RESUMO
BACKGROUND: Severe Plasmodium falciparum malarial anemia is still the principal cause of death in children in underdeveloped countries. An imbalance between proinflammatory and anti-inflammatory cytokines is associated with malaria progression. This study evaluated circulating levels of selected inflammatory cytokines among malaria-infected children in Ghana. METHODS: This case-control study was conducted at Tamale Teaching Hospital, Ghana. One hundred and twenty children with malaria and 60 controls, aged 12-144 months were selected from April to July, 2023 for the study. Malaria was diagnosed through microscopy, full blood count was measured using hematology analyzer, and cytokines were measured using enzyme-linked immunosorbent assay. RESULTS: Malaria-infected children had higher tumor necrosis factor alpha (TNF-α) (p < .001), interferon-gamma (IFN-É£) (p < .001), interleukin (IL)-1ß (p < .001), IL-6 (p < .001), granulocyte macrophage-colony stimulating factor (GM-CSF) (p < .001), and IL-10 (p < .001) levels than controls. Participants with high parasitemia had raised TNF-α (p < .001), IFN-É£ (p < .001), IL-1ß (p < .001), IL-6 (p < .001), GM-CSF (p < .001), and IL-10 (p < .001), but reduced IL-3 (p < .001) and TGF-ß (p < .001) than those with low parasitemia. Severe malarial anemic children had elevated TNF-α (p < .001), IFN-É£ (p < .001), IL-1ß (p < .001), IL-6 (p < .001), GM-CSF (p < .001), and IL-10 (p < .001), but lower IL-3 (p < .001) and TGF-ß (p < .001) than those with uncomplicated malaria. CONCLUSION: Parasite density was the principal predictor of the cytokine levels, as parasitemia positively associated with IL-10, GM-CSF, IL-6, IL-1ß, IFN-É£, and TNF-α, but negatively associated with IL-3 and TGF-ß. Malaria is associated with enhanced secretion of pro- and anti-inflammatory cytokines in Ghanaian children. Inflammatory cytokines may be involved in the development of severe malarial anemia in children. However, IL-3 and TGF-ß may offer protection against severe malarial anemia.
Assuntos
Anemia , Citocinas , Progressão da Doença , Malária Falciparum , Humanos , Citocinas/sangue , Anemia/sangue , Anemia/imunologia , Anemia/parasitologia , Masculino , Pré-Escolar , Feminino , Estudos Prospectivos , Estudos de Casos e Controles , Lactente , Malária Falciparum/sangue , Malária Falciparum/imunologia , Malária Falciparum/complicações , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Gana/epidemiologia , Criança , Parasitemia/sangue , Parasitemia/imunologia , Plasmodium falciparum/imunologia , Mediadores da Inflamação/sangueRESUMO
Host immune responses are tightly controlled by various immune factors during infection, and protozoan parasites also manipulate the immune system to evade surveillance, leading to an evolutionary arms race in hostâpathogen interactions; however, the underlying mechanisms are not fully understood. We observed that the level of superoxide dismutase 3 (SOD3) was significantly elevated in both Plasmodium falciparum malaria patients and mice infected with four parasite species. SOD3-deficient mice had a substantially longer survival time and lower parasitemia than control mice after infection, whereas SOD3-overexpressing mice were much more vulnerable to parasite infection. We revealed that SOD3, secreted from activated neutrophils, bound to T cells, suppressed the interleukin-2 expression and concomitant interferon-gamma responses crucial for parasite clearance. Overall, our findings expose active fronts in the arms race between the parasites and host immune system and provide insights into the roles of SOD3 in shaping host innate immune responses to parasite infection.
Assuntos
Malária Falciparum , Neutrófilos , Superóxido Dismutase , Animais , Feminino , Humanos , Masculino , Camundongos , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Parasita/genética , Imunidade Celular , Imunidade Inata , Interferon gama/metabolismo , Interferon gama/imunologia , Interleucina-2/metabolismo , Interleucina-2/imunologia , Interleucina-2/genética , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Parasitemia/imunologia , Plasmodium falciparum/imunologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Linfócitos T/imunologiaRESUMO
Malaria is a global disease affecting a large portion of the world's population. Although vaccines have recently become available, their efficacies are suboptimal. We generated virus-like particles (VLPs) that expressed either apical membrane antigen 1 (AMA1) or microneme-associated antigen (MIC) of Plasmodium berghei and compared their efficacy in BALB/c mice. We found that immune sera acquired from AMA1 VLP- or MIC VLP-immunized mice specifically interacted with the antigen of choice and the whole P. berghei lysate antigen, indicating that the antibodies were highly parasite-specific. Both VLP vaccines significantly enhanced germinal center B cell frequencies in the inguinal lymph nodes of mice compared with the control, but only the mice that received MIC VLPs showed significantly enhanced CD4+ T cell responses in the blood following P. berghei challenge infection. AMA1 and MIC VLPs significantly suppressed TNF-α and interleukin-10 production but had a negligible effect on interferon-γ. Both VLPs prevented excessive parasitemia buildup in immunized mice, although parasite burden reduction induced by MIC VLPs was slightly more effective than that induced by AMA1. Both VLPs were equally effective at preventing body weight loss. Our findings demonstrated that the MIC VLP was an effective inducer of protection against murine experimental malaria and should be the focus of further development.
Assuntos
Antígenos de Protozoários , Vacinas Antimaláricas , Proteínas de Membrana , Plasmodium berghei , Proteínas de Protozoários , Vacinas de Partículas Semelhantes a Vírus , Animais , Feminino , Camundongos , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Malária/prevenção & controle , Malária/imunologia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Proteínas de Membrana/imunologia , Camundongos Endogâmicos BALB C , Parasitemia/imunologia , Parasitemia/prevenção & controle , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagemRESUMO
Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.
Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Esporozoítos , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Cloroquina/uso terapêutico , Cloroquina/farmacologia , Europa (Continente) , População Europeia , Gabão , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Parasitemia/imunologia , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , População Centro-AfricanaRESUMO
A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ vaccine dose. Machine learning identified spliceosome, proteosome, and resting DC signatures as prevaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline circumsporozoite protein-specific (CSP-specific) IgG predicted nonprotection. Prevaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T cell responses after vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naive mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity by whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggests that PfSPZ vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.
Assuntos
Imunidade Inata , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Esporozoítos , Vacinas Atenuadas , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Imunidade Inata/imunologia , Humanos , Animais , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Camundongos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Esporozoítos/imunologia , Esporozoítos/efeitos da radiação , Linfócitos T CD8-Positivos/imunologia , Lactente , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/imunologia , Feminino , Parasitemia/imunologia , Parasitemia/prevenção & controle , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Eficácia de VacinasRESUMO
RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. To mitigate the risk of cerebral malaria (CM) among children under the age of 5, it is imperative to develop new vaccines. EVs are potential vaccine candidates as they obtain the ability of brain-targeted delivery and transfer plasmodium antigens and immunomodulators during infections. This study extracted EVs from BALB/c mice infected with Plasmodium yoelii 17XNL (P.y17XNL). C57BL/6J mice were intravenously immunized with EVs (EV-I.V. + CM group) or subcutaneously vaccinated with the combination of EVs and CpG ODN-1826 (EV + CPG ODN-S.C. + CM group) on days 0 and 20, followed by infection with Plasmodium berghei ANKA (P.bANKA) on day 20 post-second immunization. We monitored Parasitemia and survival rate. The integrity of the Blood-brain barrier (BBB) was examined using Evans blue staining.The levels of cytokines and adhesion molecules were evaluated using Luminex, RT-qPCR, and WB. Brain pathology was evaluated by hematoxylin and eosin and immunohistochemical staining. The serum levels of IgG, IgG1, and IgG2a were analyzed by enzyme-linked immunosorbent assay. Compared with those in the P.bANKA-infected group, parasitemia increased slowly, death was delayed (day 10 post-infection), and the survival rate reached 75 %-83.3 % in the EV-I.V. + ECM and EV + CPG ODN-S.C. + ECM groups. Meanwhile, compared with the EV + CPG ODN-S.C. + ECM group, although parasitemia was almost the same, the survival rate increased in the EV-I.V. + ECM group.Additionally, EVs immunization markedly downregulated inflammatory responses in the spleen and brain and ameliorated brain pathological changes, including BBB disruption and infected red blood cell (iRBC) sequestration. Furthermore, the EVs immunization group exhibited enhanced antibody responses (upregulation of IgG1 and IgG2a production) compared to the normal control group. EV immunization exerted protective effects, improving the integrity of the BBB, downregulating inflammation response of brain tissue, result in reduces the incidence of CM. The protective effects were determined by immunological pathways and brain targets elicited by EVs. Intravenous immunization exhibited better performance than subcutaneous immunization, which perhaps correlated with EVs, which can naturally cross BBB to play a better role in brain protection.
Assuntos
Barreira Hematoencefálica , Eritrócitos , Vesículas Extracelulares , Malária Cerebral , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos , Plasmodium berghei , Animais , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Malária Cerebral/prevenção & controle , Plasmodium berghei/imunologia , Vesículas Extracelulares/imunologia , Eritrócitos/parasitologia , Eritrócitos/imunologia , Barreira Hematoencefálica/imunologia , Camundongos , Oligodesoxirribonucleotídeos/administração & dosagem , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Feminino , Encéfalo/parasitologia , Encéfalo/imunologia , Encéfalo/patologia , Citocinas/metabolismo , Citocinas/sangue , Plasmodium yoelii/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Parasitemia/imunologia , Modelos Animais de Doenças , Imunoglobulina G/sangue , Imunoglobulina G/imunologiaRESUMO
A large body of evidence suggests that low parasite carriage in Plasmodium falciparum asymptomatic infection is required for the maintenance of malaria immunity. However, the fact that treating such infections has little to no impact on subsequent clinical malaria is rarely noted. In this paper, we review data and argue that low-density parasite carriage in asymptomatic infection may not support host immune processes and that parasites are virtually under the host's immunological radar. We also discuss factors that may be constraining parasitemia in asymptomatic infections from reaching the threshold required to cause clinical symptoms. A thorough understanding of this infectious reservoir is essential for malaria control and eradication because asymptomatic infections contribute significantly to Plasmodium transmission.
Persistent asymptomatic Plasmodium falciparum parasite carriage has been recognized as one of the major contributors to malaria transmission that impedes worldwide elimination efforts. Asymptomatic infection is required for maintaining clinical immunity, hence the controversy regarding its treatment. Evidence from transcriptional and cellular profiling indicates asymptomatic low parasite carriage may not support host immune processes. Interventions targeted at persistent asymptomatic infections may be crucial for malaria control.
Assuntos
Infecções Assintomáticas , Malária Falciparum , Plasmodium falciparum , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Animais , Interações Hospedeiro-Parasita/imunologia , Parasitemia/imunologia , Portador Sadio/parasitologia , Portador Sadio/imunologiaRESUMO
Chagas disease (CD) is an important parasitic disease caused by Trypanosoma cruzi. Interleukin-32 (IL-32) plays an important role in inflammation and in the development of Th1/Th17 acquired immune responses. We evaluated the influence of IL-32γ on the immune response profile, pathogenesis of myocarditis in acute experimental CD, and control of the disease. For this, C57BL/6 wild-type (WT) and IL-32γTg mice were infected subcutaneously with 1,000 forms of Colombian strain of T. cruzi. In the histopathological analyzes, T. cruzi nests, myocarditis, and collagen were quantified in cardiac tissue. Cytokine productions (IL-32, IFN-γ, TNF-α, IL-10, and IL-17) were measured in cardiac homogenate by ELISA. The IL-32γTg mice showed a better control of parasitemia and T. cruzi nests in the heart than WT mice. Infected-WT and -IL-32γTg mice showed similar levels of IFN-γ, TNF-α, and IL-17, but IL-10 was significantly higher expressed in IL-32γTg than in WT mice. The cytokine profile found in IL-32γTg animals contributed to body weight maintenance, parasitemia control, and survival. Our results indicate that the presence of human IL-32γ in mice infected with the Colombian strain of T. cruzi is important for infection control during the acute phase of Chagas disease.
Assuntos
Doença de Chagas , Inflamação , Interleucinas , Miocárdio , Parasitemia , Trypanosoma cruzi , Animais , Humanos , Masculino , Camundongos , Doença Aguda , Cardiomiopatia Chagásica , Doença de Chagas/imunologia , Inflamação/genética , Inflamação/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Miocárdio/patologia , Parasitemia/imunologia , Trypanosoma cruzi/fisiologiaRESUMO
Cerebral malaria is a potentially lethal disease, which is caused by excessive inflammatory responses to Plasmodium parasites. Here we use a newly developed transgenic Plasmodium berghei ANKA (PbAAma1OVA) parasite that can be used to study parasite-specific T cell responses. Our present study demonstrates that Ifnar1-/- mice, which lack type I interferon receptor-dependent signaling, are protected from experimental cerebral malaria (ECM) when infected with this novel parasite. Although CD8+ T cell responses generated in the spleen are essential for the development of ECM, we measured comparable parasite-specific cytotoxic T cell responses in ECM-protected Ifnar1-/- mice and wild type mice suffering from ECM. Importantly, CD8+ T cells were increased in the spleens of ECM-protected Ifnar1-/- mice and the blood-brain-barrier remained intact. This was associated with elevated splenic levels of CCL5, a T cell and eosinophil chemotactic chemokine, which was mainly produced by eosinophils, and an increase in eosinophil numbers. Depletion of eosinophils enhanced CD8+ T cell infiltration into the brain and increased ECM induction in PbAAma1OVA-infected Ifnar1-/- mice. However, eosinophil-depletion did not reduce the CD8+ T cell population in the spleen or reduce splenic CCL5 concentrations. Our study demonstrates that eosinophils impact CD8+ T cell migration and proliferation during PbAAma1OVA-infection in Ifnar1-/- mice and thereby are contributing to the protection from ECM.
Assuntos
Encéfalo/imunologia , Eosinófilos/fisiologia , Malária Cerebral/imunologia , Parasitemia/imunologia , Plasmodium berghei , Linfócitos T/imunologia , Animais , Animais não Endogâmicos , Anopheles/parasitologia , Antígenos de Protozoários/imunologia , Movimento Celular , Quimiocina CCL5/análise , Quimiocina CCL5/fisiologia , Citotoxicidade Imunológica , Feminino , Contagem de Leucócitos , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mosquitos Vetores/parasitologia , Organismos Geneticamente Modificados , Ovalbumina , Parasitemia/parasitologia , Fragmentos de Peptídeos , Plasmodium berghei/genética , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptores CCR5/fisiologia , Baço/química , Baço/imunologiaRESUMO
In the Plasmodium berghei ANKA mouse model of malaria, accumulation of CD8+ T cells and infected RBCs in the brain promotes the development of experimental cerebral malaria (ECM). In this study, we used malaria-specific transgenic CD4+ and CD8+ T cells to track evolution of T cell immunity during the acute and memory phases of P. berghei ANKA infection. Using a combination of techniques, including intravital multiphoton and confocal microscopy and flow cytometric analysis, we showed that, shortly before onset of ECM, both CD4+ and CD8+ T cell populations exit the spleen and begin infiltrating the brain blood vessels. Although dominated by CD8+ T cells, a proportion of both T cell subsets enter the brain parenchyma, where they are largely associated with blood vessels. Intravital imaging shows these cells moving freely within the brain parenchyma. Near the onset of ECM, leakage of RBCs into areas of the brain can be seen, implicating severe damage. If mice are cured before ECM onset, brain infiltration by T cells still occurs, but ECM is prevented, allowing development of long-term resident memory T cell populations within the brain. This study shows that infiltration of malaria-specific T cells into the brain parenchyma is associated with cerebral immunopathology and the formation of brain-resident memory T cells. The consequences of these resident memory populations is unclear but raises concerns about pathology upon secondary infection.
Assuntos
Barreira Hematoencefálica/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Transferência Adotiva/métodos , Animais , Modelos Animais de Doenças , Feminino , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parasitemia/imunologia , Baço/imunologiaRESUMO
Immunization with Plasmodium falciparum (Pf) sporozoites under chemoprophylaxis (PfSPZ-CVac) is the most efficacious approach to malaria vaccination. Implementation is hampered by a complex chemoprophylaxis regimen and missing evidence for efficacy against heterologous infection. We report the results of a double-blinded, randomized, placebo-controlled trial of a simplified, condensed immunization regimen in malaria-naive volunteers (EudraCT-Nr: 2018-004523-36). Participants are immunized by direct venous inoculation of 1.1 × 105 aseptic, purified, cryopreserved PfSPZ (PfSPZ Challenge) of the PfNF54 strain or normal saline (placebo) on days 1, 6 and 29, with simultaneous oral administration of 10 mg/kg chloroquine base. Primary endpoints are vaccine efficacy tested by controlled human malaria infection (CHMI) using the highly divergent, heterologous strain Pf7G8 and safety. Twelve weeks following immunization, 10/13 participants in the vaccine group are sterilely protected against heterologous CHMI, while (5/5) participants receiving placebo develop parasitemia (risk difference: 77%, p = 0.004, Boschloo's test). Immunization is well tolerated with self-limiting grade 1-2 headaches, pyrexia and fatigue that diminish with each vaccination. Immunization induces 18-fold higher anti-Pf circumsporozoite protein (PfCSP) antibody levels in protected than in unprotected vaccinees (p = 0.028). In addition anti-PfMSP2 antibodies are strongly protection-associated by protein microarray assessment. This PfSPZ-CVac regimen is highly efficacious, simple, safe, well tolerated and highly immunogenic.
Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologia , Adulto , Antimaláricos/uso terapêutico , Linhagem Celular , Quimioprevenção , Cloroquina/uso terapêutico , Feminino , Humanos , Imunoglobulina G/imunologia , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Parasitemia/imunologia , Análise Serial de Proteínas , Esporozoítos/imunologia , Vacinação/efeitos adversos , Vacinas Atenuadas/efeitos adversosRESUMO
Babesia spp. are tick-transmitted intra-erythrocytic protozoan parasites that infect humans and animals, causing a flu-like illness and hemolytic anemia. There is currently no human vaccine available. People most at risk of severe disease are the elderly, immunosuppressed, and asplenic individuals. B. microti and B. divergens are the predominant species affecting humans. Here, we present a whole-parasite Babesia vaccine. To establish proof-of-principle, we employed chemically attenuated B. microti parasitized red blood cells from infected mice. To aid clinical translation, we produced liposomes containing killed parasite material. Vaccination significantly reduces peak parasitemia following challenge. B cells and anti-parasite antibodies do not significantly contribute to vaccine efficacy. Protection is abrogated by the removal of CD4+ T cells or macrophages prior to challenge. Importantly, splenectomized mice are protected by vaccination. To further facilitate translation, we prepared a culture-based liposomal vaccine and demonstrate that this performs as a universal vaccine inducing immunity against different human Babesia species.
Assuntos
Babesia microti/imunologia , Babesiose/imunologia , Babesiose/prevenção & controle , Avaliação Pré-Clínica de Medicamentos , Parasitemia/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Animais , Anticorpos Antiprotozoários/sangue , Linfócitos B/imunologia , Babesiose/parasitologia , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Imunidade , Lipossomos/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Parasitemia/terapia , T-Linfocitopenia Idiopática CD4-Positiva/imunologia , Carrapatos/parasitologiaRESUMO
Malaria is the leading cause of parasitic infection-related death globally. Additionally, malaria-associated mortality is higher in men than in women, and this sexual dimorphism reflects differences in innate and adaptive immune responses that are influenced by sex hormones. Normally, females develop more robust immune responses against parasites than males. However, most clinical and laboratory studies related to the immune response to malaria do not consider sex as a variable, and relatively few studies have compared the sex-dependent role of 17ß-estradiol in this process. In this study, we decreased in vivo the levels of 17ß-estradiol by gonadectomy or administered 17ß-estradiol to intact or gonadectomized male and female CBA/Ca mice infected with Plasmodium berghei ANKA. Subsequently, we assessed the effects of 17ß-estradiol on parasite load; the percentages of different immune cells in the spleen; the plasma levels of antibodies and pro- and anti-inflammatory cytokines; and the mRNA expression levels of cytokine-encoding genes in the brain. The results showed that the administration of 17ß-estradiol increased parasitemia and decreased body weight in intact female mice. Moreover, intact females exhibited higher levels of CD8+ T cells and lower levels of NK1.1+ cells than their male counterparts under the same condition. Gonadectomy increased IFN-γ and decreased TNF-α concentrations only in intact female mice. Additionally, IL-10 levels were higher in intact females than in their male counterparts. Finally, the mRNA expression levels of cytokines coding genes in the brain showed a dimorphic pattern, i.e., gonadectomy upregulated Tnf, Il1b, and Il10 expression in males but not in females. Our findings explain the sexual dimorphism in the immune response to malaria, at least in part, and suggest potential sex-dependent implications for the efficacy of vaccines or drugs targeting malaria.
Assuntos
Estradiol/metabolismo , Sistema Imunitário/imunologia , Malária/imunologia , Malária/metabolismo , Parasitemia/imunologia , Fatores Sexuais , Animais , Temperatura Corporal , Linfócitos T CD8-Positivos/citologia , Citocinas/metabolismo , Feminino , Hemoglobinas/análise , Humanos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Orquiectomia , Ovariectomia , Parasitemia/parasitologia , Plasmodium berghei , Baço/imunologia , Baço/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUD: It is important to expound the opposite clinical outcomes between children and adulthood for eradicate malaria. There remains unknown about the correlation between adaptive immune response and age-related in malaria. METHODS: 4 and 8-week-old mice were used to mimic children and adulthood, respectively. Parasitemia and the survival rate were monitored. The proportion and function of Th1 and Th2 cells were detected by FACS. The levels of IFN-γ, IL-4, total IgG, IgG1, IgG2a and Plasmodium yoelii MSP-1-specific IgG were measured by ELISA. RESULTS: The adult group showed greater resistance to P. yoelii 17XL infection, with lower parasitemia. Compared with 4-week-old mice, the percentage of CD4+T-bet+IFN-γ+ Th1 cells as well as IFN-γ production were significantly increased on day 5 p.i. in the 8-week-old mice after P. yoelii 17XNL infection. The percentage of CD4+GATA3+IL-4+ Th2 cells and CD4+CXCR5+ Tfh cells, and IL-4 production in the 8-week-old mice significantly increased on day 5 and day 10 after P. yoelii 17XNL infection. Notably, the levels of total IgG, IgG1, IgG2a and P. yoelii MSP-1-specific IgG were also significantly increased in the 8-week-old mice. PD-1, a marker of exhaustion, was up-regulated on CD4+ or activated CD4+ T cells in the 8-week-old mice as compared to the 4-week-old group. CONCLUSIONS: Thus, we consider that enhanced cellular and humoral adaptive immunity might contribute to rapid clearance of malaria among adults, likely in a PD-1-dependent manner due to induction of CD4+ T cells exhaustion in P. yoelii 17XNL infected 8-week-old mice.
Assuntos
Imunidade Adaptativa/imunologia , Malária/imunologia , Plasmodium yoelii/imunologia , Fatores Etários , Animais , Modelos Animais de Doenças , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Malária/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/imunologia , Parasitemia/mortalidade , Plasmodium yoelii/classificação , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Linfócitos T/citologia , Linfócitos T/metabolismoRESUMO
A variety of signaling pathways are involved in the induction of innate cytokines and CD8+ T cells, which are major players in protection against acute Trypanosoma cruzi infection. Previous data have demonstrated that a TBK-1/IRF3-dependent signaling pathway promotes IFN-ß production in response to Trypanosoma cruzi, but the role for STING, a main interactor of these proteins, remained to be addressed. Here, we demonstrated that STING signaling is required for production of IFN-ß, IL-6, and IL-12 in response to Trypanosoma cruzi infection and that STING absence negatively impacts activation of IRF-dependent pathways in response to the parasite. We reported no significant activation of IRF-dependent pathways and cytokine expression in RAW264.7 macrophages in response to heat-killed trypomastigotes. In addition, we showed that STING is essential for T. cruzi DNA-mediated induction of IFN-ß, IL-6, and IL-12 gene expression in RAW264.7 macrophages. We demonstrated that STING-knockout mice have significantly higher parasitemia from days 5 to 8 of infection and higher heart parasitism at day 13 after infection. Although we observed similar heart inflammatory infiltrates at day 13 after infection, IFN-ß, IL-12, CXCL9, IFN-γ, and perforin gene expression were lower in the absence of STING. We also showed an inverse correlation between parasite DNA and the expression of CXCL9, IFN-γ, and perforin genes in the hearts of infected animals at day 13 after infection. Finally, we reported that STING signaling is required for splenic IFN-ß and IL-6 expression early after infection and that STING deficiency results in lower numbers of splenic parasite-specific IFN-γ and IFN-γ/perforin-producing CD8+ T cells, indicating a pivotal role for STING signaling in immunity to Trypanosoma cruzi.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Citocinas/imunologia , Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Transdução de Sinais/imunologia , Animais , Linhagem Celular , Quimiocina CXCL9/imunologia , Interferon gama/imunologia , Interleucina-12/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parasitemia/imunologia , Perforina/imunologia , Células RAW 264.7 , Trypanosoma cruzi/imunologiaRESUMO
Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands influence the outcome of many infectious diseases. We analyzed the relationship of compound KIR-HLA genotypes with risk of Plasmodium falciparum infection in a longitudinal cohort of 890 Ugandan individuals. We found that presence of HLA-C2 and HLA-Bw4, ligands for inhibitory KIR2DL1 and KIR3DL1, respectively, increased the likelihood of P. falciparum parasitemia in an additive manner. Individuals homozygous for HLA-C2, which mediates strong inhibition via KIR2DL1, had the highest odds of parasitemia, HLA-C1/C2 heterozygotes had intermediate odds, and individuals homozygous for HLA-C1, which mediates weaker inhibition through KIR2DL2/3, had the lowest odds of parasitemia. In addition, higher surface expression of HLA-C, the ligand for inhibitory KIR2DL1/2/3, was associated with a higher likelihood of parasitemia. Together these data indicate that stronger KIR-mediated inhibition confers a higher risk of P. falciparum parasitemia and suggest that KIR-expressing effector cells play a role in mediating antiparasite immunity.
Assuntos
Plasmodium falciparum/imunologia , Receptores KIR/fisiologia , Adulto , Criança , Pré-Escolar , Genótipo , Antígenos HLA-C/genética , Humanos , Lactente , Ligantes , Malária Falciparum/etiologia , Malária Falciparum/imunologia , Parasitemia/etiologia , Parasitemia/imunologia , Plasmodium falciparum/isolamento & purificaçãoRESUMO
Background: Considering the complexity of the factors involved in the immunopathology of Chagas disease, which influence the Chagas' disease pathogenesis, anti-T. cruzi immune response, and chemotherapy outcome, further studies are needed to improve our understanding about these relationships. On this way, in this article we analyzed the host genetic influence on hematological, histopathological and immunological aspects after T. cruzi infection. Methods: BALB/c and A mice were intragastrically infected with T. cruzi SC2005 strain, isolated from a patient of an outbreak of Chagas disease. Parameters such as parasite load, survival rates, cytokines production, macrophages, T and B cell frequencies, and histopathology analysis were carried out. Results: BALB/c mice presented higher parasitemia and mortality rates than A mice. Both mouse lineages exhibited hematological alterations suggestive of microcytic hypochromic anemia and histopathological alterations in stomach, heart and liver. The increase of CD8+ T cells, in heart, liver and blood, and the increase of CD19+ B cells, in liver, associated with a high level of proinflammatory cytokines (IL-6, TNF-α, IFN-γ), confer a resistance profile to the host. Although BALB/c animals exhibited the same findings observed in A mice, the response to infection occurred later, after a considerable parasitemia increase. By developing an early response to the infection, A mice were found to be less susceptible to T. cruzi SC2005 infection. Conclusions: Host genetics background shaping the response to infection. The early development of a cytotoxic cellular response profile with the production of proinflammatory cytokines is important to lead a less severe manifestation of Chagas disease.
Assuntos
Doença de Chagas , Animais , Doença de Chagas/genética , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Citocinas/imunologia , Feminino , Coração/parasitologia , Fígado/parasitologia , Fígado/patologia , Camundongos Endogâmicos , Miocárdio/patologia , Carga Parasitária , Parasitemia/genética , Parasitemia/imunologia , Parasitemia/patologia , Especificidade da Espécie , Estômago/parasitologia , Estômago/patologiaRESUMO
Background: Chagas disease caused by Trypanosoma cruzi (T. cruzi) affects approximately six million individuals worldwide. Clinical manifestations are expected to occur due to the parasite persistence and host immune response. Herein we investigated potential associations between IL1B, IL6, IL17A, or IL18 polymorphism profiles and cardiomyopathy or T. cruzi parasitemia, as well as the impact of HIV infection on cardiopathy. Methods: Two hundred twenty-six patients and 90 control individuals were analyzed. IL1B rs1143627 T>C, IL6 rs1800795 C>G, IL17A rs2275913 G>A, IL18 rs187238 C>G, and IL18 rs1946518 C>A SNVs were analyzed by real-time PCR and T. cruzi parasitemia by PCR. Results: Our data revealed association between a cytokine gene polymorphism and parasitemia never previously reported. The IL6 rs1800795 CG genotype lowered the risk of positive parasitemia (OR = 0.45, 95% CI 0.24-0.86, P = 0.015). Original findings included associations between IL17A rs2275913 AA and IL18 s1946518 AA genotypes with decreased risk of developing cardiomyopathy (OR = 0.27, 95% CI 0.07-0.97, P = 0.044; and OR = 0.35, 95% CI 0.14-0.87, P = 0.023, respectively). IL18 rs1946518 AA and IL1B rs1143627 TC were associated with reduced risk for cardiomyopathy severity, including NYHA (New York Heart Association) class ≥ 2 (OR = 0.21, 95% CI 0.06-0.68, P = 0.009; and OR = 0.48, 95% CI 0.24-0.95, P = 0.036, respectively) and LVEF (left ventricular ejection fraction) <45% for IL18 rs1946518 AA (OR = 0.22, 95% CI 0.05-0.89, P = 0.034). A novel, unexpected protective effect of HIV infection against development/progression of cardiomyopathy was identified, based on a lower risk of developing cardiopathy (OR = 0.48, 95% CI 0.23-0.96, P = 0.039), NYHA class ≥ 2 (OR = 0.15, 95% CI 0.06-0.39, P < 0.001), and LVEF < 45% (OR = 0.03, 95% CI 0.00-0.25, P = 0.001). Digestive involvement was negatively associated with NYHA ≥ 2 and LVEF < 45% (OR = 0.20, 95% CI 0.09-0.47, P < 0.001; and OR = 0.24, 95% CI 0.09-0.62, P = 0.004, respectively). Conclusions: Our data support a protective role of IL17A AA, IL18 AA, and IL1B TC genotypes against development/progression of cardiomyopathy and a modulatory effect of the IL6 CG genotype on the risk of parasitemia in Chagas disease. Notably, HIV infection was shown to protect against development/progression of cardiopathy, potentially associated with a synergistic effect of HIV and highly active antiretroviral therapy (HAART), attenuating a Th1-mediated response in the myocardium. This proposed hypothesis requires confirmation, however, in larger and more comprehensive future studies.
Assuntos
Doença de Chagas , Genótipo , Interleucina-17 , Interleucina-18 , Interleucina-1beta , Interleucina-6 , Parasitemia , Polimorfismo Genético , Trypanosoma cruzi/imunologia , Adulto , Doença de Chagas/genética , Doença de Chagas/imunologia , Feminino , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Parasitemia/genética , Parasitemia/imunologiaRESUMO
Malaria is associated with complicated immunopathogenesis. In this study, we provide evidence for an unexpected role of TLR3 in promoting the establishment of Plasmodium yoelii infection through delayed clearance of parasitemia in wild type C57BL/6jRj (B6) compared with TLR3 knockout mice. In this study, we confirmed an increased expression of Tlr3, Trif, Tbk1, and Irf7/Irf3 in the liver 42 h postinfection and the initiation of an early burst of proinflammatory response such as Ifng, NF-kB, and Tnfa in B6 mice that may promote parasite fitness. Interestingly, in the absence of TLR3, we showed the involvement of high IFN-γ and lower type I IFN response in the early clearance of parasitemia. In parallel, we observed an increase in splenic NK and NKT cells expressing TLR3 in infected B6 mice, suggesting a role for TLR sensing in the innate immune response. Finally, we find evidence that the increase in the frequency of CD19+TLR3+ B cells along with reduced levels of total IgG in B6 mice possibly suggests the initiation of TLR3-dependent pathway early during P. yoelii infection. Our results thus reveal a new mechanism in which a parasite-activated TLR3 pathway promotes blood stage infection along with quantitative and qualitative differences in Ab responses.
Assuntos
Malária/imunologia , Mamíferos/imunologia , Mamíferos/parasitologia , Plasmodium yoelii/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Linfócitos B/imunologia , Imunidade Inata/imunologia , Imunoglobulina G/imunologia , Inflamação/imunologia , Inflamação/parasitologia , Interferon Tipo I/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/parasitologia , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/parasitologia , Parasitemia/imunologia , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
BACKGROUND: Although WHO recommends cotrimoxazole (CTX) discontinuation among HIV patients who have undergone immune recovery and are living in areas of low prevalence of malaria, some countries including Uganda recommend CTX discontinuation despite having a high malaria burden. We estimated the prevalence and factors associated with malaria parasitaemia among adults living with HIV attending hospital outpatient clinic before and after discontinuation of CTX prophylaxis. METHODS: Between March and April 2019, 599 participants aged 18 years and above, and attending Kitgum hospital HIV clinic in Uganda were enrolled in a cross study. A standardized questionnaire was administered and physical examination conducted. A finger-prick blood sample was collected for identification of malaria parasites by microscopy. The prevalence of parasitaemia was estimated and compared among participants on and those who had discontinued CTX prophylaxis, and factors associated with malaria parasitaemia assessed. RESULTS: Of the enrolled participants, 27 (4.5%) had malaria parasites and 452 (75.5%) had stopped CTX prophylaxis. Prevalence of malaria parasitaemia was significantly higher in participants who had stopped CTX prophylaxis (5.5% versus 1.4% p = 0.03) and increased with increasing duration since the discontinuation of prophylaxis. Compared to participants taking CTX, those who discontinued prophylaxis for 3-5 months and >5 months were more likely to have malaria parasites (adjusted prevalence ratio (aPR) = 1.64, 95% CI 0.37-7.29, p = 0.51, and aPR = 6.06, 95% CI 1.34-27.3, P = 0.02). Low CD4 count (< 250cells/mm3) was also associated with increased risk of having parasites (aPR = 4.31, 95% CI 2.13-8.73, p <0.001). CONCLUSION: People from malaria endemic settings living with HIV have a higher prevalence of malaria parasitaemia following discontinuation of CTX compared to those still on prophylaxis. The risk increased with increasing duration since discontinuation of the prophylaxis. HIV patients should not discontinue CTX prophylaxis in areas of Uganda where the burden of malaria remains high. Other proven malaria control interventions may also be encouraged in HIV patients following discontinuation of CTX prophylaxis.