Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Sci Rep ; 14(1): 7335, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538623

RESUMO

Hereditary spastic paraplegia type 5 (SPG5) is an autosomal recessively inherited movement disorder characterized by progressive spastic gait disturbance and afferent ataxia. SPG5 is caused by bi-allelic loss of function mutations in CYP7B1 resulting in accumulation of the oxysterols 25-hydroxycholesterol and 27-hydroxycholesterol in serum and cerebrospinal fluid of SPG5 patients. An effect of 27- hydroxycholesterol via the estrogen and liver X receptors was previously shown on bone homeostasis. This study analyzed bone homeostasis and osteopenia in 14 SPG5 patients as a non-motor feature leading to a potential increased risk for bone fractures. T-Scores in CT bone density measurements were reduced, indicating osteopenia in SPG5 patients. Further, we analyzed various metabolites of bone homeostasis by ELISA in serum samples of these patients. We identified a lack of vitamin D3 metabolites (Calcidiol and Calcitriol), an increase in Sclerostin as a bone formation/mineralization inhibiting factor, and a decrease in cross-linked N-telopeptide of type I collagen (NTX), a marker indicating reduced bone resorption. As statin treatment has been found to lower oxysterol levels, we evaluated its effect in samples of the STOP-SPG5 trial and found atorvastatin to normalize the increased sclerostin levels. In summary, our study identified osteopenia as a non-motor feature in SPG5 and suggests the need for vitamin D3 substitution in SPG5 patients. Sclerostin may be considered a therapeutic target and biomarker in upcoming therapeutical trials in SPG5.


Assuntos
Oxisteróis , Paraplegia Espástica Hereditária , Humanos , Mutação , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Paraplegia , Homeostase , Vitamina D/uso terapêutico
2.
Prog Neurobiol ; 234: 102575, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281682

RESUMO

Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the trans-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1- knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from Ap4e1-KO mice and AP4M1-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.


Assuntos
Complexo 4 de Proteínas Adaptadoras , Proteínas Relacionadas a Receptor de LDL , Paraplegia Espástica Hereditária , Animais , Humanos , Camundongos , Complexo 4 de Proteínas Adaptadoras/genética , Complexo 4 de Proteínas Adaptadoras/metabolismo , Células HeLa , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Receptores de Superfície Celular , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
3.
Nat Commun ; 15(1): 584, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233389

RESUMO

Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adapter protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, BCH-HSP-C01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate potential mechanisms of action of BCH-HSP-C01. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future studies.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Proteômica , Neurônios/metabolismo , Transporte Proteico , Proteínas/metabolismo , Mutação
4.
Neurobiol Dis ; 187: 106293, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37709208

RESUMO

Spastic paraplegia type 11 (SPG11) is a common autosomal recessive form of hereditary spastic paraplegia (HSP) characterized by the degeneration of cortical motor neuron axons, leading to muscle spasticity and weakness. Impaired lipid trafficking is an emerging pathology in neurodegenerative diseases including SPG11, though its role in axonal degeneration of human SPG11 neurons remains unknown. Here, we established a pluripotent stem cell-based SPG11 model by knocking down the SPG11 gene in human embryonic stem cells (hESCs). These stem cells were then differentiated into cortical projection neurons (PNs), the cell types affected in HSP patients, to examine axonal defects and cholesterol distributions. Our data revealed that SPG11 deficiency led to reduced axonal outgrowth, impaired axonal transport, and accumulated swellings, recapitulating disease-specific phenotypes. In SPG11-knockdown neurons, cholesterol was accumulated in lysosome and reduced in plasma membrane, revealing impairments in cholesterol trafficking. Strikingly, the liver-X-receptor (LXR) agonists restored cholesterol homeostasis, leading to the rescue of subsequent axonal defects in SPG11-deficient cortical PNs. To further determine the implication of impaired cholesterol homeostasis in SPG11, we examined the cholesterol distribution in cortical PNs generated from SPG11 disease-mutation knock-in hESCs, and observed a similar cholesterol trafficking impairment. Moreover, LXR agonists rescued the aberrant cholesterol distribution and mitigated the degeneration of SPG11 disease-mutated neurons. Taken together, our data demonstrate impaired cholesterol trafficking underlying axonal degeneration of SPG11 human neurons, and highlight the therapeutic potential of LXR agonists for SPG11 through restoring cholesterol homeostasis.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Proteínas/metabolismo , Neurônios/metabolismo , Mutação , Colesterol/metabolismo , Fígado/patologia
5.
Biochem Biophys Res Commun ; 673: 169-174, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37392480

RESUMO

Strumpellin/Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex subunit 5 (WASHC5) is a core component of the WASH complex, and its mutations confer pathogenicity for hereditary spastic paraplegia (HSP) type SPG8, a rare neurodegenerative gait disorder. WASH complex activates actin-related protein-2/3-mediated actin polymerization and plays a pivotal role in intracellular membrane trafficking in endosomes. In this study, we examined the role of strumpellin in the regulation of structural plasticity of cortical neurons involved in gait coordination. Administration of a lentivirus containing a strumpellin-targeting short hairpin RNA (shRNA) to cortical motor neurons lead to abnormal motor coordination in mice. Strumpellin knockdown using shRNA attenuated dendritic arborization and synapse formation in cultured cortical neurons, and this effect was rescued by wild-type strumpellin expression. Compared with the wild-type, strumpellin mutants N471D or V626F identified in patients with SPG8 exhibited no differences in rescuing the defects. Moreover, the number of F-actin clusters in neuronal dendrites was decreased by strumpellin knockdown and rescued by strumpellin expression. In conclusion, our results indicate that strumpellin regulates the structural plasticity of cortical neurons via actin polymerization.


Assuntos
Actinas , Paraplegia Espástica Hereditária , Animais , Camundongos , Actinas/metabolismo , Endossomos/metabolismo , Marcha , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
6.
Nat Cell Biol ; 25(8): 1101-1110, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443287

RESUMO

Lipid droplets (LDs) are crucial organelles for energy storage and lipid homeostasis. Autophagy of LDs is an important pathway for their catabolism, but the molecular mechanisms mediating LD degradation by selective autophagy (lipophagy) are unknown. Here we identify spartin as a receptor localizing to LDs and interacting with core autophagy machinery, and we show that spartin is required to deliver LDs to lysosomes for triglyceride mobilization. Mutations in SPART (encoding spartin) lead to Troyer syndrome, a form of complex hereditary spastic paraplegia1. Interfering with spartin function in cultured human neurons or murine brain neurons leads to LD and triglyceride accumulation. Our identification of spartin as a lipophagy receptor, thus, suggests that impaired LD turnover contributes to Troyer syndrome development.


Assuntos
Paraplegia Espástica Hereditária , Camundongos , Humanos , Animais , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Transporte/metabolismo , Autofagia , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos/fisiologia
7.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37463447

RESUMO

The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1 loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid-droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Metabolismo dos Lipídeos , Mutação , Complexo de Golgi/metabolismo , Lipídeos , Fenótipo , Proteínas de Ciclo Celular/metabolismo
8.
Orphanet J Rare Dis ; 18(1): 72, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024986

RESUMO

BACKGROUND: Biallelic mutations in CYP27A1 and CYP7B1, two critical genes regulating cholesterol and bile acid metabolism, cause cerebrotendinous xanthomatosis (CTX) and hereditary spastic paraplegia type 5 (SPG5), respectively. These rare diseases are characterized by progressive degeneration of corticospinal motor neuron axons, yet the underlying pathogenic mechanisms and strategies to mitigate axonal degeneration remain elusive. METHODS: To generate induced pluripotent stem cell (iPSC)-based models for CTX and SPG5, we reprogrammed patient skin fibroblasts into iPSCs by transducing fibroblast cells with episomal vectors containing pluripotency factors. These patient-specific iPSCs, as well as control iPSCs, were differentiated into cortical projection neurons (PNs) and examined for biochemical alterations and disease-related phenotypes. RESULTS: CTX and SPG5 patient iPSC-derived cortical PNs recapitulated several disease-specific biochemical changes and axonal defects of both diseases. Notably, the bile acid chenodeoxycholic acid (CDCA) effectively mitigated the biochemical alterations and rescued axonal degeneration in patient iPSC-derived neurons. To further examine underlying disease mechanisms, we developed CYP7B1 knockout human embryonic stem cell (hESC) lines using CRISPR-cas9-mediated gene editing and, following differentiation, examined hESC-derived cortical PNs. Knockout of CYP7B1 resulted in similar axonal vesiculation and degeneration in human cortical PN axons, confirming a cause-effect relationship between gene deficiency and axonal degeneration. Interestingly, CYP7B1 deficiency led to impaired neurofilament expression and organization as well as axonal degeneration, which could be rescued with CDCA, establishing a new disease mechanism and therapeutic target to mitigate axonal degeneration. CONCLUSIONS: Our data demonstrate disease-specific lipid disturbances and axonopathy mechanisms in human pluripotent stem cell-based neuronal models of CTX and SPG5 and identify CDCA, an established treatment of CTX, as a potential pharmacotherapy for SPG5. We propose this novel treatment strategy to rescue axonal degeneration in SPG5, a currently incurable condition.


Assuntos
Células-Tronco Pluripotentes Induzidas , Paraplegia Espástica Hereditária , Xantomatose Cerebrotendinosa , Humanos , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/uso terapêutico , Ácido Quenodesoxicólico/metabolismo , Xantomatose Cerebrotendinosa/genética , Neurônios/metabolismo , Neurônios/patologia , Paraplegia Espástica Hereditária/metabolismo , Ácidos e Sais Biliares , Paraplegia/metabolismo
9.
Biochem Biophys Res Commun ; 643: 77-87, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36587525

RESUMO

Investigating novel mechanisms of neurite outgrowth via cytoskeleton is critical for developing therapeutic strategies against neural disorders. Rab3A is a vesicle-related protein distributed throughout the nervous system, but the detailed mechanism related to cytoskeleton remains largely unknown. Our previous reports show that spastin serves microtubule to regulate neurite outgrowth. Here, we asked whether Rab3A could function via modulating spastin during neuronal development. The results revealed that Rab3A colocalized with spastin in cultured hippocampal neurons. Immunoprecipitation assays showed that Rab3A physically interacted with spastin in rat brain lysates. Rab3A overexpression significantly induced spastin degradation; this effect was reversed by leupeptin- or MG-132- administration, suggesting the lysosomal and ubiquitin-mediated degradation system. Immunofluorescence staining further confirmed that Rab3A and spastin immune-colocalized with the lysosome marker lysotracker. In COS7 cells, Rab3A overexpression significantly downregulated spastin expression and abolished the spastin-mediated microtubule severing. Furthermore, overexpression inhibited while genetic knockdown of Rab3A promoted neurite outgrowth. However, this inhibitory effect on neurite outgrowth in hippocampal neurons could be reversed via co-transfection of spastin, indicating that Rab3A functions via its interaction protein spastin. In general, our data identify an interaction between Rab3A and spastin, and this interaction affects the protein stability of spastin and eliminates its microtubule severing function, thereby modulating neurite outgrowth.


Assuntos
Adenosina Trifosfatases , Paraplegia Espástica Hereditária , Animais , Ratos , Adenosina Trifosfatases/metabolismo , Neuritos/metabolismo , Crescimento Neuronal , Neurônios/metabolismo , Proteína rab3A de Ligação ao GTP , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Espastina/metabolismo , Espastina/farmacologia
10.
Autophagy ; 19(5): 1378-1395, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36409033

RESUMO

Lysosomes are the primary degradative compartment within cells and there have been significant advances over the past decade toward understanding how lysosome homeostasis is maintained. Lysosome repopulation ensures sustained autophagy function, a fundamental process that protects against disease. During macroautophagy/autophagy, cellular debris is sequestered into phagophores that mature into autophagosomes, which then fuse with lysosomes to generate autolysosomes in which contents are degraded. Autophagy cannot proceed without the sufficient generation of lysosomes, and this can be achieved via their de novo biogenesis. Alternatively, during autophagic lysosome reformation (ALR), lysosomes are generated via the recycling of autolysosome membranes. During this process, autolysosomes undergo significant membrane remodeling and scission to generate membrane fragments, that mature into functional lysosomes. By utilizing membranes already formed during autophagy, this facilitates an efficient pathway for re-deriving lysosomes, particularly under conditions of prolonged autophagic flux. ALR dysfunction is emerging as an important disease mechanism including for neurodegenerative disorders such as hereditary spastic paraplegia and Parkinson disease, neuropathies including Charcot-Marie-Tooth disease, lysosome storage disorders, muscular dystrophy, metabolic syndrome, and inflammatory and liver disorders. Here, we provide a comprehensive review of ALR, including an overview of its dynamic spatiotemporal regulation by MTOR and phosphoinositides, and the role ALR dysfunction plays in many diseases.


Assuntos
Doença de Parkinson , Paraplegia Espástica Hereditária , Humanos , Autofagia/fisiologia , Membranas Intracelulares , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Autofagossomos
11.
Sci Rep ; 12(1): 18321, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316435

RESUMO

Human mitochondrial chaperonin mHsp60 is broadly associated with various human health conditions and the V72I mutation in mHsp60 causes a form of hereditary spastic paraplegia, a neurodegenerative disease. The main function of mHsp60 is to assist folding of mitochondrial proteins in an ATP-dependent manner. In this study, we unexpectedly found that mutant mHsp60V72I was more stable structurally and more active in the ATPase activity than the wildtype. Analysis of our recently solved cryo-EM structure of mHsp60 revealed allosteric roles of V72I in structural stability and ATPase activity, which were supported by studies including those using the V72A mutation. Despite with the increases in structural stability and ATPase activity, mHsp60V72I was less efficient in folding malate dehydrogenase, a putative mHsp60 substrate protein in mitochondria and also commonly used in chaperonin studies. In addition, although mHsp60V72I along with its cochaperonin mHsp10 was able to substitute the E. coli chaperonin system in supporting cell growth under normal temperature of 37 °C, it was unable under heat shock temperature of 42 °C. Our results support the importance of structural dynamics and an optimal ATP turnover that mHsp60 has evolved for its function and physiology. We propose that unproductive energy utilization, or hyperactive ATPase activity and compromised folding function, not mutually exclusive, are responsible for the V72I pathology in neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Chaperonina 10/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Chaperonina 60/metabolismo , Escherichia coli/metabolismo , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Trifosfato de Adenosina/metabolismo , Dobramento de Proteína
12.
Biochim Biophys Acta Rev Cancer ; 1877(6): 188813, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195276

RESUMO

SPART is a gene coding for a multifunctional protein called spartin, localized in various organelles of human cells. Mutations in the coding region are responsible for a hereditary form of spastic paraplegia called Troyer syndrome while the epigenetic silencing has been demonstrated for some types of tumors. The main functions of this gene are associated to endosomic trafficking and receptor degradation, microtubule interaction, cytokinesis, fatty acids and oxidative metabolism. Spartin has been shown to be a target regulated by STAT3 and localizes also at the level of the mitochondrial outer membrane, where it forms part of a complex maintaining the integrity of the membrane potential. The most recent evidences report a downregulation of spartin in tumor tissues when compared to adjacent normal samples. This intriguing evidence supports further research aimed at clarifying the role of this protein in cancer development and metabolism.


Assuntos
Neoplasias , Paraplegia Espástica Hereditária , Humanos , Proteínas de Ciclo Celular/genética , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Ubiquitinação , Microtúbulos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(40): e2210649119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161950

RESUMO

Molecular pathways that intrinsically regulate neuronal maintenance are poorly understood, but rare pathogenic mutations that underlie neurodegenerative disease can offer important insights into the mechanisms that facilitate lifelong neuronal function. Here, we leverage a rat model to demonstrate directly that the TFG p.R106C variant implicated previously in complicated forms of hereditary spastic paraplegia (HSP) underlies progressive spastic paraparesis with accompanying ventriculomegaly and thinning of the corpus callosum, consistent with disease phenotypes identified in adolescent patients. Analyses of primary cortical neurons obtained from CRISPR-Cas9-edited animals reveal a kinetic delay in biosynthetic secretory protein transport from the endoplasmic reticulum (ER), in agreement with prior induced pluripotent stem cell-based studies. Moreover, we identify an unexpected role for TFG in the trafficking of Rab4A-positive recycling endosomes specifically within axons and dendrites. Impaired TFG function compromises the transport of at least a subset of endosomal cargoes, which we show results in down-regulated inhibitory receptor signaling that may contribute to excitation-inhibition imbalances. In contrast, the morphology and trafficking of other organelles, including mitochondria and lysosomes, are unaffected by the TFG p.R106C mutation. Our findings demonstrate a multifaceted role for TFG in secretory and endosomal protein sorting that is unique to cells of the central nervous system and highlight the importance of these pathways to maintenance of corticospinal tract motor neurons.


Assuntos
Endossomos , Neurônios Motores , Transporte Proteico , Animais , Ratos , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Paraplegia Espástica Hereditária/metabolismo
14.
Mol Biol Cell ; 33(12): ar102, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35976706

RESUMO

The adaptor protein complex-4 or AP-4 is known to mediate autophagosome maturation through regulating sorting of transmembrane cargo such as ATG9A at the Golgi. There is a need to understand AP-4 function in neurons, as mutations in any of its four subunits cause a complex form of hereditary spastic paraplegia (HSP) with intellectual disability. While AP-4 has been implicated in regulating trafficking and distribution of cargo such as ATG9A and APP, little is known about its effect on neuronal lysosomal protein traffic, lysosome biogenesis, and function. In this study, we demonstrate that in human iPSC-derived neurons AP-4 regulates lysosome composition, function, and transport via regulating the export of critical lysosomal receptors, including Sortilin 1, from the trans-Golgi network to endo-lysosomes. Additionally, loss of AP-4 causes endo-lysosomes to stall and build up in axonal swellings potentially through reduced recruitment of retrograde transport machinery to the organelle. These findings of axonal lysosome buildup are highly reminiscent of those observed in Alzheimer's disease as well as in neurons modeling the most common form of HSP, caused by spastin mutations. Our findings implicate AP-4 as a critical regulator of neuronal lysosome biogenesis and altered lysosome function and axonal endo-lysosome transport as an underlying defect in AP-4-deficient HSP. Additionally, our results also demonstrate the utility of the human i3Neuronal model system in investigating neuronal phenotypes observed in AP-4-deficient mice and/or the human AP-4 deficiency syndrome.


Assuntos
Complexo 4 de Proteínas Adaptadoras , Paraplegia Espástica Hereditária , Complexo 4 de Proteínas Adaptadoras/metabolismo , Animais , Humanos , Lisossomos/metabolismo , Camundongos , Neurônios/metabolismo , Transporte Proteico , Paraplegia Espástica Hereditária/metabolismo , Espastina/metabolismo , Rede trans-Golgi/metabolismo
15.
Curr Biol ; 32(17): 3862-3870.e6, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961316

RESUMO

Intracellular transport is essential for neuronal function and survival. The most effective plus-end-directed neuronal transporter is the kinesin-3 KIF1C, which transports large secretory vesicles and endosomes.1-4 Mutations in KIF1C cause hereditary spastic paraplegia and cerebellar dysfunction in human patients.5-8 In contrast to other kinesin-3s, KIF1C is a stable dimer and a highly processive motor in its native state.9,10 Here, we establish a baseline for the single-molecule mechanics of Kif1C. We show that full-length KIF1C molecules can processively step against the load of an optical trap and reach average stall forces of 3.7 pN. Compared with kinesin-1, KIF1C has a higher propensity to slip backward under load, which results in a lower maximal single-molecule force. However, KIF1C remains attached to the microtubule while slipping backward and re-engages quickly, consistent with its super processivity. Two pathogenic mutations, P176L and R169W, that cause hereditary spastic paraplegia in humans7,8 maintain fast, processive single-molecule motility in vitro but with decreased run length and slightly increased unloaded velocity compared with the wild-type motor. Under load in an optical trap, force generation by these mutants is severely reduced. In cells, the same mutants are impaired in producing sufficient force to efficiently relocate organelles. Our results show how its mechanics supports KIF1C's role as an intracellular transporter and explain how pathogenic mutations at the microtubule-binding interface of KIF1C impair the cellular function of these long-distance transporters and result in neuronal disease.


Assuntos
Cinesinas , Paraplegia Espástica Hereditária , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Mutação , Ligação Proteica , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
16.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457156

RESUMO

Adhesion molecules regulate cell proliferation, migration, survival, neuritogenesis, synapse formation and synaptic plasticity during the nervous system's development and in the adult. Among such molecules, the neural cell adhesion molecule L1 contributes to these functions during development, and in synapse formation, synaptic plasticity and regeneration after trauma. Proteolytic cleavage of L1 by different proteases is essential for these functions. A proteolytic fragment of 70 kDa (abbreviated L1-70) comprising part of the extracellular domain and the transmembrane and intracellular domains was shown to interact with mitochondrial proteins and is suggested to be involved in mitochondrial functions. To further determine the role of L1-70 in mitochondria, we generated two lines of gene-edited mice expressing full-length L1, but no or only low levels of L1-70. We showed that in the absence of L1-70, mitochondria in cultured cerebellar neurons move more retrogradely and exhibit reduced mitochondrial membrane potential, impaired Complex I activity and lower ATP levels compared to wild-type littermates. Neither neuronal migration, neuronal survival nor neuritogenesis in these mutants were stimulated with a function-triggering L1 antibody or with small agonistic L1 mimetics. These results suggest that L1-70 is important for mitochondrial homeostasis and that its absence contributes to the L1 syndrome phenotypes.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Paraplegia Espástica Hereditária , Animais , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Paraplegia Espástica Hereditária/metabolismo
17.
Neurogenetics ; 23(3): 167-177, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35397036

RESUMO

The syndromic group of hereditary spastic paraplegias has a heterogeneous clinical profile and a broad differential diagnosis, including neurometabolic disorders that are potentially treatable. This group includes 5,10-methylenetetrahydrofolate reductase deficiency, cobalamin C deficiency disease, dopamine responsive dystonia, cerebrotendinous xanthomatosis, biotinidase deficiency, GLUT1 deficiency syndrome, delta-e-pyrroline-carboxylase-synthetase deficiency, hyperonithinemia-hyperammonemia-homocitrullinuria syndrome, arginase deficiency, multiple carboxylase deficiency, and X-linked adrenoleukodystrophy. This review describes these diseases in detail, highlighting the importance of early diagnosis and effective treatment aiming at preserving functionality and quality of life in these patients. For the purpose of this study, we carried a non-systematic review on PUBMED, finding an initial sample of 122 papers; upon refining, 41 articles were found relevant to this review. Subsequently, we added review articles and works with historical relevance, totalizing 76 references. An adequate diagnostic workup in patients presenting with spastic paraplegia phenotype should include screening for these rare conditions, followed by parsimonious ancillary investigation.


Assuntos
Homocistinúria , Paraplegia Espástica Hereditária , Humanos , Espasticidade Muscular , Qualidade de Vida , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Deficiência de Vitamina B 12/congênito
18.
Mol Neurobiol ; 59(7): 3969-3979, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35445918

RESUMO

PNS and CNS myelin contain large amounts of galactocerebroside and sulfatide with 2-hydroxylated fatty acids. The underlying hydroxylation reaction is catalyzed by fatty acid 2-hydroxylase (FA2H). Deficiency in this enzyme causes a complicated hereditary spastic paraplegia, SPG35, which is associated with leukodystrophy. Mass spectrometry-based proteomics of purified myelin isolated from sciatic nerves of Fa2h-deficient (Fa2h-/-) mice revealed an increase in the concentration of the three proteins Cadm4, Mpp6 (Pals2), and protein band 4.1G (Epb41l2) in 17-month-old, but not in young (4 to 6-month-old), Fa2h-/- mice. These proteins are known to form a complex, together with the protein Lin7, in Schmidt-Lanterman incisures (SLIs). Accordingly, the number of SLIs was significantly increased in 17-month-old but not 4-month-old Fa2h-/- mice compared to age-matched wild-type mice. On the other hand, the relative increase in the SLI frequency was less pronounced than expected from Cadm4, Lin7, Mpp6 (Pals2), and band 4.1G (Epb41l2) protein levels. This suggests that the latter not only reflect the higher SLI frequency but that the concentration of the Cadm4 containing complex itself is increased in the SLIs or compact myelin of Fa2h-/- mice and may potentially play a role in the pathogenesis of the disease. The proteome data are available via ProteomeXchange with identifier PXD030244.


Assuntos
Amidoidrolases , Moléculas de Adesão Celular , Imunoglobulinas , Bainha de Mielina , Paraplegia Espástica Hereditária , Fatores Etários , Amidoidrolases/deficiência , Amidoidrolases/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Ácidos Graxos , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Oxigenases de Função Mista , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Paraplegia/genética , Paraplegia/metabolismo , Paraplegia/patologia , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/patologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
19.
Hum Mol Genet ; 31(16): 2693-2710, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35313342

RESUMO

Hereditary spastic paraplegia type 15 (HSP15) is a neurodegenerative condition caused by the inability to produce SPG15 protein, which leads to lysosomal swelling. However, the link between lysosomal aberrations and neuronal death is poorly explored. To uncover the functional consequences of lysosomal aberrations in disease pathogenesis, we analyze human dermal fibroblasts from HSP15 patients as well as primary cortical neurons derived from an SPG15 knockout (KO) mouse model. We find that SPG15 protein loss induces defective anterograde transport, impaired neurite outgrowth, axonal swelling and reduced autophagic flux in association with the onset of lysosomal abnormalities. Additionally, we observe lipid accumulation within the lysosomal compartment, suggesting that distortions in cellular lipid homeostasis are intertwined with lysosomal alterations. We further demonstrate that SPG15 KO neurons exhibit synaptic dysfunction, accompanied by augmented vulnerability to glutamate-induced excitotoxicity. Overall, our study establishes an intimate link between lysosomal aberrations, lipid metabolism and electrophysiological impairments, suggesting that lysosomal defects are at the core of multiple neurodegenerative disease processes in HSP15.


Assuntos
Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Animais , Proteínas de Transporte/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos , Lisossomos/metabolismo , Camundongos , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Degeneração Retiniana , Paraplegia Espástica Hereditária/metabolismo
20.
Neuropathol Appl Neurobiol ; 48(1): e12750, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34312900

RESUMO

AIMS: We investigated N471D WASH complex subunit strumpellin (Washc5) knock-in and Washc5 knock-out mice as models for hereditary spastic paraplegia type 8 (SPG8). METHODS: We generated heterozygous and homozygous N471D Washc5 knock-in mice and subjected them to a comprehensive clinical, morphological and laboratory parameter screen, and gait analyses. Brain tissue was used for proteomic analysis. Furthermore, we generated heterozygous Washc5 knock-out mice. WASH complex subunit strumpellin expression was determined by qPCR and immunoblotting. RESULTS: Homozygous N471D Washc5 knock-in mice showed mild dilated cardiomyopathy, decreased acoustic startle reactivity, thinner eye lenses, increased alkaline phosphatase and potassium levels and increased white blood cell counts. Gait analyses revealed multiple aberrations indicative of locomotor instability. Similarly, the clinical chemistry, haematology and gait parameters of heterozygous mice also deviated from the values expected for healthy animals, albeit to a lesser extent. Proteomic analysis of brain tissue depicted consistent upregulation of BPTF and downregulation of KLHL11 in heterozygous and homozygous knock-in mice. WASHC5-related protein interaction partners and complexes showed no change in abundancies. Heterozygous Washc5 knock-out mice showing normal WASHC5 levels could not be bred to homozygosity. CONCLUSIONS: While biallelic ablation of Washc5 was prenatally lethal, expression of N471D mutated WASHC5 led to several mild clinical and laboratory parameter abnormalities, but not to a typical SPG8 phenotype. The consistent upregulation of BPTF and downregulation of KLHL11 suggest mechanistic links between the expression of N471D mutated WASHC5 and the roles of both proteins in neurodegeneration and protein quality control, respectively.


Assuntos
Proteômica , Paraplegia Espástica Hereditária , Animais , Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mutação , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA