Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.150
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 213, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727814

RESUMO

Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans). Here we show a dynamic presence of Gv mRNA in several organs during early development of zebrafish, including the hatching gland, the pronephros and several cartilage anlagen, employing in situ hybridisation. Next, we generated a Gv frameshift mutation in zebrafish and observed distinct phenotypes such as reduced oviposition, premature hatching and craniofacial abnormalities in bone and cartilage of larval zebrafish. These phenotypes could suggest a disturbance in ionic homeostasis as a common denominator. Indeed, we find reduced levels of calcium, magnesium and potassium in the larvae and changes in expression levels of the sodium potassium pump atp1a1a.5 and the sodium/calcium exchanger ncx1b in larvae and in the adult kidney, a major osmoregulatory organ. Additionally, expression of sodium chloride cotransporter slc12a3 and the anion exchanger slc26a4 is altered in complementary ways in adult kidney. It appears that Gv may modulate ionic homeostasis in zebrafish during development and in adults. Our results constitute the first insight into the function of the fifth class of G alpha proteins.


Assuntos
Homeostase , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Homeostase/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Cálcio/metabolismo , Rim/metabolismo , Magnésio/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731859

RESUMO

Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 µM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.


Assuntos
Ácido Fólico , Compostos Heterocíclicos com 3 Anéis , Oxazinas , Piperazinas , Piridonas , Peixe-Zebra , Animais , Compostos Heterocíclicos com 3 Anéis/farmacologia , Ácido Fólico/metabolismo , Oxazinas/farmacologia , Piridonas/farmacologia , Piperazinas/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Defeitos do Tubo Neural/induzido quimicamente , Neurogênese/efeitos dos fármacos , Feminino
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731894

RESUMO

Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.


Assuntos
Proliferação de Células , Diterpenos , Compostos de Epóxi , Fenantrenos , Receptor Notch1 , Fator de Transcrição STAT3 , Transdução de Sinais , Peixe-Zebra , Animais , Compostos de Epóxi/farmacologia , Fenantrenos/farmacologia , Diterpenos/farmacologia , Fator de Transcrição STAT3/metabolismo , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Linhagem Celular Tumoral , Receptores Notch/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731925

RESUMO

Hemifacial microsomia (HFM) is a rare congenital genetic syndrome primarily affecting the first and second pharyngeal arches, leading to defects in the mandible, external ear, and middle ear. The pathogenic genes remain largely unidentified. Whole-exome sequencing (WES) was conducted on 12 HFM probands and their unaffected biological parents. Predictive structural analysis of the target gene was conducted using PSIPRED (v3.3) and SWISS-MODEL, while STRING facilitated protein-to-protein interaction predictions. CRISPR/Cas9 was applied for gene knockout in zebrafish. In situ hybridization (ISH) was employed to examine the spatiotemporal expression of the target gene and neural crest cell (NCC) markers. Immunofluorescence with PH3 and TUNEL assays were used to assess cell proliferation and apoptosis. RNA sequencing was performed on mutant and control embryos, with rescue experiments involving target mRNA injections and specific gene knockouts. CDC27 was identified as a novel candidate gene for HFM, with four nonsynonymous de novo variants detected in three unrelated probands. Structural predictions indicated significant alterations in the secondary and tertiary structures of CDC27. cdc27 knockout in zebrafish resulted in craniofacial malformation, spine deformity, and cardiac edema, mirroring typical HFM phenotypes. Abnormalities in somatic cell apoptosis, reduced NCC proliferation in pharyngeal arches, and chondrocyte differentiation issues were observed in cdc27-/- mutants. cdc27 mRNA injections and cdkn1a or tp53 knockout significantly rescued pharyngeal arch cartilage dysplasia, while sox9a mRNA administration partially restored the defective phenotypes. Our findings suggest a functional link between CDC27 and HFM, primarily through the inhibition of CNCC proliferation and disruption of pharyngeal chondrocyte differentiation.


Assuntos
Síndrome de Goldenhar , Peixe-Zebra , Animais , Peixe-Zebra/genética , Humanos , Masculino , Feminino , Síndrome de Goldenhar/genética , Síndrome de Goldenhar/patologia , Apoptose/genética , Crista Neural/metabolismo , Sequenciamento do Exoma , Proliferação de Células/genética , Fenótipo , Mutação , Técnicas de Inativação de Genes
5.
Curr Top Dev Biol ; 159: 372-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729682

RESUMO

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Somitos , Animais , Padronização Corporal/genética , Somitos/embriologia , Somitos/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Mesoderma/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Transdução de Sinais , Relógios Biológicos/genética
6.
Food Res Int ; 186: 114371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729729

RESUMO

In this study, the impact of soy hull polysaccharide (SHP) concentration on high-internal-phase emulsions (HIPEs) formation and the gastrointestinal viability of Lactobacillus plantarum within HIPEs were demonstrated. Following the addition of SHP, competitive adsorption with soy protein isolate (SPI) occurred, leading to increased protein adhesion to the oil-water interface and subsequent coating of oil droplets. This process augmented viscosity and enhanced HIPEs stability. Specifically, 1.8 % SHP had the best encapsulation efficiency and delivery efficiency, reaching 99.3 % and 71.1 %, respectively. After 14 d of continuous zebrafishs feeding, viable counts of Lactobacillus plantarum and complex probiotics in the intestinal tract was 1.1 × 107, 1.3 × 107, respectively. In vitro experiments further proved that HIPEs' ability to significantly enhance probiotics' intestinal colonization and provided targeted release for colon-specific delivery. These results provided a promising strategy for HIPEs-encapsulated probiotic delivery systems in oral food applications.


Assuntos
Emulsões , Lactobacillus plantarum , Polissacarídeos , Probióticos , Proteínas de Soja , Peixe-Zebra , Proteínas de Soja/química , Animais , Polissacarídeos/química , Lactobacillus plantarum/metabolismo , Glycine max/química , Viscosidade
7.
Drug Dev Res ; 85(3): e22195, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704831

RESUMO

We investigated the angiogenesis-modulating ability of noscapine in vitro using osteosarcoma cell line (MG-63) and in vivo using a zebrafish model. MTT assay and the scratch wound healing assay were performed on the osteosarcoma cell line (MG-63) to analyze the cytotoxic effect and antimigrative ability of noscapine, respectively. We also observed the antiangiogenic ability of noscapine on zebrafish embryos by analyzing the blood vessels namely the dorsal aorta, and intersegmental vessels development at 24, 48, and 72 h postfertilization. Real-time polymerase chain reaction was used to analyze the hypoxia signaling molecules' gene expression in MG-63 cells and zebrafish embryos. The findings from the scratch wound healing demonstrated that noscapine stopped MG-63 cancer cells from migrating under both hypoxia and normoxia. Blood vessel development and the heart rate in zebrafish embryos were significantly reduced by noscapine under both hypoxia and normoxia which showed the hemodynamics impact of noscapine. Noscapine also downregulated the cobalt chloride (CoCl2) induced hypoxic signaling molecules' gene expression in MG-63 cells and zebrafish embryos. Therefore, noscapine may prevent MG-63 cancer cells from proliferating and migrating, as well as decrease the formation of new vessels and the production of growth factors linked to angiogenesis in vivo under both normoxic and hypoxic conditions.


Assuntos
Hemodinâmica , Neovascularização Patológica , Noscapina , Peixe-Zebra , Animais , Humanos , Noscapina/farmacologia , Linhagem Celular Tumoral , Hemodinâmica/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Hipóxia , Movimento Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Angiogênese
8.
Eur Phys J E Soft Matter ; 47(5): 29, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704810

RESUMO

In this work, we study the polarization time series obtained from experimental observation of a group of zebrafish (Danio rerio) confined in a circular tank. The complex dynamics of the individual trajectory evolution lead to the appearance of multiple characteristic scales. Employing the Multifractal Detrended Fluctuation Analysis (MF-DFA), we found distinct behaviors according to the parameters used. The polarization time series are multifractal at low fish densities and their average scales with ρ - 1 / 4 . On the other hand, they tend to be monofractal, and their average scales with ρ - 1 / 2 for high fish densities. These two regimes overlap at critical density ρ c , suggesting the existence of a phase transition separating them. We also observed that for low densities, the polarization velocity shows a non-Gaussian behavior with heavy tails associated with long-range correlation and becomes Gaussian for high densities, presenting an uncorrelated regime.


Assuntos
Fractais , Peixe-Zebra , Peixe-Zebra/fisiologia , Animais
9.
Nat Commun ; 15(1): 3821, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714702

RESUMO

Differentiation of stem and progenitor cells is a highly regulated process that involves the coordinated action of multiple layers of regulation. Here we show how the post-transcriptional regulatory layer instructs the level of chromatin regulation via miR-144 and its targets to orchestrate chromatin condensation during erythropoiesis. The loss of miR-144 leads to impaired chromatin condensation during erythrocyte maturation. Among the several targets of miR-144 that influence chromatin organization, the miR-144-dependent regulation of Hmgn2 is conserved from fish to humans. Our genetic probing of the miR-144/Hmgn2 regulatory axis establish that intact miR-144 target sites in the Hmgn2 3'UTR are necessary for the proper maturation of erythrocytes in both zebrafish and human iPSC-derived erythroid cells while loss of Hmgn2 rescues in part the miR-144 null phenotype. Altogether, our results uncover miR-144 and its target Hmgn2 as the backbone of the genetic regulatory circuit that controls the terminal differentiation of erythrocytes in vertebrates.


Assuntos
Cromatina , Eritropoese , MicroRNAs , Peixe-Zebra , MicroRNAs/metabolismo , MicroRNAs/genética , Eritropoese/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Humanos , Animais , Cromatina/metabolismo , Cromatina/genética , Eritrócitos/metabolismo , Regiões 3' não Traduzidas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular/genética
10.
Elife ; 132024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700510

RESUMO

Geometric criteria can be used to assess whether cell intercalation is active or passive during the convergent extension of tissue.


Assuntos
Peixe-Zebra , Animais , Morfogênese
12.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744470

RESUMO

Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.


Assuntos
Benzotiazóis , Sinergismo Farmacológico , Mycobacterium marinum , Peixe-Zebra , Animais , Benzotiazóis/farmacologia , Mycobacterium marinum/efeitos dos fármacos , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/metabolismo , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Rifampina/farmacologia
13.
Emerg Microbes Infect ; 13(1): 2352435, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38703011

RESUMO

Streptococcus suis is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Surveillance data highlight the significance of S. suis serotype 4 (SS4) in swine streptococcusis, a pathotype causing human infections. However, except for a few epidemiologic studies, the information on SS4 remains limited. In this study, we investigated the population structure, pathogenicity, and antimicrobial characteristics of SS4 based on 126 isolates, including one from a patient with septicemia. We discovered significant diversities within this population, clustering into six minimum core genome (MCG) groups (1, 2, 3, 4, 7-2, and 7-3) and five lineages. Two main clonal complexes (CCs), CC17 and CC94, belong to MCG groups 1 and 3, respectively. Numerous important putative virulence-associated genes are present in these two MCG groups, and 35.00% (7/20) of pig isolates from CC17, CC94, and CC839 (also belonging to MCG group 3) were highly virulent (mortality rate ≥ 80%) in zebrafish and mice, similar to the human isolate ID36054. Cytotoxicity assays showed that the human and pig isolates of SS4 strains exhibit significant cytotoxicity to human cells. Antimicrobial susceptibility testing showed that 95.83% of strains isolated from our labs were classified as multidrug-resistant. Prophages were identified as the primary vehicle for antibiotic resistance genes. Our study demonstrates the public health threat posed by SS4, expanding the understanding of SS4 population structure and pathogenicity characteristics and providing valuable information for its surveillance and prevention.


Assuntos
Sorogrupo , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Streptococcus suis/patogenicidade , Streptococcus suis/genética , Streptococcus suis/classificação , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/isolamento & purificação , Animais , Suínos , Humanos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia , Virulência , Camundongos , Genoma Bacteriano , Peixe-Zebra , Antibacterianos/farmacologia , Filogenia , Testes de Sensibilidade Microbiana , Fatores de Virulência/genética
14.
J Biomed Sci ; 31(1): 51, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741091

RESUMO

BACKGROUND: The fusiform aneurysm is a nonsaccular dilatation affecting the entire vessel wall over a short distance. Although PDGFRB somatic variants have been identified in fusiform intracranial aneurysms, the molecular and cellular mechanisms driving fusiform intracranial aneurysms due to PDGFRB somatic variants remain poorly understood. METHODS: In this study, single-cell sequencing and immunofluorescence were employed to investigate the phenotypic changes in smooth muscle cells within fusiform intracranial aneurysms. Whole-exome sequencing revealed the presence of PDGFRB gene mutations in fusiform intracranial aneurysms. Subsequent immunoprecipitation experiments further explored the functional alterations of these mutated PDGFRB proteins. For the common c.1684 mutation site of PDGFRß, we established mutant smooth muscle cell lines and zebrafish models. These models allowed us to simulate the effects of PDGFRB mutations. We explored the major downstream cellular pathways affected by PDGFRBY562D mutations and evaluated the potential therapeutic effects of Ruxolitinib. RESULTS: Single-cell sequencing of two fusiform intracranial aneurysms sample revealed downregulated smooth muscle cell markers and overexpression of inflammation-related markers in vascular smooth muscle cells, which was validated by immunofluorescence staining, indicating smooth muscle cell phenotype modulation is involved in fusiform aneurysm. Whole-exome sequencing was performed on seven intracranial aneurysms (six fusiform and one saccular) and PDGFRB somatic mutations were detected in four fusiform aneurysms. Laser microdissection and Sanger sequencing results indicated that the PDGFRB mutations were present in smooth muscle layer. For the c.1684 (chr5: 149505131) site mutation reported many times, further cell experiments showed that PDGFRBY562D mutations promoted inflammatory-related vascular smooth muscle cell phenotype and JAK-STAT pathway played a crucial role in the process. Notably, transfection of PDGFRBY562D in zebrafish embryos resulted in cerebral vascular anomalies. Ruxolitinib, the JAK inhibitor, could reversed the smooth muscle cells phenotype modulation in vitro and inhibit the vascular anomalies in zebrafish induced by PDGFRB mutation. CONCLUSION: Our findings suggested that PDGFRB somatic variants played a role in regulating smooth muscle cells phenotype modulation in fusiform aneurysms and offered a potential therapeutic option for fusiform aneurysms.


Assuntos
Aneurisma Intracraniano , Miócitos de Músculo Liso , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Humanos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Miócitos de Músculo Liso/metabolismo , Peixe-Zebra/genética , Animais , Masculino , Mutação , Feminino , Adulto , Pessoa de Meia-Idade
15.
PLoS One ; 19(5): e0298657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713725

RESUMO

Zebrafish are an established and widely used animal model, yet there is limited understanding of their welfare needs. Despite an increasing number of studies on zebrafish enrichment, in-tank environmental enrichment remains unpopular among researchers. This is due to perceived concerns over health/hygiene when it comes to introducing enrichment into the tank, although actual evidence for this is sparse. To accommodate this belief, regardless of veracity, we tested the potential benefits of enrichments presented outside the tank. Thus, we investigated the preferences and physiological stress of zebrafish with pictures of pebbles placed underneath the tank. We hypothesized that zebrafish would show a preference for enriched environments and have lower stress levels than barren housed zebrafish. In our first experiment, we housed zebrafish in a standard rack system and recorded their preference for visual access to a pebble picture, with two positive controls: visual access to conspecifics, and group housing. Using a crossover repeated-measures factorial design, we tested if the preference for visual access to pebbles was as strong as the preference for social contact. Zebrafish showed a strong preference for visual access to pebbles, equivalent to that for conspecifics. Then, in a second experiment, tank water cortisol was measured to assess chronic stress levels of zebrafish housed with or without a pebble picture under their tank, with group housing as a positive control. Cortisol levels were significantly reduced in zebrafish housed with pebble pictures, as were cortisol levels in group housed zebrafish. In fact, single housed zebrafish with pebble pictures showed the same cortisol levels as group housed zebrafish without pebble pictures. Thus, the use of an under-tank pebble picture was as beneficial as being group housed, effectively compensating for the stress of single housing. Pebble picture enrichment had an additive effect with group housing, where group housed zebrafish with pebble pictures had the lowest cortisol levels of any treatment group.


Assuntos
Abrigo para Animais , Hidrocortisona , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Hidrocortisona/metabolismo , Estresse Fisiológico , Masculino , Comportamento Animal/fisiologia , Feminino , Bem-Estar do Animal
16.
Anal Chim Acta ; 1307: 342642, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719399

RESUMO

BACKGROUND: Similar to hypochlorous acid (HClO), hypobromous acid (HBrO) is one of the most notable reactive oxygen species (ROS). Overexpression of HBrO is linked to various diseases causing organ and tissue loss. Due to HBrO's role in the oxidation of micropollutants, real-time monitoring of HBrO in water-based systems is essential. Tetraphenylethylene (TPE)-based organic aggregation-induced emission luminophores (AIEgens) are an emerging category of fluorescent probe materials that have attracted considerable attentions. However, AIE probes are rarely applied to detect HBrO. Developing faster, more precise, and more sensitive AIE probes is thus crucial for detecting biological and environmental HBrO. RESULTS: A small molecule fluorescent probe 4-(1,2,2-triphenylvinyl)benzamidoxime (SWJT-21) was synthesized for the sensitive and selective detection of hypobromous acid (HBrO) based on aggregation-induced emission (AIE). The amidoxime unit of SWJT-21 would undergo an oxidation reaction with HBrO, leading to a structure differentiation between the probe and the product, and therefore the turn-on fluorescence by the AIE effect. The probe could recognize hypobromous acid rapidly (less than 3 s) in high aqueous phase (99 % water) with a turn-on fluorescence response. It was determined that the limit of detection for HBrO was 5.47 nM. Moreover, SWJT-21 demonstrates potential as a test strip for the detection of HBrO. SWJT-21 was also successfully used for the monitoring of HBrO in water samples and for the detection of endogenous/exogenous HBrO in living cells and zebrafish. SIGNIFICANCE: A special AIE fluorescence turn-on probe SWJT-21 based on tetraphenylethylene was designed for detecting HBrO in the environmental and biological systems. This probe has an extremely low detection limit of 5.47 nM and is able to detect HBrO in 99 % aqueous phase in less than 3 s.


Assuntos
Bromatos , Corantes Fluorescentes , Estilbenos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Bromatos/análise , Bromatos/química , Estilbenos/química , Animais , Humanos , Peixe-Zebra , Espectrometria de Fluorescência , Limite de Detecção , Estrutura Molecular
17.
Methods Mol Biol ; 2799: 243-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727911

RESUMO

Zebrafish are a powerful system to study brain development and to dissect the activity of complex circuits. One advantage is that they display complex behaviors, including prey capture, learning, responses to photic and acoustic stimuli, and social interaction (Dreosti et al., Front Neural Circuits 9:39, 2015; Bruckner et al., PLoS Biol 20:e3001838, 2022; Zoodsma et al., Mol Autism 13:38, 2022) that can be probed to assess brain function. Many of these behaviors are easily assayed at early larval stages, offering a noninvasive and high-throughput readout of nervous system function. Additionally, larval zebrafish readily uptake small molecules dissolved in water making them ideal for behavioral-based drug screens. Together, larval zebrafish and their behavioral repertoire offer a means to rapidly dissect brain circuitry and can serve as a template for high-throughput small molecule screens.NMDA receptor subunits are highly conserved in zebrafish compared to mammals (Zoodsma et al., Mol Autism 13:38, 2022; Cox et al., Dev Dyn 234:756-766, 2005; Zoodsma et al., J Neurosci 40:3631-3645, 2020). High amino acid and domain structure homology between humans and zebrafish underlie conserved functional similarities. Here we describe a set of behavioral assays that are useful to study the NMDA receptor activity in brain function.


Assuntos
Comportamento Animal , Receptores de N-Metil-D-Aspartato , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Animal/efeitos dos fármacos , Larva/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos
18.
Invest Ophthalmol Vis Sci ; 65(5): 3, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691090

RESUMO

Purpose: Forty-hertz light flicker stimulation has been proven to reduce neurodegeneration, but its effect on optic nerve regeneration is unclear. This study explores the effect of 40-Hz light flicker in promoting optic nerve regeneration in zebrafish and investigates the underlying mechanisms. Methods: Wild-type and mpeg1:EGFP zebrafish were used to establish a model of optic nerve crush. Biocytin tracing and hematoxylin and eosin staining were employed to observe whether 40-Hz light flicker promotes regeneration of retinal ganglion cell axons and dendrites. Optomotor and optokinetic responses were evaluated to assess recovery of visual function. Immunofluorescence staining of mpeg1:EGFP zebrafish was performed to observe changes in microglia. Differentially expressed genes that promote optic nerve regeneration following 40-Hz light flicker stimulation were identified and validated through RNA-sequencing analysis and quantitative real-time PCR (qRT-PCR). Results: Zebrafish exhibited spontaneous optic nerve regeneration after optic nerve injury and restored visual function. We observed that 40-Hz light flicker significantly activated microglia following optic nerve injury and promoted regeneration of retinal ganglion cell axons and dendrites, as well as recovery of visual function. Transcriptomics and qRT-PCR analyses revealed that 40-Hz light flicker increased the expression of genes associated with neuronal plasticity, including bdnf, npas4a, fosab, fosb, egr4, and ier2a. Conclusions: To our knowledge, this study is the first to demonstrate that 40-Hz light flicker stimulation promotes regeneration of retinal ganglion cell axons and dendrites and recovery of visual function in zebrafish, which is associated with microglial activation and enhancement of neural plasticity.


Assuntos
Microglia , Regeneração Nervosa , Plasticidade Neuronal , Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Peixe-Zebra , Animais , Microglia/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia , Plasticidade Neuronal/fisiologia , Células Ganglionares da Retina/fisiologia , Estimulação Luminosa , Modelos Animais de Doenças , Nervo Óptico/fisiologia , Axônios/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
19.
Cell Death Dis ; 15(5): 305, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693109

RESUMO

Zebrafish is widely adopted as a grafting model for studying human development and diseases. Current zebrafish xenotransplantations are performed using embryo recipients, as the adaptive immune system, responsible for host versus graft rejection, only reaches maturity at juvenile stage. However, transplanted primary human hematopoietic stem/progenitor cells (HSC) rapidly disappear even in zebrafish embryos, suggesting that another barrier to transplantation exists before the onset of adaptive immunity. Here, using a labelled macrophage zebrafish line, we demonstrated that engraftment of human HSC induces a massive recruitment of macrophages which rapidly phagocyte transplanted cells. Macrophages depletion, by chemical or pharmacological treatments, significantly improved the uptake and survival of transplanted cells, demonstrating the crucial implication of these innate immune cells for the successful engraftment of human cells in zebrafish. Beyond identifying the reasons for human hematopoietic cell engraftment failure, this work images the fate of human cells in real time over several days in macrophage-depleted zebrafish embryos.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Macrófagos , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Macrófagos/metabolismo , Humanos , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Embrião não Mamífero/metabolismo , Transplante Heterólogo , Fagocitose
20.
PLoS One ; 19(5): e0300227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696419

RESUMO

Aging is associated with a wide range of physiological and behavioral changes in many species. Zebrafish, like humans, rodents, and birds, exhibits gradual senescence, and thus may be a useful model organism for identifying evolutionarily conserved mechanisms related to aging. Here, we compared behavior in the novel tank test of young (6-month-old) and middle aged (12-month-old) zebrafish from two strains (TL and TU) and both sexes. We find that this modest age difference results in a reduction in locomotor activity in male fish. We also found that background strain modulated the effects of age on predator avoidance behaviors related to anxiety: older female TL fish increased bottom dwelling whereas older male TU fish decreased thigmotaxis. Although there were no consistent effects of age on either short-term (within session) or long-term (next day) habituation to the novel tank, strain affected the habituation response. TL fish tended to increase their distance from the bottom of the tank whereas TU fish had no changes in bottom distance but instead tended to increase thigmotaxis. Our findings support the use of zebrafish for the study of how age affects locomotion and how genetics interacts with age and sex to alter exploratory and emotional behaviors in response to novelty.


Assuntos
Envelhecimento , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Feminino , Masculino , Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Locomoção/fisiologia , Atividade Motora/fisiologia , Comportamento Exploratório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA