Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.655
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731413

RESUMO

Ultraviolet radiation can heighten tyrosinase activity, stimulate melanocyte production, impede the metabolism of numerous melanocytes, and result in the accumulation of plaques on the skin surface. α-Arbutin, a bioactive substance extracted from the arbutin plant, has been widely used for skin whitening. In this study, the whitening effect of α-arbutin by inhibiting tyrosinase activity and alleviating the photoaging effect induced by UVB are investigated. The results indicate that α-arbutin can inhibit skin inflammation, and its effectiveness is positively correlated with concentration. Moreover, α-arbutin can reduce the skin epidermal thickness, decrease the number of inflammatory cells, and down-regulate the expression levels of IL-1ß, IL-6 and TNF-α, which are inflammatory factors. It also promotes the expression of COL-1 collagen, thus playing an important role in anti-inflammatory action. Network pharmacology, metabolomics and transcriptomics further confirm that α-arbutin is related to the L-tyrosine metabolic pathway and may interfere with various signaling pathways related to melanin and other photoaging by regulating metabolic changes. Therefore, α-arbutin has a potential inhibitory effect on UVB-induced photoaging and possesses a whitening effect as a cosmetic compound.


Assuntos
Arbutina , Envelhecimento da Pele , Raios Ultravioleta , Arbutina/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Humanos , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia
2.
Eur J Med Res ; 29(1): 282, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735974

RESUMO

BACKGROUND: Radiation induced acute skin toxicity (AST) is considered as a common side effect of breast radiation therapy. The goal of this study was to design dosiomics-based machine learning (ML) models for prediction of AST, to enable creating optimized treatment plans for high-risk individuals. METHODS: Dosiomics features extracted using Pyradiomics tool (v3.0.1), along with treatment plan-derived dose volume histograms (DVHs), and patient-specific treatment-related (PTR) data of breast cancer patients were used for modeling. Clinical scoring was done using the Common Terminology Criteria for Adverse Events (CTCAE) V4.0 criteria for skin-specific symptoms. The 52 breast cancer patients were grouped into AST 2 + (CTCAE ≥ 2) and AST 2 - (CTCAE < 2) toxicity grades to facilitate AST modeling. They were randomly divided into training (70%) and testing (30%) cohorts. Multiple prediction models were assessed through multivariate analysis, incorporating different combinations of feature groups (dosiomics, DVH, and PTR) individually and collectively. In total, seven unique combinations, along with seven classification algorithms, were considered after feature selection. The performance of each model was evaluated on the test group using the area under the receiver operating characteristic curve (AUC) and f1-score. Accuracy, precision, and recall of each model were also studied. Statistical analysis involved features differences between AST 2 - and AST 2 + groups and cutoff value calculations. RESULTS: Results showed that 44% of the patients developed AST 2 + after Tomotherapy. The dosiomics (DOS) model, developed using dosiomics features, exhibited a noteworthy improvement in AUC (up to 0.78), when spatial information is preserved in the dose distribution, compared to DVH features (up to 0.71). Furthermore, a baseline ML model created using only PTR features for comparison with DOS models showed the significance of dosiomics in early AST prediction. By employing the Extra Tree (ET) classifiers, the DOS + DVH + PTR model achieved a statistically significant improved performance in terms of AUC (0.83; 95% CI 0.71-0.90), accuracy (0.70), precision (0.74) and sensitivity (0.72) compared to other models. CONCLUSIONS: This study confirmed the benefit of dosiomics-based ML in the prediction of AST. However, the combination of dosiomics, DVH, and PTR yields significant improvement in AST prediction. The results of this study provide the opportunity for timely interventions to prevent the occurrence of radiation induced AST.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Humanos , Feminino , Neoplasias da Mama/radioterapia , Pessoa de Meia-Idade , Adulto , Idoso , Pele/efeitos da radiação , Pele/patologia , Lesões por Radiação/etiologia , Lesões por Radiação/diagnóstico , Dosagem Radioterapêutica
3.
J Photochem Photobiol B ; 255: 112927, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701631

RESUMO

Since the mechanism underlying real-time acquisition of mechanical strength during laser-induced skin wound fusion remains unclear, and collagen is the primary constituent of skin tissue, this study investigates the structural and mechanical alterations in collagen at temperatures ranging from 40 °C to 60 °C using various spectroscopic techniques and molecular dynamics calculations. The COMSOL Multiphysics coupling is employed to simulate the three-dimensional temperature field, stress-strain relationship, and light intensity distribution in the laser thermal affected zone of skin wounds during dual-beam laser welding process. Raman spectroscopy, synchronous fluorescence spectroscopy and circular dichroism measurement results confirm that laser energy activates biological activity in residues, leading to a transformation in the originally fractured structure of collagen protein for enhanced mechanical strength. Molecular dynamics simulations reveal that stable hydrogen bonds form at amino acid residues within the central region of collagen protein when the overall temperature peak around the wound reaches 60 °C, thereby providing stability to previously fractured skin incisions and imparting instantaneous strength. However, under a 55 °C system, Type I collagen ensures macrostructural stability while activating biological properties at amino acid bases to promote wound healing function; this finding aligns with experimental analysis results. The COMSOL simulation outcomes also correspond well with macroscopic morphology after laser welding samples, confirming that by maintaining temperatures between 55 °C-60 °C during laser welding of skin incisions not only can certain instantaneous mechanical strength be achieved but irreversible thermal damage can also be effectively controlled. It is anticipated that these findings will provide valuable insights into understanding the healing mechanism for laser-welded skin wounds.


Assuntos
Colágeno , Lasers , Simulação de Dinâmica Molecular , Pele , Análise Espectral Raman , Pele/química , Pele/efeitos da radiação , Colágeno/química , Colágeno/metabolismo , Cicatrização , Ligação de Hidrogênio , Análise de Elementos Finitos , Animais , Dicroísmo Circular , Temperatura , Espectrometria de Fluorescência
5.
Biomed Phys Eng Express ; 10(4)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38718784

RESUMO

A study of burn thresholds from superficially penetrating radio-frequency (RF) energy at 8.2 and 95 GHz for swine skin was conducted. The study determined the thresholds for superficial, partial-thickness, and full-thickness burn severities after 5 seconds of exposure at power densities of 4-30 W/cm2and 2-15 W/cm2at 8.2 and 95 GHz, respectively. There were significant differences in he burn thresholds at the different severities between the two frequencies due to the large difference in energy penetration depths. Biopsies were collected from each burn site at 1, 24, 72, and 168 hr post exposure. Each sample was assessed by a burn pathologist against 20 histological factors to characterize the damage resulting from these RF overexposures. A one-dimensional, layered digital phantom that utilized realistic values for dielectric and thermal properties was used to explain some observed thresholds. The results of the heating and cooling response of the animal model and histology scores of each exposure are provided to enhance future efforts at simulation of RF overexposures and to establish damage thresholds.


Assuntos
Queimaduras , Micro-Ondas , Pele , Animais , Micro-Ondas/efeitos adversos , Suínos , Pele/efeitos da radiação , Pele/patologia , Queimaduras/etiologia , Queimaduras/patologia , Imagens de Fantasmas , Ondas de Rádio/efeitos adversos , Temperatura Alta
6.
FASEB J ; 38(9): e23641, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690717

RESUMO

Cholinergic urticaria is a dermatological disease characterized by the presence of large patches of red skin and transient hives triggered by factors, such as exercise, sweating, and psychological tension. This skin problem is hypothesized to be attributed to a reduced expression of acetylcholinesterase (AChE), an enzyme responsible for hydrolyzing acetylcholine (ACh). Consequently, ACh is thought to the leak from sympathetic nerves to skin epidermis. The redundant ACh stimulates the mast cells to release histamine, triggering immune responses in skin. Here, the exposure of ultraviolet B in skin suppressed the expression of AChE in keratinocytes, both in in vivo and in vitro models. The decrease of the enzyme was resulted from a declined transcription of ACHE gene mediated by micro-RNAs, that is, miR-132 and miR-212. The levels of miR-132 and miR-212 were markedly induced by exposure to ultraviolet B, which subsequently suppressed the transcriptional rate of ACHE. In the presence of low level of AChE, the overflow ACh caused the pro-inflammatory responses in skin epidermis, including increased secretion of cytokines and COX-2. These findings suggest that ultraviolet B exposure is one of the factors contributing to cholinergic urticaria in skin.


Assuntos
Acetilcolinesterase , Queratinócitos , MicroRNAs , Pele , Raios Ultravioleta , Urticária , Acetilcolinesterase/metabolismo , Acetilcolinesterase/genética , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Pele/efeitos da radiação , Pele/metabolismo , Urticária/metabolismo , Urticária/etiologia , Camundongos , Acetilcolina/metabolismo , Masculino
7.
J Drugs Dermatol ; 23(5): 366-375, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38709706

RESUMO

OBJECTIVE:   This study aimed to investigate the ultraviolet (UV) protection/repair benefits of a patented Amino Acid Complex (AAComplex). METHODS: I) AAComplex was incubated with dermal fibroblasts, with/without UVA, and collagen I was measured with a GlasBoxPlus device. II) A lotion, with/without AAComplex (1%) was applied topically to skin explants, following UVA irradiation, and quantified for health-related biomarkers (TNFalpha, histamine, and MMP-1). III) A broad spectrum sunscreen with SPF 46 and a skincare serum containing AAComplex (2%) were assessed using epidermal equivalents, in the presence of UV irradiation, for effects on IL-1alpha, thymine dimers, Ki-67, filaggrin and Nrf2. RESULTS: I) Collagen I synthesis in dermal fibroblasts was significantly decreased after UVA compared to without UV. The presence of AAComplex prevented this decrease. II) UVA irradiation of skin explants increased histamine, TNFα, and MMP-1. Hydrocortisone aceponate cream significantly decreases all 3 biomarkers. AAComplex contained lotion also significantly decreased all 3 biomarkers, the no AAComplex control lotion only reduced histamine. III) With the regimen of sunscreen + AAComplex contained skincare serum, the significant reduction in IL-1alpha was observed along with a complete recovery of Ki-67 and stimulation of filaggrin and Nrf2T. No thymine dimer positive cell was observed indicating the most positive skin impact from the regiment.  Conclusion: This research using different human skin models demonstrated that AAComplex can provide protection and damage repair caused by UV, at the ingredient level also when formulated in a serum or lotion formula. Skin may be best protected from UV damage when the regimen is used.   J Drugs Dermatol. 2024;23(5):366-375. doi:10.36849/JDD.7916.


Assuntos
Fibroblastos , Proteínas Filagrinas , Metaloproteinase 1 da Matriz , Fator 2 Relacionado a NF-E2 , Fator de Necrose Tumoral alfa , Raios Ultravioleta , Humanos , Raios Ultravioleta/efeitos adversos , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/metabolismo , Protetores Solares/administração & dosagem , Protetores Solares/química , Protetores Solares/farmacologia , Aminoácidos/administração & dosagem , Aminoácidos/farmacologia , Aminoácidos/química , Interleucina-1alfa/metabolismo , Histamina/sangue , Creme para a Pele/administração & dosagem , Biomarcadores/metabolismo , Colágeno Tipo I , Proteínas de Filamentos Intermediários/metabolismo , Antígeno Ki-67/metabolismo , Dímeros de Pirimidina , Células Cultivadas
8.
Int J Hyperthermia ; 41(1): 2354435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38754976

RESUMO

INTRODUCTION: Psoriasis is characterized by an increase in the proliferation of keratinocytes and nerve fiber activity, contributing to the typical skin lesions. Pulsed Dye Laser (PDL) treatment is effective for the treatment of psoriatic lesions but its mechanism remains unclear. One hypothesis is that PDL causes thermal damage by the diffusion of heat to neighboring structures in lesional skin. There is limited information on the thermal sensitivity of these neighboring skin cells when exposed to hyperthermia for durations lasting less than a minute. Our study aimed to investigate the cell-specific responses to heat using sub-minute exposure times and moderate to ablative hyperthermia. MATERIALS AND METHODS: Cultured human endothelial cells, smooth muscle cells, neuronal cells, and keratinocytes were exposed to various time (2-20 sec) and temperature (45-70 °C) combinations. Cell viability was assessed by measuring intracellular ATP content 24 h after thermal exposure and this data was used to calculate fit parameters for the Arrhenius model and CEM43 calculations. RESULTS: Our results show significant differences in cell survival between cell types (p < 0.0001). Especially within the range of 50-60 °C, survival of neuronal cells and keratinocytes was significantly less than that of endothelial and smooth muscle cells. No statistically significant difference was found in the lethal dose (LT50) of thermal energy between neuronal cells and keratinocytes. However, CEM43 calculations showed significant differences between all four cell types. CONCLUSION: The results imply that there is a cell-type-dependent sensitivity to thermal damage which suggests that neuronal cells and keratinocytes are particularly susceptible to diffusing heat from laser treatment. Damage to these cells may aid in modulating the neuro-inflammatory pathways in psoriasis. These data provide insight into the potential mechanisms of PDL therapy for psoriasis and advance our understanding of how thermal effects may play a role in its effectiveness.


Assuntos
Queratinócitos , Pele , Humanos , Pele/patologia , Pele/efeitos da radiação , Pele/lesões , Sobrevivência Celular/efeitos da radiação
9.
Sci Data ; 11(1): 441, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702328

RESUMO

Photoaging is the premature aging of the skin caused by prolonged exposure to solar radiation. The visual alterations manifest as wrinkles, reduced skin elasticity, uneven skin tone, as well as other signs that surpass the expected outcomes of natural aging. Beyond these surface changes, there is a complex interplay of molecular alterations, encompassing shifts in cellular function, DNA damage, and protein composition disruptions. This data descriptor introduces a unique dataset derived from ten individuals, each with a minimum of 18 years of professional experience as a driver, who are asymmetrically and chronically exposed to solar radiation due to their driving orientation. Skin samples were independently collected from each side of the face using a microdermabrasion-like procedure and analyzed on an Exploris 240 mass spectrometer. Our adapted proteomic statistical framework leverages the sample pairing to provide robust insights. This dataset delves into the molecular differences in exposed skin and serves as a foundational resource for interdisciplinary research in photodermatology, targeted skincare treatments, and computational modelling of skin health.


Assuntos
Face , Espectrometria de Massas , Proteômica , Envelhecimento da Pele , Pele , Pele/efeitos da radiação , Pele/metabolismo , Humanos , Luz Solar
10.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732058

RESUMO

Monitoring inflammatory cytokines is crucial for assessing healing process and photobiomodulation (PBM) enhances wound healing. Meanwhile, cAMP response element-binding protein (CREB) is a regulator of cellular metabolism and proliferation. This study explored potential links between inflammatory cytokines and the activity of CREB in PBM-treated wounds. A total of 48 seven-week-old male SD rats were divided into four groups (wound location, skin or oral; treatment method, natural healing or PBM treatment). Wounds with a 6 mm diameter round shape were treated five times with an 808 nm laser every other day (total 60 J). The wound area was measured with a caliper and calculated using the elliptical formula. Histological analysis assessed the epidermal regeneration and collagen expression of skin and oral tissue with H&E and Masson's trichrome staining. Pro-inflammatory (TNF-α) and anti-inflammatory (TGF-ß) cytokines were quantified by RT-PCR. The ratio of phosphorylated CREB (p-CREB) to unphosphorylated CREB was identified through Western blot. PBM treatment significantly reduced the size of the wounds on day 3 and day 7, particularly in the skin wound group (p < 0.05 on day 3, p < 0.001 on day 7). The density of collagen expression was significantly higher in the PBM treatment group (in skin wound, p < 0.05 on day 3, p < 0.001 on day 7, and p < 0.05 on day 14; in oral wound, p < 0.01 on day 7). The TGF-ß/TNF-α ratio and the p-CREB/CREB ratio showed a parallel trend during wound healing. Our findings suggested that the CREB has potential as a meaningful marker to track the wound healing process.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Terapia com Luz de Baixa Intensidade , Ratos Sprague-Dawley , Cicatrização , Animais , Cicatrização/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Ratos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Pele/patologia , Pele/lesões , Citocinas/metabolismo , Fosforilação/efeitos da radiação , Fator de Necrose Tumoral alfa/metabolismo , Colágeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
Chemosphere ; 358: 142218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704047

RESUMO

Human skin is the first line of photoprotection against UV radiation. However, despite having its defence mechanisms, the photoprotection that the skin exerts is not enough. To protect human skin, the inclusion of UV filters in the cosmetic industry has grown significantly as a photoprotection strategy. Octylmethoxycinnamate, also designated by octinoxate, or 2-ethylhexyl-4-methoxycinnamate (CAS number: 5466-77-3) is one of the most widely used UV-B filter in the cosmetic industry. The toxic effects of OMC have alarmed the public, but there is still no consensus in the scientific community about its use. This article aims to provide an overview of the UV filters' photoprotection, emphasizing the OMC and the possible negative effects it may have on the public health. Moreover, the current legislation will be addressed. In summary, the recommendations should be rethought to assess their risk-benefit, since the existing literature warns us to endocrine-disrupting effects of OMC. Further studies should be focus on the toxicity of OMC alone, in mixture and should consider its degradation products, to improve the knowledge of its risk assessment as EDC.


Assuntos
Cinamatos , Disruptores Endócrinos , Protetores Solares , Raios Ultravioleta , Cinamatos/química , Cinamatos/toxicidade , Humanos , Protetores Solares/toxicidade , Disruptores Endócrinos/toxicidade , Medição de Risco , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Cosméticos/toxicidade
12.
Lasers Med Sci ; 39(1): 130, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750285

RESUMO

The aim of this study is to investigate how the introduction of Gold nanoparticles GNPs into a skin tumor affects the ability to absorb laser light during multicolor laser exposure. The Monte Carlo Geant4 technique was used to construct a cubic geometry simulating human skin, and a 5 mm tumor spheroid was implanted at an adjustable depth x. Our findings show that injecting a very low concentration of 0.01% GNPs into a tumor located 1 cm below the skin's surface causes significant laser absorption of up to 25%, particularly in the 900 nm to 1200 nm range, resulting in a temperature increase of approximately 20%. It is an effective way to raise a tumor's temperature and cause cell death while preserving healthy cells. The addition of GNPs to a tumor during polychromatic laser exposure with a wavelength ranging from 900 nm to 1200 nm increases laser absorption and thus temperature while preserving areas without GNPs.


Assuntos
Ouro , Nanopartículas Metálicas , Método de Monte Carlo , Terapia Fototérmica , Neoplasias Cutâneas , Humanos , Terapia Fototérmica/métodos , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/patologia , Pele/efeitos da radiação
13.
J Colloid Interface Sci ; 666: 176-188, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593652

RESUMO

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.


Assuntos
Catalase , Raios Ultravioleta , Catalase/metabolismo , Catalase/química , Humanos , Epiderme/efeitos da radiação , Epiderme/metabolismo , Epiderme/enzimologia , Pele/efeitos da radiação , Pele/metabolismo , Pele/química , Queratinas/química , Queratinas/metabolismo
14.
J Appl Clin Med Phys ; 25(5): e14366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669190

RESUMO

PURPOSE: Skin collimation is a useful tool in electron beam therapy (EBT) to decrease the penumbra at the field edge and minimize dose to nearby superficial organs at risk (OARs), but manually fabricating these collimation devices in the clinic to conform to the patient's anatomy can be a difficult and time intensive process. This work compares two types of patient-specific skin collimation (in-house 3D printed and vendor-provided machined brass) using clinically relevant metrics. METHODS: Attenuation measurements were performed to determine the thickness of each material needed to adequately shield both 6 and 9 MeV electron beams. Relative and absolute dose planes at various depths were measured using radiochromic film to compare the surface dose, flatness, and penumbra of the different skin collimation materials. RESULTS: Clinically acceptable thicknesses of each material were determined for both 6 and 9 MeV electron beams. Field width, flatness, and penumbra results between the two systems were very similar and significantly improved compared to measurements performed with no surface collimation. CONCLUSION: Both skin collimation methods investigated in this work generate sharp penumbras at the field edge and can minimize dose to superficial OARs compared to treatment fields with no surface collimation. The benefits of skin collimation are greatest for lower energy electron beams, and the benefits decrease as the measurement depth increases. Using bolus with skin collimation is recommended to avoid surface dose enhancement seen with collimators placed on the skin surface. Ultimately, the appropriate choice of material will depend on the desire to create these devices in-house or outsource the fabrication to a vendor.


Assuntos
Elétrons , Órgãos em Risco , Impressão Tridimensional , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Pele , Humanos , Elétrons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Pele/efeitos da radiação , Imagens de Fantasmas , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação
15.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674067

RESUMO

Photobiomodulation (PBM) is a procedure that uses light to modulate cellular functions and biological processes. Over the past decades, PBM has gained considerable attention for its potential in various medical applications due to its non-invasive nature and minimal side effects. We conducted a narrative review including articles about photobiomodulation, LED light therapy or low-level laser therapy and their applications on dermatology published over the last 6 years, encompassing research studies, clinical trials, and technological developments. This review highlights the mechanisms of action underlying PBM, including the interaction with cellular chromophores and the activation of intracellular signaling pathways. The evidence from clinical trials and experimental studies to evaluate the efficacy of PBM in clinical practice is summarized with a special emphasis on dermatology. Furthermore, advancements in PBM technology, such as novel light sources and treatment protocols, are discussed in the context of optimizing therapeutic outcomes and improving patient care. This narrative review underscores the promising role of PBM as a non-invasive therapeutic approach with broad clinical applicability. Despite the need for further research to develop standard protocols, PBM holds great potential for addressing a wide range of medical conditions and enhancing patient outcomes in modern healthcare practice.


Assuntos
Terapia com Luz de Baixa Intensidade , Pele , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Pele/efeitos da radiação , Pele/metabolismo , Animais , Dermatopatias/radioterapia , Dermatopatias/terapia , Luz , Fototerapia/métodos
16.
Wound Repair Regen ; 32(3): 217-228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602068

RESUMO

Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.


Assuntos
Bioimpressão , Impressão Tridimensional , Lesões por Radiação , Pele , Humanos , Bioimpressão/métodos , Lesões por Radiação/terapia , Pele/efeitos da radiação , Pele/lesões , Pele/patologia , Cicatrização , Engenharia Tecidual/métodos
17.
J Hazard Mater ; 471: 134386, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663297

RESUMO

Anthracene, a polycyclic aromatic hydrocarbon (PAH), is a widespread environmental pollutant that poses potential risks to human health. Exposure to anthracene can result in various adverse health effects, including skin-related disorders. Photo exposure sufficiently removes the anthracene from the environment but also generates more degradation products which can be more toxic. The goal of this study was to assess the change in anthracene dermotoxicity caused by photodegradation and understand the mechanism of this change. In the present study, over 99.99% of anthracene was degraded within 24 h of sunlight exposure, while producing many intermediate products including 9,10-anthraquinone and phthalic acid. The anthracene products with different durations of photo exposure were applied to 2D and 3D human keratinocyte cultures. Although the non-degraded anthracene significantly delayed the cell migration, the cell viability and differentiation decreased dramatically in the presence of the photodegraded anthracene. Anthracene photodegradation products also altered the expression patterns of a number of inflammation-related genes in comparison to the control cells. Among these genes, il1a, il1b, il8, cxcl2, s100a9, and mmp1 were upregulated whereas the tlr4 and mmp3 were downregulated by the photodegraded anthracene. Topical deliveries of the photodegraded and non-degraded anthracene to the dorsal skin of hairless mice showed more toxic effects by the photodegraded anthracene. The 4-hour photodegradation products of anthracene thickened the epidermal layer, increased the dermal cellularity, and induced the upregulation of inflammatory markers, il1a, il1b, s100a9, and mmp1. In addition, it also prevented the production of a gap junction protein, Connexin-43. All the evidence suggested that photodegradation enhanced the toxicities of anthracene to the skin. The 4-hour photodegradation products of anthracene led to clinical signs similar to acute inflammatory skin diseases, such as atopic and contact dermatitis, eczema, and psoriasis. Therefore, the potential risk of skin irritation by anthracene should be also considered when an individual is exposed to PAHs, especially in environments with strong sunlight.


Assuntos
Antracenos , Queratinócitos , Fotólise , Pele , Antracenos/toxicidade , Antracenos/química , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Animais , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Movimento Celular/efeitos dos fármacos , Luz Solar , Camundongos Pelados , Antraquinonas/toxicidade , Antraquinonas/química , Diferenciação Celular/efeitos dos fármacos
18.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 233-240, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650128

RESUMO

Skin photoaging affects appearance and is associated with a variety of skin diseases, even skin cancer. Therefore, the prevention and treatment of skin photoaging is very important. However, there is a lack of effective evaluation methods, so it is an urgent problem to explore a comprehensive, non-invasive and in vivo evaluation method. Adipose-derived mesenchymal stem cells (ADSCs) are widely used to improve skin conditions as easier to obtain and positive effects. Recently, as the development of ultrasound technology, skin ultrasound has been widely used. Changes in skin layer and structure can be observed by high-frequency ultrasound (HFUS). In addition, Shear wave elastography (SWE) technology can be used to monitor the change of skin hardness. However, it is necessary to further explore the ultrasound parameters in interpreting histological changes. We simulate the progression and treatment process of human skin photoaging by using UVB-induced nude mice skin photoaging model and ADSCs injection. The analysis of the degree and therapeutic effect of skin photoaging was conducted by HFUS, SWE and to verify with histopathology. Our study aims to clarify the value of HFUS combined SWE techniques in evaluating the degree and therapeutic efficacy of skin photoaging, which provides theoretical basis for diagnosis and treatment evaluation systems.


Assuntos
Células-Tronco Mesenquimais , Camundongos Nus , Envelhecimento da Pele , Pele , Raios Ultravioleta , Animais , Envelhecimento da Pele/efeitos da radiação , Células-Tronco Mesenquimais/citologia , Humanos , Pele/efeitos da radiação , Pele/patologia , Tecido Adiposo/citologia , Técnicas de Imagem por Elasticidade , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Feminino
19.
Skin Res Technol ; 30(4): e13714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650371

RESUMO

OBJECTIVE: Platelet-rich plasma (PRP) is recognized as a safe and effective therapy for regenerative skin healing and rejuvenation, utilizing autologous blood enriched with various growth factors. This review aims to assess the efficacy of PRP treatments for skin rejuvenation. METHODS: Keywords such as "platelet-rich plasma," "rejuvenation," "skin aging," and "wrinkles" were queried on Ovid, PubMed, and MEDLINE to identify pertinent studies on PRP treatment for skin rejuvenation. RESULTS: Analysis revealed that PRP treatment led to significant enhancements in multiple facial parameters after one to three sessions. Improvements were noted in skin pore size, texture, wrinkle reduction, pigmented spots, collagen density, hyaluronic acid levels, and protection against ultraviolet damage. Combining PRP with hyaluronic acid demonstrated a synergistic effect, particularly enhancing skin elasticity in patients with lower body mass index and firmness in individuals aged 50s and 60s. Incorporating both physical and biometric data for assessment proved superior to relying solely on physical observations for evaluating subtle skin quality and structural changes. CONCLUSION: This study underscores the efficacy of PRP monotherapy for skin rejuvenation and emphasizes the necessity of standardizing PRP preparation protocols in future investigations. Heightened awareness and advancements in technology have contributed to the emergence of higher-quality, less biased studies supporting PRP as a reliable and safe therapeutic option for skin rejuvenation.


Assuntos
Plasma Rico em Plaquetas , Rejuvenescimento , Envelhecimento da Pele , Humanos , Rejuvenescimento/fisiologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/fisiologia , Ácido Hialurônico , Pele/efeitos da radiação , Técnicas Cosméticas , Pessoa de Meia-Idade
20.
Front Cell Infect Microbiol ; 14: 1307374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660491

RESUMO

Cutaneous diseases (such as atopic dermatitis, acne, psoriasis, alopecia and chronic wounds) rank as the fourth most prevalent human disease, affecting nearly one-third of the world's population. Skin diseases contribute to significant non-fatal disability globally, impacting individuals, partners, and society at large. Recent evidence suggests that specific microbes colonising our skin and its appendages are often overrepresented in disease. Therefore, manipulating interactions of the microbiome in a non-invasive and safe way presents an attractive approach for management of skin and hair follicle conditions. Due to its proven anti-microbial and anti-inflammatory effects, blue light (380 - 495nm) has received considerable attention as a possible 'magic bullet' for management of skin dysbiosis. As humans, we have evolved under the influence of sun exposure, which comprise a significant portion of blue light. A growing body of evidence indicates that our resident skin microbiome possesses the ability to detect and respond to blue light through expression of chromophores. This can modulate physiological responses, ranging from cytotoxicity to proliferation. In this review we first present evidence of the diverse blue light-sensitive chromophores expressed by members of the skin microbiome. Subsequently, we discuss how blue light may impact the dialog between the host and its skin microbiome in prevalent skin and hair follicle conditions. Finally, we examine the constraints of this non-invasive treatment strategy and outline prospective avenues for further research. Collectively, these findings present a comprehensive body of evidence regarding the potential utility of blue light as a restorative tool for managing prevalent skin conditions. Furthermore, they underscore the critical unmet need for a whole systems approach to comprehend the ramifications of blue light on both host and microbial behaviour.


Assuntos
Luz Azul , Microbiota , Pele , Animais , Humanos , Disbiose/microbiologia , Pele/microbiologia , Pele/efeitos da radiação , Dermatopatias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA