Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.190
Filtrar
1.
Carbohydr Polym ; 337: 122149, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710571

RESUMO

Phytopathogen cell wall polysaccharides have important physiological functions. In this study, we isolated and characterized the alkali-insoluble residue on the inner layers of the Rhizoctonia solani AG1 IA cell wall (RsCW-AIR). Through chemical composition and structural analysis, RsCW-AIR was mainly identified as a complex of chitin/chitosan and glucan (ChCsGC), with glucose and glucosamine were present in a molar ratio of 2.7:1.0. The predominant glycosidic bond linkage of glucan in ChCsGC was ß-1,3-linked Glcp, both the α and ß-polymorphic forms of chitin were presented in it by IR, XRD, and solid-state NMR, and the ChCsGC exhibited a degree of deacetylation measuring 67.08 %. RsCW-AIR pretreatment effectively reduced the incidence of rice sheath blight, and its induced resistance activity in rice was evaluated, such as inducing a reactive oxygen species (ROS) burst, leading to the accumulation of salicylic acid (SA) and the up-regulation of SA-related gene expression. The recognition of RsCW-AIR in rice is partially dependent on CERK1.


Assuntos
Parede Celular , Quitina , Quitosana , Glucanos , Oryza , Doenças das Plantas , Rhizoctonia , Rhizoctonia/efeitos dos fármacos , Oryza/microbiologia , Oryza/química , Parede Celular/química , Quitosana/química , Quitosana/farmacologia , Quitina/química , Quitina/farmacologia , Glucanos/química , Glucanos/farmacologia , Doenças das Plantas/microbiologia , Resistência à Doença , Espécies Reativas de Oxigênio/metabolismo
2.
Methods Mol Biol ; 2788: 81-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656510

RESUMO

Atomic force microscopy (AFM) has broken boundaries in the characterization of the supramolecular architecture of cell wall assemblies and single cell wall polysaccharides at the nanoscale level. Moreover, AFM provides an opportunity to evaluate the mechanical properties of cell wall material which is not possible with any other method. However, in the case of plant tissue, the critical step is a smart sample preparation that should not affect the polysaccharide structure or assembly and on the other hand should consider device limitations, especially scanner ranges. In this chapter, the protocols from the sample preparation, including isolation of cell wall material and extraction of cell wall polysaccharide fractions, through AFM imaging of polysaccharide assemblies and single molecules until an image analysis to obtain quantitative data characterizing the biopolymers are presented.


Assuntos
Parede Celular , Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Parede Celular/ultraestrutura , Parede Celular/química , Polissacarídeos/química , Polissacarídeos/análise
3.
Food Chem ; 449: 139234, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608604

RESUMO

Cuticle wax chemicals are cultivar-dependent and contribute to storage quality. Few research reported on wax analysis between melting flesh-type (MF; 'Jinhuami 25') and nonmelting flesh-type (NMF; 'Xizhoumi 17' and 'Chougua') Hami melons. Chemicals and crystal structures of Hami melon cuticular wax, cell wall metabolism related to fruit melting, and fruit physiology were analyzed to observe wax functions. Results showed that Hami melon cuticle wax predominantly consists of esters, alkanes, alcohols, aldehydes, and terpenoids. MF-type has a lower alkane/terpenoid ratio, concomitant to its higher weight loss and cuticle permeability. Micromorphology of wax crystals appears as numerous platelets with irregular crystals, and the transformation of wax structure in NMF Hami melon is delayed. Waxy components affect cell wall metabolism and physiological quality, which results in the pulp texture difference between MF-type and NMF-type during storage. Results provide a reference for the regulation of wax synthesis in both types of melons.


Assuntos
Cucumis melo , Frutas , Ceras , Ceras/química , Frutas/química , Cucumis melo/química , Parede Celular/química
4.
J Agric Food Chem ; 72(18): 10206-10217, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38597965

RESUMO

Bamboo is a promising biomass resource. However, the complex multilayered structure and chemical composition of bamboo cell walls create a unique anti-depolymerization barrier, which increases the difficulty of separation and utilization of bamboo. In this study, the relationship between the connections of lignin-carbohydrate complexes (LCCs) within bamboo cell walls and their multilayered structural compositions was investigated. The chemical composition, structural properties, dissolution processes, and migration mechanisms of LCCs were analyzed. Alkali-stabilized LCC bonds were found to be predominantly characterized by phenyl glycoside (PhGlc) bonds along with numerous p-coumaric acid (PCA) linkage structures. As demonstrated by the NMR and CLSM results, the dissolution of the LCC during the alkaline pretreatment process was observed to migrate from the inner secondary wall (S-layer) of the bamboo fiber cell walls to the cell corner middle lamella (CCML) and compound middle lamella (CML), ultimately leading to its release from the bamboo. Furthermore, the presence of H-type lignin-FA-arabinoxylan linkage structures within the bamboo LCC was identified with their primary dissolution observed in the S-layer of the bamboo fiber cell walls. The study results provided a clear target for breaking down the anti-depolymerization barrier in bamboo, signifying a major advancement in achieving the comprehensive separation of bamboo components.


Assuntos
Carboidratos , Parede Celular , Lignina , Lignina/química , Parede Celular/química , Carboidratos/química , Álcalis/química , Sasa/química , Solubilidade , Poaceae/química , Xilanos/química , Espectroscopia de Ressonância Magnética
5.
ACS Nano ; 18(18): 11910-11920, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38680054

RESUMO

Personalized antitumor immunotherapy utilizing neoantigen vaccines holds great promise. However, the limited immunogenicity of existing recognized neoantigens and the inadequate stimulation of antitumor immune responses by conventional adjuvants pose significant challenges. To address these limitations, we developed a nanovaccine that combines a BCG bacterial cell wall skeleton (BCG-CWS) based nanoscale adjuvant (BCNA) with peptide neoantigens (M27 and M30). This integrated approach provides an efficient translational strategy for cancer immunotherapy. The BCNA nanovaccine, formulated with PLGA as an emulsifier, exhibits excellent biocompatibility and superior antigen presentation compared with conventional BCG-CWS adjuvants. Subcutaneous immunization with the BCNA-based nanovaccine effectively targets lymph nodes, eliciting robust innate and tumor-specific immune responses. Importantly, our findings demonstrate that BCNAs significantly enhance neoantigen immunogenicity while minimizing acute systemic toxicity. Furthermore, when combined with a mouse PD-L1 antibody, our strategy achieves complete tumor elimination in 60% of cases and prevents 25% of tumor growth in a melanoma mouse model. In conclusion, our BCNA-based nanovaccine represents a promising avenue for advancing personalized therapeutic neoantigen vaccines and holds significant implications for enhancing personalized immunotherapy and improving patient outcomes in the field of cancer treatment.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer , Imunoterapia , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Neoplasias/imunologia , Feminino , Humanos , Parede Celular/imunologia , Parede Celular/química , Mycobacterium bovis/imunologia , Nanopartículas/química , Vacina BCG/imunologia , Linhagem Celular Tumoral
6.
Can J Microbiol ; 70(5): 190-198, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525892

RESUMO

The cell envelope of the poly-extremophile bacterium Deinococcus radiodurans is renowned for its highly organized structure and unique functional characteristics. In this bacterium, a precise regularity characterizes not just the S-layer, but it also extends to the underlying cell envelope layers, resulting in a dense and tightly arranged configuration. This regularity is attributed to a minimum of three protein complexes located at the outer membrane level. Together, they constitute a recurring structural unit that extends across the cell envelope, effectively tiling the entirety of the cell body. Nevertheless, a comprehensive grasp of the vacant spaces within each layer and their functional roles remains limited. In this study, we delve into these aspects by integrating the state of the art with structural calculations. This approach provides crucial evidence supporting an evolutive pressure intricately linked to surface phenomena depending on the environmental conditions.


Assuntos
Membrana Celular , Deinococcus , Deinococcus/metabolismo , Deinococcus/química , Membrana Celular/metabolismo , Membrana Celular/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/química
7.
Methods Mol Biol ; 2791: 57-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532092

RESUMO

Immunohistochemistry is a method that allows the detection of individual components of cell walls in an extremely precise way at the level of a single cell and wall domains. The cell wall antibodies detect specific epitopes of pectins, arabinogalactan proteins (AGP), hemicelluloses, and extensins. The presented method visualization of the selected pectic and AGP epitopes using antibodies directed to wall components is described. The method of the analysis of the chemical composition of the wall is present on the example of the shoot apical meristems of Fagopurum esculentum and Fagopyrum tataricum. Recommended protocols for immunostaining and examination on fluorescence microscopy level are presented.


Assuntos
Fagopyrum , Fagopyrum/química , Fagopyrum/metabolismo , Meristema/metabolismo , Pectinas/análise , Imuno-Histoquímica , Epitopos , Parede Celular/química
8.
Carbohydr Polym ; 334: 122024, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553223

RESUMO

Upon tensile stress, the spiral cellulose fibrils in wood cell walls rotate like springs with decreasing microfibril angle (MFA), and the cellulose molecules elongate in the chain direction. Compression wood with high MFA and opposite wood with low MFA were comparatively studied by in-situ tensile tests combined with synchrotron radiation WAXS in the present study. FTIR spectroscopy revealed that compression wood had a higher lignin content and fewer acetyl groups. For both types of wood, the lattice spacing d004 increased and the MFA decreased gradually with the increase of tensile stress. At stresses beyond the yield point, cellulose lattice strain depended linearly on macroscopic stress, while the MFA depended linearly on macroscopic strain. The deformation mechanisms of compression wood and opposite wood are not essentially different but differ in their deformation behavior. Specifically, the contribution ratio of lattice strain and cellulose fibril reorientation to macroscopic strain was 0.25 and 0.53 for compression wood, and 0.40 and 0.33 for opposite wood, respectively. Due to the geometric effects of MFA, a greater contribution of cellulose fibril reorientation to the macroscopic deformation was detected in compression wood than in opposite wood.


Assuntos
Celulose , Pinus , Celulose/química , Madeira/metabolismo , Microfibrilas/química , Lignina/metabolismo , Parede Celular/química
9.
Food Chem ; 448: 139062, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531297

RESUMO

Avenanthramide-C (AVN-C) is the biomarker for oat with a variety of physiological functions, whereas its application is constrained by low stability and bioavailability. Avenanthramide-C is the biomarker for oat with a variety of physiological functions, whereas its application is constrained by low stability and bioavailability. This study evaluated the potential of yeast cell (YC) and yeast cell wall (YCW) capsules as delivery systems for stabilizing AVN-C. It was observed that these yeast capsules possessed the ellipsoidal morphology and intact structure without visual pores. Additionally, the YCW capsules exhibited higher encapsulation and loading capacity due to the large internal space. The interaction of yeast capsules with AVN-C involved the hydrophobic interactions and hydrogen bonding. Moreover, the loading of AVN-C induced high hydrophobicity inside the yeast capsules, which helped to protect AVN-C against degradation and release AVN-C in a slow and sustained manner in the simulated gastrointestinal tract. The YCW capsules have potential as controlled delivery system for AVN-C, which could be further used as a nutraceutical and added to functional foods.


Assuntos
Avena , Cápsulas , Parede Celular , Saccharomyces cerevisiae , ortoaminobenzoatos , Avena/química , ortoaminobenzoatos/química , Cápsulas/química , Parede Celular/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Biomarcadores , Interações Hidrofóbicas e Hidrofílicas
10.
J Agric Food Chem ; 72(11): 6028-6039, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457781

RESUMO

The fungal cell wall, primarily comprising a glucan-chitin matrix and cell wall proteins (CWPs), serves as a key mediator for fungal interactions with the environment and plays a pivotal role in virulence. In this study, we employed a comprehensive proteomics approach to analyze the CWPs in the plant pathogenic fungus Fusarium graminearum. Our methodology successfully extracted and identified 1373 CWPs, highlighting their complex linkages, including noncovalent bonds, disulfide bridges, alkali-sensitive linkages, and glycosylphosphatidylinositol (GPI) anchors. A significant subset of these proteins, enriched in Gene Ontology terms, suggest multifunctional roles of CWPs. Through the integration of transcriptomic and proteomic data, we observed differential expression patterns of CWPs across developmental stages. Specifically, we focused on two genes, Fca7 and Cpd1, which were upregulated in planta, and confirmed their localization predominantly outside the plasma membrane, primarily in the cell wall and periplasmic space. The disruption of FCA7 reduced virulence on wheat, aligning with previous findings and underscoring its significance. Overall, our findings offer a comprehensive proteomic profile of CWPs in F. graminearum, laying the groundwork for a deeper understanding of their roles in the development and interactions with host plants.


Assuntos
Proteínas Fúngicas , Fusarium , Proteínas Fúngicas/metabolismo , Proteômica , Parede Celular/química , Fusarium/genética , Fusarium/metabolismo , Doenças das Plantas
11.
Carbohydr Res ; 537: 109059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408423

RESUMO

Candida auris is an emerging fungal pathogen that has become a world-wide public health threat. While there have been numerous studies into the nature, composition and structure of the cell wall of Candida albicans and other Candida species, much less is known about the C. auris cell wall. We have shown that C. auris cell wall mannan contains a unique phosphomannan structure which distinguishes C. auris mannan from the mannans found in other fungal species. Specifically, C. auris exhibits two unique acid-labile mannose α-1-phosphate (Manα1PO4) sidechains that are absent in other fungal mannans and fungal pathogens. This unique mannan structural feature presents an opportunity for the development of vaccines, therapeutics, diagnostic tools and/or research reagents that target C. auris. Herein, we describe the successful synthesis and structural characterization of a Manα1PO4-containing disaccharide moiety that mimics the phosphomannan found in C. auris. Additionally, we present evidence that the synthetic Manα1PO4 glycomimetic is specifically recognized and bound by cell surface pattern recognition receptors, i.e. rhDectin-2, rhMannose receptor and rhMincle, that are known to play important roles in the innate immune response to C. auris as well as other fungal pathogens. The synthesis of the Manα1PO4 glycomimetic may represent an important starting point in the development of vaccines, therapeutics, diagnostics and research reagents which target a number of C. auris clinical strains. In addition, these data provide new insights and understanding into the structural biology of this unique fungal pathogen.


Assuntos
Mananas , Vacinas , Mananas/química , Candida auris , Manose , Candida albicans , Receptores de Superfície Celular , Parede Celular/química , Fosfatos
12.
Int J Biol Macromol ; 262(Pt 2): 130121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350588

RESUMO

This study identified a rhamnose-containing cell wall polysaccharide (RhaCWP) in an alkaline extract prepared to analyze intracellular polysaccharides (IPS) from Streptococcus mutans biofilm. IPS was an 1,4-α-D-glucan with branchpoints introduced by 1,6-α-glucan while RhaCWP presented 1,2-α-L-and 1,3-α-L rhamnose backbone and side chains connected by 1,2-α-D-glucans, as identified by nuclear magnetic resonance (NMR) spectroscopy and methylation analyses. The MW of IPS and RhaCWP was 11,298 Da, as determined by diffusion-ordered NMR spectroscopy. Therefore, this study analyzed the chemical structure of RhaCWP and IPS from biofilm in a single fraction prepared via a convenient hot-alkali extraction method. This method could be a feasible approach to obtain such molecules and improve the comprehension of the structure-function relationships in polymers from S. mutans in future studies.


Assuntos
Ramnose , Streptococcus mutans , Ramnose/análise , Polissacarídeos/análise , Glucanos/química , Parede Celular/química
13.
Appl Spectrosc ; 78(4): 355-364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378014

RESUMO

The cell wall integrity (CWI) signaling pathway regulates yeast cell wall biosynthesis, cell division, and responses to external stress. The cell wall, comprised of a dense network of chitin, ß-1,3- and ß-1,6- glucans, and mannoproteins, is very thin, <100 nm. Alterations in cell wall composition may activate the CWI pathway. Saccharomyces cerevisiae, a model yeast, was used to study the role of individual wall components in altering the structure and biophysical properties of the yeast cell wall. Near-field Fourier transform infrared spectroscopy (nano-FT-IR) was used for the first direct, spectrochemical identification of cell wall composition in a background (wild-type) strain and two deletion mutants from the yeast knock-out collection: kre6Δ and knr4Δ. Killer toxin resistant 6 (Kre6) is an integral membrane protein required for biosynthesis of ß-1,6-glucan, while Knr4 is a cell signaling protein involved in the control of cell wall biosynthesis, in particular, biosynthesis and deposition of chitin. Complementary spectral data were obtained with far-field (FF)-FT-IR, in transmission, and with attenuated total reflectance (ATR) spectromicroscopy with 3-10 µm wavelength-dependent spatial resolution. The FF-FT-IR spectra of cells and spectra of isolated cell wall components showed that components of the cell body dominated transmission spectra and were still evident in ATR spectra. In contrast, the nano-FT-IR at ∼25 nm spatial resolution could be used to characterize the yeast wall chemical structure. Our results show that the ß-1,6-glucan content is decreased in kre6Δ, while all glucan content is decreased in the knr4Δ cell wall. The latter may be thinner than in wild type, since not only are mannan and chitin detectable by nano-FT-IR, but also lipid membranes and protein, indicative of cell interior.


Assuntos
Proteínas de Saccharomyces cerevisiae , beta-Glucanas , beta-Glucanas/análise , Parede Celular/química , Quitina/análise , Quitina/metabolismo , Glucanos/análise , Glucanos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
14.
J Agric Food Chem ; 72(8): 4195-4206, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354398

RESUMO

The increase of polysaccharides in the dark tea pile process is thought to be connected to the cell wall polysaccharides' breakdown. However, the relationship between tea polysaccharides (TPSs) and tea cell wall polysaccharides has not been further explored. In this study, the structural changes in the cell wall polysaccharides [e.g., cellulose, hemicellulose (HC), and pectin] in Liupao tea were characterized before and after traditional fermentation and tank fermentation. Additionally, the degradation mechanism of tea cell wall polysaccharides during fermentation was assessed. The results showed that cellulose crystallinity decreased by 11.9-49.6% after fermentation. The molar ratio of monosaccharides, such as arabinose, rhamnose, and glucose in HC, was significantly reduced, and the molecular weight decreased. The esterification degree and linearity of water-soluble pectin (WSP) were reduced. TPS content increases during pile fermentation, which may be due to HC degradation and the increase in WSP caused by cell wall structure damage. Microorganisms were shown to be closely associated with the degradation of cell wall polysaccharides during fermentation according to correlation analyses. Traditional fermentation had a greater effect on the cellulose structure, while tank fermentation had a more noticeable impact on HC and WSP.


Assuntos
Camellia sinensis , Polissacarídeos , Fermentação , Polissacarídeos/química , Camellia sinensis/química , Pectinas/química , Celulose/metabolismo , Água/metabolismo , Parede Celular/química , Chá/química , China
15.
J Biol Chem ; 300(3): 105734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336294

RESUMO

Numerous putative glycosyltransferases (GTs) have been identified using bioinformatic approaches. However, demonstrating the activity of these GTs remains a challenge. Here, we describe the development of a rapid in vitro GT-array screening platform for activity of GTs. GT-arrays are generated by cell-free in vitro protein synthesis and binding using microplates precoated with a N-terminal Halo- or a C-terminal GST-tagged GT-encoding plasmid DNA and a capture antibody. These arrays are then used for screening of transferase activities and the reactions are monitored by a luminescence GLO assay. The products formed by these reactions can be analyzed directly from the microplates by mass spectrometry. Using this platform, a total of 280 assays were performed to screen 22 putative fucosyltransferases (FUTs) from family GT37 (seven from Arabidopsis and 15 from rice) for activity toward five acceptors: non-fucosylated tamarind xyloglucan (TXyG), arabinotriose (Ara3), non-fucosylated rhamnogalacturonan I (RG-I), and RG-II from the mur1-1 Arabidopsis mutant, and the celery RG-II monomer lacking Arap and MeFuc of chain B and l-Gal of chain A. Our screen showed that AtFUT2, AtFUT5, and AtFUT10 have activity toward RG-I, while AtFUT8 was active on RG-II. Five rice OsFUTs have XyG-FUT activity and four rice OsFUTs have activity toward Ara3. None of the putative OsFUTs were active on the RG-I and RG-II. However, promiscuity toward acceptors was observed for several FUTs. These findings extend our knowledge of cell wall polysaccharide fucosylation in plants. We believe that in vitro GT-array platform provides a valuable tool for cell wall biochemistry and other research fields.


Assuntos
Ensaios Enzimáticos , Fucosiltransferases , Glicosiltransferases , Proteínas de Plantas , Apium/enzimologia , Apium/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/química , Parede Celular/enzimologia , Parede Celular/metabolismo , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Fucosiltransferases/análise , Fucosiltransferases/classificação , Fucosiltransferases/metabolismo , Glicosiltransferases/análise , Glicosiltransferases/metabolismo , Espectrometria de Massas , Oryza/enzimologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
16.
Carbohydr Polym ; 330: 121838, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368088

RESUMO

As a key component in cell walls of numerous organisms ranging from green algae to higher plants, AGPs play principal roles in many biological processes such as cell-cell adhesion and regulating Ca2+ signaling pathway as a Ca2+-capacitor. Consistently, AGP structures vary from species to species and from tissue to tissue. To understand the functions of AGPs, it is vital to know their structural differences relative to their location in the plant. Thus, AGPs were purified from different Arabidopsis tissues. Analyses of these AGPs demonstrated that the AGPs comprised covalently linked pectin and AGP, referred to as pectic-AGPs. Importantly, these pectic-AGPs were glycosylated with a remarkable variety of polysaccharides including homogalacturonan, rhamnogalacturonan-I, and type II arabinogalactan at different ratios and lengths. This result not only suggests that pectic-AGP is a major form of Arabidopsis AGPs, but also supports AGPs serve as crosslinkers covalently connecting pectins with structures tailored for tissue-specific functions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/química
17.
mSphere ; 9(2): e0061923, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38284755

RESUMO

The regulation of fungal cell wall biosynthesis is crucial for cell wall integrity maintenance and directly impacts fungal pathogen virulence. Although numerous genes are involved in fungal cell wall polysaccharide biosynthesis through multiple pathways, the underlying regulatory mechanism is still not fully understood. In this study, we identified and functionally characterized a direct downstream target of SomA, the basic-region leucine zipper transcription factor MeaB, playing a certain role in Aspergillus fumigatus cell wall integrity. Loss of meaB reduces hyphal growth, causes severe defects in galactosaminogalactan-mediated biofilm formation, and attenuates virulence in a Galleria mellonella infection model. Furthermore, the meaB null mutant strain exhibited hypersensitivity to cell wall-perturbing agents and significantly alters the cell wall structure. Transcriptional profile analysis revealed that MeaB positively regulates the expression of the galactosaminogalactan biosynthesis and ß-1,3-glucanosyltransferase genes uge3, agd3, and sph3 and gel1, gel5, and gel7, respectively, as well as genes involved in amino sugar and nucleotide sugar metabolism. Further study demonstrated that MeaB could respond to cell wall stress and contribute to the proper expression of mitogen-activated protein kinase genes mpkA and mpkC in the presence of different concentrations of congo red. In conclusion, A. fumigatus MeaB plays a critical role in cell wall integrity by governing the expression of genes encoding cell wall-related proteins, thus impacting the virulence of this fungus.IMPORTANCEAspergillus fumigatus is a common opportunistic mold that causes life-threatening infections in immunosuppressed patients. The fungal cell wall is a complex and dynamic organelle essential for the development of pathogenic fungi. Genes involved in cell wall polysaccharide biosynthesis and remodeling are crucial for fungal pathogen virulence. However, the potential regulatory mechanism for cell wall integrity remains to be fully defined in A. fumigatus. In the present study, we identify basic-region leucine zipper transcription factor MeaB as an important regulator of cell wall galactosaminogalactan biosynthesis and ß-1,3-glucan remodeling that consequently impacts stress response and virulence of fungal pathogens. Thus, we illuminate a mechanism of transcriptional control fungal cell wall polysaccharide biosynthesis and stress response. As these cell wall components are promising therapeutic targets for fungal infections, understanding the regulatory mechanism of such polysaccharides will provide new therapeutic opportunities.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Humanos , Proteínas Fúngicas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Virulência , Polissacarídeos/metabolismo , Parede Celular/química , Biofilmes
18.
Plant Cell Environ ; 47(4): 1238-1254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38173082

RESUMO

The evolution of land flora was an epochal event in the history of planet Earth. The success of plants, and especially flowering plants, in colonizing all but the most hostile environments required multiple mechanisms of adaptation. The mainly polysaccharide-based cell walls of flowering plants, which are indispensable for water transport and structural support, are one of the most important adaptations to life on land. Thus, development of vasculature is regarded as a seminal event in cell wall evolution, but the impact of further refinements and diversification of cell wall compositions and architectures on radiation of flowering plant families is less well understood. We approached this from a glyco-profiling perspective and, using carbohydrate microarrays and monoclonal antibodies, studied the cell walls of 287 plant species selected to represent important evolutionary dichotomies and adaptation to a variety of habitats. The results support the conclusion that radiation of flowering plant families was indeed accompanied by changes in cell wall fine structure and that these changes can obscure earlier evolutionary events. Convergent cell wall adaptations identified by our analyses do not appear to be associated with plants with similar lifestyles but that are taxonomically distantly related. We conclude that cell wall structure is linked to phylogeny more strongly than to habitat or lifestyle and propose that there are many approaches of adaptation to any given ecological niche.


Assuntos
Plantas , Polissacarídeos , Polissacarídeos/análise , Filogenia , Plantas/química , Parede Celular/química , Pectinas/análise , Evolução Biológica
19.
Biomacromolecules ; 25(2): 666-674, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38194667

RESUMO

Understanding and controlling the diffusion of ions and chemicals within the secondary plant cell walls are pivotal in various applications of biomasses. Recent studies have shown that inorganic ion diffusion through secondary cell walls is controlled by a moisture-induced glass transition in amorphous polysaccharides, including amorphous cellulose and hemicelluloses. Understanding the diffusion of ions in these structures has been the subject of numerous recent experiments; however, a deep understanding of the underlying mechanisms of interactions between ion atoms and water/hemicellulose molecules is still lacking. This study uses molecular dynamics simulations to elucidate the diffusion mechanisms of potassium and chloride ions in the cell walls under varying moisture content. The results reveal that a higher moisture content leads to the formation of solvent layers around the ions and reduces the charge interaction between the functional groups of wood polymers and ions. Hence, a higher moisture content results in an improved diffusion rate of ions within the domain. The simulation results also show that higher moisture content lowers the glass transition temperature, promoting diffusion of ions in the system. In contrast, increases in the ion concentration increase the glass transition temperature of the system and degrade the diffusion of ions in the system.


Assuntos
Vitrificação , Madeira , Temperatura de Transição , Madeira/metabolismo , Difusão , Parede Celular/química , Íons , Água/química , Temperatura
20.
Int J Biol Macromol ; 260(Pt 1): 129271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199557

RESUMO

The cell walls of wheat endosperm, which play a pivotal role in seed germination, exhibit a laminated structure primarily composed of polysaccharides. In this study, composite multilayer films were prepared using arabinoxylan (AX), (1,3;1,4)-ß-D-glucan (MLG), and cellulose nanofibers (CNFs), and the effect of polymer blend structure on cell wall hydration and mechanical properties was investigated. Atomic force microscopy and X-ray diffraction indicated that the network structure of MLG/CNF exhibits a higher degree of continuity and uniformity compared to that of AX/CNF. Mechanically, the extensive linkages between MLG and CNFs chains enhance the mechanical properties of the films. Moreover, water diffusion experiments and TD-NMR analysis revealed that water molecules diffuse faster in the network structure formed by AX. We propose a structural model of the endosperm cell wall, in which the CNFs polymer blend coated with MLG serves as the framework, and the AX network fills the gaps between them, providing diffusion channels for water molecules.


Assuntos
Celulose , Xilanos , beta-Glucanas , Celulose/química , beta-Glucanas/química , Endosperma , Triticum/química , Parede Celular/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA