phenotype.


Assuntos
Contração Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Paralisia Periódica Hiperpotassêmica/genética , Sódio/metabolismo , Animais , Humanos , Camundongos , Miosinas/genética , Miosinas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Paralisia Periódica Hiperpotassêmica/metabolismo , Potássio/metabolismo
5.
J Gen Physiol ; 141(3): 323-34, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23401572

RESUMO

In skeletal muscle, slow inactivation (SI) of Na(V)1.4 voltage-gated sodium channels prevents spontaneous depolarization and fatigue. Inherited mutations in Na(V)1.4 that impair SI disrupt activity-induced regulation of channel availability and predispose patients to hyperkalemic periodic paralysis. In our companion paper in this issue (Silva and Goldstein. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210909), the four voltage sensors in Na(V)1.4 responsible for activation of channels over microseconds are shown to slowly immobilize over 1-160 s as SI develops and to regain mobility on recovery from SI. Individual sensor movements assessed via attached fluorescent probes are nonidentical in their voltage dependence, time course, and magnitude: DI and DII track SI onset, and DIII appears to reflect SI recovery. A causal link was inferred by tetrodotoxin (TTX) suppression of both SI onset and immobilization of DI and DII sensors. Here, the association of slow sensor immobilization and SI is verified by study of Na(V)1.4 channels with a hyperkalemic periodic paralysis mutation; L689I produces complex changes in SI, and these are found to manifest directly in altered sensor movements. L689I removes a component of SI with an intermediate time constant (~10 s); the mutation also impedes immobilization of the DI and DII sensors over the same time domain in support of direct mechanistic linkage. A model that recapitulates SI attributes responsibility for intermediate SI to DI and DII (10 s) and a slow component to DIII (100 s), which accounts for residual SI, not impeded by L689I or TTX.


Assuntos
Mutação , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hiperpotassêmica/metabolismo , Animais , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mutagênese Sítio-Dirigida/métodos , Oócitos/metabolismo , Oócitos/fisiologia , Paralisia Periódica Hiperpotassêmica/fisiopatologia , Xenopus laevis
6.
Radiology ; 264(1): 154-63, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22509051

RESUMO

PURPOSE: To assess whether myoplasmic ionic sodium (Na+) is increased in muscles of patients with hyperkalemic periodic paralysis (HyperPP) with 3-T sodium 23 (23Na) magnetic resonance (MR) imaging and to evaluate the effect of medical treatment on sodium-induced muscle edema. MATERIALS AND METHODS: This study received institutional review board approval; written informed consent was obtained. Proton (hydrogen 1 [1H]) and 23Na MR of both calves were performed in 12 patients with HyperPP (mean age, 48 years±14 [standard deviation]) and 12 healthy volunteers (mean age, 38 years±12) before and after provocation (unilateral cooling, one calf). 23Na MR included spin-density, T1-weighted, and inversion-recovery (IR) sequences. Total sodium concentration and normalized signal intensities (SIs) were evaluated within regions of interest (ROIs). Muscle strength was measured with the British Medical Research Council (MRC) grading scale. Five patients underwent follow-up MR after diuretic treatment. RESULTS: During rest, mean myoplasmic Na+ concentration was significantly higher in HyperPP with permanent weakness (40.7 µmol/g±3.9) compared with HyperPP with transient weakness (31.3 µmol/g±4.8) (P=.004). Mean SI in 23Na IR MR was significantly higher in HyperPP with permanent weakness (0.83±0.04; median MRC, grade 4; range, 3-5) compared with HyperPP without permanent weakness (0.67±0.05; median MRC, grade 5; range, 4-5) (P=.002). Provocation reduced muscle strength in HyperPP (before provocation, median MRC, 5; range, 3-5; after provocation, median MRC, 3; range, 1-4) and increased SI in 23Na IR from 0.75±0.09 to 0.86±0.10 (P=.004). Spin-density and T1-weighted sequences were less sensitive, particularly to cold-induced Na+ changes. 23Na IR SI remained unchanged in volunteers (0.53±0.06 before and 0.54±0.06 after provocation, P=.3). Therapy reduced mean SI in 23Na IR sequence from 0.85±0.04 to 0.64±0.11. CONCLUSION: 23Na MR imaging depicts increased myoplasmic Na+ in HyperPP with permanent weakness. Na+ overload may cause muscle degeneration developing with age. 23Na MR imaging may have potential to aid monitoring of medical treatment that reduces this overload.


Assuntos
Imageamento por Ressonância Magnética/métodos , Paralisia Periódica Hiperpotassêmica/metabolismo , Paralisia Periódica Hiperpotassêmica/patologia , Isótopos de Sódio/farmacocinética , Adulto , Edema/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular , Imagens de Fantasmas
7.
J Gen Physiol ; 138(1): 117-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21708955

RESUMO

In patients with hyperkalemic periodic paralysis (HyperKPP), attacks of muscle weakness or paralysis are triggered by K(+) ingestion or rest after exercise. Force can be restored by muscle work or treatment with ß(2)-adrenoceptor agonists. A missense substitution corresponding to a mutation in the skeletal muscle voltage-gated Na(+) channel (Na(v)1.4, Met1592Val) causing human HyperKPP was targeted into the mouse SCN4A gene (mutants). In soleus muscles prepared from these mutant mice, twitch, tetanic force, and endurance were markedly reduced compared with soleus from wild type (WT), reflecting impaired excitability. In mutant soleus, contractility was considerably more sensitive than WT soleus to inhibition by elevated [K(+)](o). In resting mutant soleus, tetrodotoxin (TTX)-suppressible (22)Na uptake and [Na(+)](i) were increased by 470 and 58%, respectively, and membrane potential was depolarized (by 16 mV, P < 0.0001) and repolarized by TTX. Na(+),K(+) pump-mediated (86)Rb uptake was 83% larger than in WT. Salbutamol stimulated (86)Rb uptake and reduced [Na(+)](i) both in mutant and WT soleus. Stimulating Na(+),K(+) pumps with salbutamol restored force in mutant soleus and extensor digitorum longus (EDL). Increasing [Na(+)](i) with monensin also restored force in soleus. In soleus, EDL, and tibialis anterior muscles of mutant mice, the content of Na(+),K(+) pumps was 28, 62, and 33% higher than in WT, respectively, possibly reflecting the stimulating effect of elevated [Na(+)](i) on the synthesis of Na(+),K(+) pumps. The results confirm that the functional disorders of skeletal muscles in HyperKPP are secondary to increased Na(+) influx and show that contractility can be restored by acute stimulation of the Na(+),K(+) pumps. Calcitonin gene-related peptide (CGRP) restored force in mutant soleus but caused no detectable increase in (86)Rb uptake. Repeated excitation and capsaicin also restored contractility, possibly because of the release of endogenous CGRP from nerve endings in the isolated muscles. These observations may explain how mild exercise helps locally to prevent severe weakness during an attack of HyperKPP.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Paralisia Periódica Hiperpotassêmica/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Albuterol/farmacologia , Animais , Capsaicina/farmacologia , Estimulação Elétrica , Camundongos , Monensin/farmacologia , Paralisia Periódica Hiperpotassêmica/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
8.
Neurology ; 72(18): 1544-7, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19118277

RESUMO

BACKGROUND: Several missense mutations of CACNA1S and SCN4A genes occur in hypokalemic periodic paralysis. These mutations affect arginine residues in the S4 voltage sensors of the channel. Approximately 20% of cases remain genetically undefined. METHODS: We undertook direct automated DNA sequencing of the S4 regions of CACNA1S and SCN4A in 83 cases of hypokalemic periodic paralysis. RESULTS: We identified reported CACNA1S mutations in 64 cases. In the remaining 19 cases, mutations in SCN4A or other CACNA1S S4 segments were found in 10, including three novel changes and the first mutations in channel domains I (SCN4A) and III (CACNA1S). CONCLUSIONS: All mutations affected arginine residues, consistent with the gating pore cation leak hypothesis of hypokalemic periodic paralysis. Arginine mutations in S4 segments underlie 90% of hypokalemic periodic paralysis cases.


Assuntos
Canais de Cálcio/genética , Predisposição Genética para Doença/genética , Mutação/genética , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hiperpotassêmica/fisiopatologia , Canais de Sódio/genética , Adolescente , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Arginina/genética , Canais de Cálcio/química , Canais de Cálcio Tipo L , Análise Mutacional de DNA , Frequência do Gene/genética , Testes Genéticos , Genótipo , Humanos , Padrões de Herança/genética , Ativação do Canal Iônico/genética , Potenciais da Membrana/genética , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.4 , Paralisia Periódica Hiperpotassêmica/metabolismo , Estrutura Terciária de Proteína/genética , Canais de Sódio/química , Adulto Jovem
9.
J Clin Invest ; 118(4): 1437-49, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18317596

RESUMO

Hyperkalemic periodic paralysis (HyperKPP) produces myotonia and attacks of muscle weakness triggered by rest after exercise or by K+ ingestion. We introduced a missense substitution corresponding to a human familial HyperKPP mutation (Met1592Val) into the mouse gene encoding the skeletal muscle voltage-gated Na+ channel NaV1.4. Mice heterozygous for this mutation exhibited prominent myotonia at rest and muscle fiber-type switching to a more oxidative phenotype compared with controls. Isolated mutant extensor digitorum longus muscles were abnormally sensitive to the Na+/K+ pump inhibitor ouabain and exhibited age-dependent changes, including delayed relaxation and altered generation of tetanic force. Moreover, rapid and sustained weakness of isolated mutant muscles was induced when the extracellular K+ concentration was increased from 4 mM to 10 mM, a level observed in the muscle interstitium of humans during exercise. Mutant muscle recovered from stimulation-induced fatigue more slowly than did control muscle, and the extent of recovery was decreased in the presence of high extracellular K+ levels. These findings demonstrate that expression of the Met1592ValNa+ channel in mouse muscle is sufficient to produce important features of HyperKPP, including myotonia, K+-sensitive paralysis, and susceptibility to delayed weakness during recovery from fatigue.


Assuntos
Músculo Esquelético/metabolismo , Miotonia/metabolismo , Miotonia/patologia , Potássio/metabolismo , Canais de Sódio/metabolismo , Envelhecimento/fisiologia , Animais , Progressão da Doença , Eletrofisiologia , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Miotonia/genética , Oxirredução , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hiperpotassêmica/metabolismo , Paralisia Periódica Hiperpotassêmica/patologia , Fenótipo , RNA Mensageiro/genética , Sensibilidade e Especificidade , Canais de Sódio/genética
11.
Neurology ; 70(10): 755-61, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-17898326

RESUMO

BACKGROUND: Missense mutations of the skeletal muscle voltage-gated sodium channel (NaV1.4) are an established cause of several clinically distinct forms of periodic paralysis and myotonia. The mechanistic basis for the phenotypic variability of these allelic disorders of muscle excitability remains unknown. An atypical phenotype with cold-induced hypokalemic paralysis and myotonia at warm temperatures was reported to segregate with the P1158S mutation. OBJECTIVE: This study extends the functional characterization of the P1158S mutation and tests the specific hypothesis that impairment of Na channel slow inactivation is a common feature of periodic paralysis. METHODS: Mutant NaV1.4 channels (P1158S) were transiently expressed in human embryonic kidney cells and characterized by voltage-clamp studies of Na currents. RESULTS: Wild-type and P1158S channels displayed comparable behavior at 37 degrees C, but upon cooling to 25 degrees C, mutant channels activated at more negative potentials and slow inactivation was destabilized. CONCLUSIONS: Consistent with other NaV1.4 mutations associated with a paralytic phenotype, the P1158S mutation disrupts slow inactivation. The unique temperature sensitivity of the channel defect may contribute to the unusual clinical phenotype.


Assuntos
Canalopatias/fisiopatologia , Ativação do Canal Iônico/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatologia , Transtornos Miotônicos/fisiopatologia , Paralisia Periódica Hiperpotassêmica/fisiopatologia , Canais de Sódio/metabolismo , Potenciais de Ação/genética , Temperatura Corporal/genética , Linhagem Celular , Canalopatias/genética , Canalopatias/metabolismo , Temperatura Baixa/efeitos adversos , Humanos , Contração Muscular/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Transtornos Miotônicos/genética , Transtornos Miotônicos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4 , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hiperpotassêmica/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Tempo de Reação/genética , Sarcolema/genética , Sarcolema/metabolismo , Canais de Sódio/genética , Fatores de Tempo
12.
Curr Opin Neurol ; 20(5): 558-63, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17885445

RESUMO

PURPOSE OF REVIEW: To provide a current review of clinical phenotypes, genetics, molecular pathophysiology, and electro-diagnostic testing strategies of periodic paralysis and nondystrophic myotonias. RECENT FINDINGS: The number of pathogenic mutations causing periodic paralysis and nondystrophic myotonias continues to increase. Important insight into the molecular pathogenesis of muscle sodium channelopathies has been revealed by the finding of 'leaky' closed sodium channels. Previously, alterations in sodium-channel activation or inactivation have been identified as important disease mechanisms. The recent discovery that substitutions of key arginine residues in the voltage-sensing segment of the channel may lead to a 'pore leak' when the channel is closed suggests a new mechanism. Since similar mutations exist in corresponding positions of other channels, this mechanism may apply to other channel diseases. The recognition of different electrophysiological patterns that are specific to muscle ion-channel genotypes will be useful in diagnosis and in guiding genetic testing. Recent studies demonstrate that magnetic resonance imaging may be used to detect intramuscular accumulation of sodium during episodes of weakness. SUMMARY: Recent advances have refined our ability to make a precise molecular diagnosis in muscle channelopathies. The description of a pore leak with voltage-sensor mutations may represent a new disease mechanism.


Assuntos
Canalopatias/fisiopatologia , Músculo Esquelético/fisiopatologia , Miotonia/fisiopatologia , Paralisia Periódica Hiperpotassêmica/fisiopatologia , Canalopatias/genética , Canalopatias/metabolismo , Diagnóstico Diferencial , Humanos , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/metabolismo , Biologia Molecular/métodos , Músculo Esquelético/metabolismo , Miotonia/genética , Miotonia/metabolismo , Miotonia Congênita/genética , Miotonia Congênita/metabolismo , Miotonia Congênita/fisiopatologia , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hiperpotassêmica/metabolismo
13.
Neurology ; 67(7): 1151-8, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16931510

RESUMO

BACKGROUND: Muscle channelopathies such as paramyotonia, hyperkalemic periodic paralysis, and potassium-aggravated myotonia are caused by gain-of-function Na+ channel mutations. METHODS: Methods: Implementation of a three-dimensional radial 23Na magnetic resonance (MR) sequence with ultra-short echo times allowed the authors to quantify changes in the total muscular 23Na signal intensity. By this technique and T2-weighted 1H MRI, the authors studied whether the affected muscles take up Na+ and water during episodes of myotonic stiffness or of cold- or exercise-induced weakness. RESULTS: A 22% increase in the 23Na signal intensity and edema-like changes on T2-weighted 1H MR images were associated with cold-induced weakness in all 10 paramyotonia patients; signal increase and weakness disappeared within 1 day. A 10% increase in 23Na, but no increase in the T2-weighted 1H signal, occurred during cold- or exercise-induced weakness in seven hyperkalemic periodic paralysis patients, and no MR changes were observed in controls or exercise-induced stiffness in six potassium-aggravated myotonia patients. Measurements on native muscle fibers revealed provocation-induced, intracellular Na+ accumulation and membrane depolarization by -41 mV for paramyotonia, by -30 mV for hyperkalemic periodic paralysis, and by -20 mV for potassium-aggravated myotonia. The combined in vivo and in vitro approach showed a close correlation between the increase in 23Na MR signal intensity and the membrane depolarization (r = 0.92). CONCLUSIONS: The increase in the total 23Na signal intensity reflects intracellular changes, the cold-induced Na+ shifts are greatest and osmotically relevant in paramyotonia patients, and even osmotically irrelevant Na+ shifts can be detected by the implemented 23Na MR technique.


Assuntos
Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/metabolismo , Doenças Musculares/diagnóstico , Doenças Musculares/metabolismo , Canais de Sódio/metabolismo , Isótopos de Sódio/farmacocinética , Adulto , Feminino , Humanos , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Debilidade Muscular/diagnóstico , Debilidade Muscular/metabolismo , Músculo Esquelético/patologia , Transtornos Miotônicos/diagnóstico , Transtornos Miotônicos/metabolismo , Paralisia Periódica Hiperpotassêmica/diagnóstico , Paralisia Periódica Hiperpotassêmica/metabolismo , Canais de Sódio/genética
14.
J Neurol ; 249(11): 1493-502, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12420087

RESUMO

Ion channelopathies have common clinical features, recurrent patterns of mutations, and almost predictable mechanisms of pathogenesis. In skeletal muscle, disorders are associated with mutations in voltage-gated Na(+), K(+), Ca(2+), and Cl(-) channels leading to hypoexcitability, causing periodic paralysis and to hyperexcitabilty, resulting in myotonia or susceptibility to malignant hyperthermia.


Assuntos
Canais Iônicos/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Sarcolema/metabolismo , Humanos , Canais Iônicos/genética , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Hipertermia Maligna/fisiopatologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Doenças Musculares/genética , Doenças Musculares/fisiopatologia , Mutação/genética , Miotonia/genética , Miotonia/metabolismo , Miotonia/fisiopatologia , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hiperpotassêmica/metabolismo , Paralisia Periódica Hiperpotassêmica/fisiopatologia , Sarcolema/genética
15.
Neurol Sci ; 21(5 Suppl): S953-61, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11382195

RESUMO

Myotonia and muscle weakness are cardinal features of myotonic disorders including the myotonic dystrophies and the non-dystrophic myotonias. Despite the recent progress in molecular genetics of these myotonic disorders, the precise mechanisms responsible for myotonia and for permanent or episodic muscle weakness are still unclear. Treatment has been mostly symptomatic, independent of the disease process involved. Moreover, there have been few randomized controlled trials of treatment for myotonic disorders and consequently no standardized treatment regimens are available. We present a review of selected treatment trials in the myotonic disorders and in muscle channelopathies, and discuss, on the basis of our experience in the myotonic disorders, the limits and advantages of treatment trials in this field. Future genotype-phenotype correlations using the patch-clamp technique are also illustrated.


Assuntos
Canais Iônicos/metabolismo , Músculo Esquelético/metabolismo , Transtornos Miotônicos/tratamento farmacológico , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Humanos , Canais Iônicos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Transtornos Miotônicos/metabolismo , Transtornos Miotônicos/fisiopatologia , Distrofia Miotônica/terapia , Paralisia Periódica Hiperpotassêmica/metabolismo , Paralisia Periódica Hiperpotassêmica/fisiopatologia , Paralisia Periódica Hiperpotassêmica/terapia , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/genética , Canais de Sódio/metabolismo
16.
Rev Med Interne ; 20(9): 774-80, 1999 Sep.
Artigo em Francês | MEDLINE | ID: mdl-10522299

RESUMO

INTRODUCTION: Though ion channel-related muscular disorders were described long ago, better understanding of their underlying mechanisms has been more recently achieved. These mechanisms include myotonic syndromes that may be caused by mutations in sodium and chloride channels, as well as periodic paralysis which is due to mutations in sodium and calcium channels. CURRENT KNOWLEDGE AND KEY POINTS: Knowledge of the involved pathophysiological mechanisms has led to better clinical description of these disorders, as well as more efficacious treatment. In some cases, it is now possible to establish the diagnosis, using genetic tests. FUTURE PROSPECTS AND PROJECTS: Other neuromuscular disorders might be related to ion channel mutations.


Assuntos
Paralisia Periódica Hipopotassêmica , Miotonia , Paralisia Periódica Hiperpotassêmica , Acetazolamida/uso terapêutico , Antiarrítmicos/uso terapêutico , Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , Humanos , Paralisia Periódica Hipopotassêmica/tratamento farmacológico , Paralisia Periódica Hipopotassêmica/genética , Paralisia Periódica Hipopotassêmica/metabolismo , Canais Iônicos/metabolismo , Mexiletina/uso terapêutico , Mutação , Miotonia/tratamento farmacológico , Miotonia/genética , Miotonia/metabolismo , Paralisia Periódica Hiperpotassêmica/tratamento farmacológico , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hiperpotassêmica/metabolismo , Fenitoína/uso terapêutico , Cloreto de Potássio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA