Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338721

RESUMO

We investigated the effects of a Tankyrase (TNKS-1/2) inhibitor on mechanical stress-induced gene expression in human chondrocytes and examined TNKS-1/2 expression in human osteoarthritis (OA) cartilage. Cells were seeded onto stretch chambers and incubated with or without a TNKS-1/2 inhibitor (XAV939) for 12 h. Uni-axial cyclic tensile strain (CTS) (0.5 Hz, 8% elongation, 30 min) was applied and the gene expression of type II collagen a1 chain (COL2A1), aggrecan (ACAN), SRY-box9 (SOX9), TNKS-1/2, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), and matrix metalloproteinase-13 (MMP-13) were examined by real-time PCR. The expression of ADAMTS-5, MMP-13, nuclear translocation of nuclear factor-κB (NF-κB), and ß-catenin were examined by immunocytochemistry and Western blotting. The concentration of IL-1ß in the supernatant was examined by enzyme-linked immunosorbent assay (ELISA). TNKS-1/2 expression was assessed by immunohistochemistry in human OA cartilage obtained at the total knee arthroplasty. TNKS-1/2 expression was increased after CTS. The expression of anabolic factors were decreased by CTS, however, these declines were abrogated by XAV939. XAV939 suppressed the CTS-induced expression of catabolic factors, the release of IL-1ß, as well as the nuclear translocation of NF-κB and ß-catenin. TNKS-1/2 expression increased in mild and moderate OA cartilage. Our results demonstrated that XAV939 suppressed mechanical stress-induced expression of catabolic proteases by the inhibition of NF-κB and activation of ß-catenin, indicating that TNKS-1/2 expression might be associated with OA pathogenesis.


Assuntos
Cartilagem Articular , Osteoartrite , Tanquirases , Humanos , beta Catenina/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Estresse Mecânico , Tanquirases/antagonistas & inibidores
2.
ACS Chem Biol ; 18(4): 724-733, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32083462

RESUMO

Proteolytic complexes in Mycobacterium tuberculosis (Mtb), the deadliest bacterial pathogen, are major foci in tuberculosis drug development programs. The Clp proteases, which are essential for Mtb viability, are high-priority targets. These proteases function through the collaboration of ClpP1P2, a barrel-shaped heteromeric peptidase, with associated ATP-dependent chaperones like ClpX and ClpC1 that recognize and unfold specific substrates in an ATP-dependent fashion. The critical interaction of the peptidase and its unfoldase partners is blocked by the competitive binding of acyldepsipeptide antibiotics (ADEPs) to the interfaces of the ClpP2 subunits. The resulting inhibition of Clp protease activity is lethal to Mtb. Here, we report the surprising discovery that a fragment of the ADEPs retains anti-Mtb activity yet stimulates rather than inhibits the ClpXP1P2-catalyzed degradation of proteins. Our data further suggest that the fragment stabilizes the ClpXP1P2 complex and binds ClpP1P2 in a fashion distinct from that of the intact ADEPs. A structure-activity relationship study of the bioactive fragment defines the pharmacophore and points the way toward the development of new drug leads for the treatment of tuberculosis.


Assuntos
Antibacterianos , Mycobacterium tuberculosis , Tuberculose , Humanos , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/química , Chaperonas Moleculares/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Tuberculose/tratamento farmacológico
3.
Acta Pharmacol Sin ; 44(3): 561-572, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35986213

RESUMO

Nitidine chloride (NC) is a standard active component from the traditional Chinese medicine Zanthoxylum nitidum (Roxb.) DC. (ZN). NC has shown a variety of pharmacological activities including anti-tumor activity. As a number of anti-tumor drugs cause cardiotoxicity, herein we investigated whether NC exerted a cardiotoxic effect and the underlying mechanism. Aqueous extract of ZN (ZNE) was intraperitoneally injected into rats, while NC was injected into beagles and mice once daily for 4 weeks. Cardiac function was assessed using echocardiography. We showed that both ZNE administered in rats and NC administered in mice induced dose-dependent cardiac hypertrophy and dysfunction, whereas administration of NC at the middle and high dose caused death in Beagles. Consistently, we observed a reduction of cardiac autophagy levels in NC-treated mice and neonatal mouse cardiomyocytes. Furthermore, we demonstrated that autophagy-related 4B cysteine peptidase (ATG4B) may be a potential target of NC, since overexpression of ATG4B reversed the cardiac hypertrophy and reduced autophagy levels observed in NC-treated mice. We conclude that NC induces cardiac hypertrophy via ATG4B-mediated downregulation of autophagy in mice. Thus, this study provides guidance for the safe clinical application of ZN and the use of NC as an anti-tumor drug.


Assuntos
Cardiomegalia , Cisteína Endopeptidases , Animais , Cães , Camundongos , Ratos , Autofagia , Benzofenantridinas/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Peptídeo Hidrolases/efeitos dos fármacos , Cisteína Endopeptidases/efeitos dos fármacos
4.
Med Chem ; 18(9): 970-979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114926

RESUMO

BACKGROUND: HIV-1 subtype C protease is a strategic target for antiretroviral treatment. However, resistance to protease inhibitors appears after months of treatment. Chromones and 2- biscoumarin derivatives show potential for inhibition of the HIV- subtype C protease. OBJECTIVE: Different heterocyclic structures from the ZINC database were docked against Human Immunodeficiency Virus-1 (HIV) subtype C protease crystal structure 2R5Q and 2R5P. The 5 best molecules were selected to be docked against 62 homology models based on HIV-protease sequences from infants failing antiretroviral protease treatment. This experimentation was performed with two molecular docking programs: Autodock and Autodock Vina. These molecules were modified by substituting protons with different moieties, and the derivatives were docked against the same targets. Ligand-protein interactions, physical/chemical proprieties of the molecules, and dynamics simulations were analyzed. METHODS: Docking of all of the molecules was performed to find out the binding sites of HIV-1 subtype C proteases. An in-house script was made to substitute protons of molecules with different moieties. According to the Lipinski rule of five, physical and chemical properties were determined. Complexes of certain ligands-protease were compared to the protein alone in molecular dynamics simulations. RESULTS: From the first docking results, the 5 best (lowest energy) ligands (dibenz[a,h]acridine, dibenz[a, i]acridine, NSC114903, dibenz[c,h]acridine, benzo[a]acridine) were selected. The binding energy of the modified ligands increased, including the poorest-performing molecules. A correlation between nature, the position, and the resulting binding energy was observed. According to the Lipinski rules, the physico-chemical characteristics of the five best-modified ligands are ideal for oral bioavailability. Molecular dynamics simulations show that some lead-protease complexes were stable. CONCLUSION: Dibenz[a,h]acridine, dibenz[a, i]acridine, NSC114903, dibenz[c,h]acridine, benzo[ a]acridine and their derivatives might be considered as promising HIV-1 subtype C protease inhibitors. This could be confirmed through synthesis and subsequent in vitro assays.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/efeitos dos fármacos
5.
Sci Rep ; 11(1): 20295, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645849

RESUMO

Novel SARS-CoV-2, an etiological factor of Coronavirus disease 2019 (COVID-19), poses a great challenge to the public health care system. Among other druggable targets of SARS-Cov-2, the main protease (Mpro) is regarded as a prominent enzyme target for drug developments owing to its crucial role in virus replication and transcription. We pursued a computational investigation to identify Mpro inhibitors from a compiled library of natural compounds with proven antiviral activities using a hierarchical workflow of molecular docking, ADMET assessment, dynamic simulations and binding free-energy calculations. Five natural compounds, Withanosides V and VI, Racemosides A and B, and Shatavarin IX, obtained better binding affinity and attained stable interactions with Mpro key pocket residues. These intermolecular key interactions were also retained profoundly in the simulation trajectory of 100 ns time scale indicating tight receptor binding. Free energy calculations prioritized Withanosides V and VI as the top candidates that can act as effective SARS-CoV-2 Mpro inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/metabolismo , Compostos Fitoquímicos/farmacologia , Antivirais/farmacologia , Biologia Computacional/métodos , Proteases 3C de Coronavírus/efeitos dos fármacos , Proteases 3C de Coronavírus/ultraestrutura , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/efeitos dos fármacos , Compostos Fitoquímicos/metabolismo , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
6.
Arch Insect Biochem Physiol ; 108(3): e21840, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34569086

RESUMO

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), the cotton bollworm, is a destructive pest which is famous for its resistance to a variety of insecticides. RNA interference is a posttranscriptional gene silencing mechanism that has become a popular tool to control insect pests, triggered by double-stranded RNAs (dsRNAs). The effect of ingestion and injection delivery methods of dsRNA related to some protease genes including Trypsin (Ha-TRY39 and Ha-TRY96), Chymotrypsin (Ha-CHY), and Cathepsin L (Ha-CAT) on growth and development of H. armigera was investigated in this study. All protease genes encoded full ORFs and were expressed in all H. armigera larvae stages and tissues. In both injection and feeding bioassays, Ha-RNAi CHY's performance outperformed that of other protease genes. CHY enzyme activity in the midgut of larvae was significantly reduced after treatment with ds-HaCHY. Oral administration of ds-CHY also resulted in significant mortality of H. armigera larvae. However, because of the high RNase activity in the midgut lumen of lepidoptera, a large amount of dsRNA was needed to effectively kill instars of H. armigera. To reduce dsRNA degradation, bacterial expression and dsRNA formulation were used. After oral administration, it was toxic to H. armigera larvae. Before oral administration, bacterial cells were sonicated to increase dsRNA release. The RNA interference efficiency of sonicated bacteria was significantly increased, resulting in higher larval mortality when administered orally. All of these findings point to Ha-CHY as a new candidate for developing an effective dsRNA-based pesticide for H. armigera control.


Assuntos
Mariposas , Peptídeo Hidrolases , RNA de Cadeia Dupla/farmacologia , Animais , Bactérias/genética , Catepsinas/efeitos dos fármacos , Catepsinas/genética , Quimotripsina/efeitos dos fármacos , Quimotripsina/genética , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Mortalidade , Mariposas/efeitos dos fármacos , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Organismos Geneticamente Modificados , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/genética , Controle de Pragas/métodos , Interferência de RNA , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/metabolismo , Tripsina/efeitos dos fármacos , Tripsina/genética
7.
J Enzyme Inhib Med Chem ; 36(1): 1267-1281, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34210221

RESUMO

Mirolysin is a secretory protease of Tannerella forsythia, a member of the dysbiotic oral microbiota responsible for periodontitis. In this study, we show that mirolysin latency is achieved by a "cysteine-switch" mechanism exerted by Cys23 in the N-terminal profragment. Mutation of Cys23 shortened the time needed for activation of the zymogen from several days to 5 min. The mutation also decreased the thermal stability and autoproteolysis resistance of promirolysin. Mature mirolysin is a thermophilic enzyme and shows optimal activity at 65 °C. Through NMR-based fragment screening, we identified a small molecule (compound (cpd) 9) that blocks promirolysin maturation and functions as a competitive inhibitor (Ki = 3.2 µM), binding to the S1' subsite of the substrate-binding pocket. Cpd 9 shows superior specificity and does not interact with other T. forsythia proteases or Lys/Arg-specific proteases.


Assuntos
Peptídeo Hidrolases/metabolismo , Periodontite/microbiologia , Inibidores de Proteases/farmacologia , Tannerella forsythia/enzimologia , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Descoberta de Drogas , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Humanos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptídeo Hidrolases/efeitos dos fármacos , Inibidores de Proteases/química , Tannerella forsythia/isolamento & purificação , Temperatura
8.
SLAS Discov ; 26(9): 1189-1199, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34151620

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has a huge impact on the world. Although several vaccines have recently reached the market, the development of specific antiviral drugs against SARS-CoV-2 is an important additional strategy in fighting the pandemic. One of the most promising pharmacological targets is the viral main protease (Mpro). Here, we present an optimized biochemical assay procedure for SARS-CoV-2 Mpro. We have comprehensively investigated the influence of different buffer components and conditions on the assay performance and characterized Förster resonance energy transfer (FRET) substrates with a preference for 2-Abz/Tyr(3-NO2) FRET pairs. The substrates 2-AbzSAVLQSGTyr(3-NO2)R-OH, a truncated version of the established DABCYL/EDANS FRET substrate, and 2-AbzVVTLQSGTyr(3-NO2)R-OH are promising candidates for screening and inhibitor characterization. In the latter substrate, the incorporation of Val at position P5 improved the catalytic efficiency. Based on the obtained results, we present here a reproducible, reliable assay protocol using highly affordable buffer components.


Assuntos
Tratamento Farmacológico da COVID-19 , Descoberta de Drogas , Peptídeo Hidrolases/genética , Inibidores de Proteases/isolamento & purificação , Antivirais/isolamento & purificação , Antivirais/uso terapêutico , Bioensaio , COVID-19/epidemiologia , COVID-19/virologia , Cisteína Endopeptidases , Transferência Ressonante de Energia de Fluorescência , Humanos , Simulação de Acoplamento Molecular , Pandemias , Peptídeo Hidrolases/efeitos dos fármacos , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
9.
Viruses ; 13(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918301

RESUMO

The outbreak of SARS-CoV-2 developed into a global pandemic affecting millions of people worldwide. Despite one year of intensive research, the current treatment options for SARS-CoV-2 infected people are still limited. Clearly, novel antiviral compounds for the treatment of SARS-CoV-2 infected patients are still urgently needed. Complementary medicine is used along with standard medical treatment and accessible to a vast majority of people worldwide. Natural products with antiviral activity may contribute to improve the overall condition of SARS-CoV-2 infected individuals. In the present study, we investigated the antiviral activity of glycyrrhizin, the primary active ingredient of the licorice root, against SARS-CoV-2. We demonstrated that glycyrrhizin potently inhibits SARS-CoV-2 replication in vitro. Furthermore, we uncovered the underlying mechanism and showed that glycyrrhizin blocks the viral replication by inhibiting the viral main protease Mpro that is essential for viral replication. Our data indicate that the consumption of glycyrrhizin-containing products such as licorice root tea of black licorice may be of great benefit for SARS-CoV-2 infected people. Furthermore, glycyrrhizin is a good candidate for further investigation for clinical use to treat COVID-19 patients.


Assuntos
Antivirais/farmacologia , Ácido Glicirrízico/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , COVID-19 , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Proteases 3C de Coronavírus/efeitos dos fármacos , Glycyrrhiza/química , Humanos , Peptídeo Hidrolases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Células Vero
10.
Phytother Res ; 35(6): 3262-3274, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33759279

RESUMO

SARS-CoV-2 has caused millions of infections and more than 700,000 deaths. Taking the urgent need to find new therapeutics for coronavirus disease 2019 (COVID-19), a dataset of plant-based natural compounds was selected for the screening of antiviral activity. The viral 3-chymotrypsin-like cysteine protease (Mpro, 3CLpro) was selected as the target. Molecular docking was performed on 2,845 phytochemicals to estimate the spatial affinity for the active sites of the enzyme. The ADMET screening was used for the pharmacological and physicochemical properties of the hit compounds. Nelfinavir and Lopinavir were used as control for binding energy comparison. The top 10 hits, based on the binding energy (Kcal/mol), were Ginkgolide M (-11.2), Mezerein (-11), Tubocurarine (-10.9), Gnidicin (-10.4), Glycobismine A (-10.4), Sciadopitysin Z-10.2), Gnididin (-9.2), Glycobismine A (-10.4), Sciadopitysin (-10.2), Gnididin (-9.20, Emetine (-8.7), Vitexin (-8.3), Calophyllolide (-8.3), and 6-(3,3-Dimethylallyl)galangin (-7.9). The binding energy for nelfinavir and lopinavir were - 9.1 and - 8.4, respectively. Interestingly, some of these natural products were previously shown to possess antiviral properties against various viruses, such as HIV, Zika, and Ebola viruses. Herein, we suggest several phytochemicals as the inhibitors of the main protease of SARS-CoV-2 that could be used in the fight against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/efeitos dos fármacos , Compostos Fitoquímicos/química , Inibidores de Proteases/química
11.
Mol Biol Rep ; 48(2): 1505-1519, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33471263

RESUMO

Serine hydrolases play crucial roles in many physiological and pathophysiological processes and a panel of these enzymes are targets of approved drugs. Despite this, most of the human serine hydrolases remain poorly characterized with respect to their biological functions and substrates and only a limited number of in vivo active inhibitors have been so far identified. Acylpeptide hydrolase (APEH) is a member of the prolyl-oligopeptidase class, with a unique substrate specificity, that has been suggested to have a potential oncogenic role. In this study, a set of peptides was rationally designed from the lead compound SsCEI 4 and in vitro screened for APEH inhibition. Out of these molecules, a dodecapeptide named Ala 3 showed the best inhibitory effects and it was chosen as a candidate for investigating the anti-cancer effects induced by inhibition of APEH in SAOS-2 cell lines. The results clearly demonstrated that Ala 3 markedly reduced cell viability via deregulation of the APEH-proteasome system. Furthermore, flow cytometric analysis revealed that Ala 3 anti-proliferative effects were closely related to the activation of a caspase-dependent apoptotic pathway. Our findings provide further evidence that APEH can play a crucial role in the pathogenesis of cancer, shedding new light on the great potential of this enzyme as an attractive target for the diagnosis and the quest for selective cancer therapies.


Assuntos
Inibidores Enzimáticos/química , Terapia de Alvo Molecular , Osteossarcoma/genética , Peptídeo Hidrolases/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Inibidores Enzimáticos/uso terapêutico , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Especificidade por Substrato
12.
Int J Biol Macromol ; 165(Pt B): 2855-2868, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33096169

RESUMO

Pepsin, as the main protease of the stomach, plays an important role in the digestion of food proteins into smaller peptides and performs about 20% of the digestive function. The role of pepsin in the development of gastrointestinal ulcers has also been studied for many years. Edible drugs that enter the body through the gastrointestinal tract will interact with this enzyme as one of the first targets. Continuous and long-term usage of some drugs will cause chronic contact of the drug with this protein, and as a result, the structure and function of pepsin may be affected. Therefore, the possible effect of atenolol and diltiazem on the structure and activity of pepsin was studied. The interaction of drugs with pepsin was evaluated using various experimental methods including UV-Visible spectroscopy, fluorescence spectroscopy, FTIR and enzymatic activity along with computational approaches. It was showed that after binding of atenolol and diltiazem to pepsin, the inherent fluorescence of the protein is quenched. Determination of the thermodynamic parameters of interactions between atenolol and diltiazem with pepsin indicates that the major forces in the formation of the protein-drug complexes are hydrophobic forces and also atenolol has a stronger protein bonding than diltiazem. Additional tests also show that the protease activity of pepsin, decreases and increases in the presence of atenolol and diltiazem, respectively. Investigation of the FTIR spectrum of the protein in the presence and absence of atenolol and diltiazem show that in the presence of atenolol the structure of protein has slightly changed. Molecular modeling studies, in agreement with the experimental results, confirm the binding of atenolol and diltiazem to the enzyme pepsin and show that the drugs are bind close to the active site of the enzyme. Finally, from experimental and computational results, it can be concluded that atenolol and diltiazem interact with the pepsin and change its structure and protease activity.


Assuntos
Atenolol/farmacologia , Diltiazem/farmacologia , Pepsina A/química , Peptídeo Hidrolases/química , Atenolol/química , Sítios de Ligação/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Diltiazem/química , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Simulação de Acoplamento Molecular , Pepsina A/efeitos dos fármacos , Pepsina A/ultraestrutura , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/ultraestrutura , Ligação Proteica/genética , Espectrometria de Fluorescência , Relação Estrutura-Atividade
13.
Artigo em Inglês | MEDLINE | ID: mdl-32734890

RESUMO

Toxicity and poor adherence to treatment that favors the generation of resistance in the Leishmania parasites highlight the need to develop better alternatives. Here, we evaluated the in vitro effectiveness of hydrazone derived from chromanes 2-(2,3-dihydro-4H-1-benzothiopyran-4-ylidene) hydrazide (TC1) and 2-(2,3-dihydro-4H-1-benzopyran-4-ylidene) hydrazide (TC2) and the mixture of triterpene saponin hederagenin-3-O-(3,4-O-diacetyl-ß-D-xylopyranosyl-(1à3)-a-L- rhamnopyranosyl-(1à2)-a-L-arabinofuranoside, hederagenin-3-O-(3,4-O-diacetyl-a-L- arabinopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside and, hederagenin-3-O-(4-O-acetyl-ß-D-xylopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside from Sapindus saponaria (SS) on L. braziliensis and L. pifanoi. Mixtures of TC1 or TC2 with saponin were formulated for topical application and the therapeutic effectiveness was evaluated in the model for cutaneous leishmaniasis (CL) in golden hamster. The mode of action of these compounds was tested on various parasite processes and ultrastructural parasite modifications. TC1, TC2 and SS showed moderate cytotoxicity when tested independently but toxicity was improved when tested in combination. The compounds were more active against intracellular Leishmania amastigotes. In vivo studies showed that combinations of TC1 or TC2 with SS in 1:1 ratio (w/w) cured 100% of hamsters with no signs associated with toxicity. The compounds did cause changes in the mitochondrial activity of the parasite with a decrease in ATP levels and depolarization of membrane potential and overproduction of reactive oxygen species; nevertheless, these effects were not related to alterations in membrane permeability. The phagolysosome ultrastructure was also affected impacting the survival of Leishmania but the function of the lysosome nor the pH inside the phagolysosome did not change. Lastly, there was a protease inhibition which was directly related to the decrease in the ability of Leishmania to infect and multiply inside the macrophage. The results suggest that the combination of TC1 and TC2 with SS in a 1:1 ratio is capable of curing CL in hamsters. This effect may be due to the ability of these compounds to affect parasite survival and the ability to infect new cells.


Assuntos
Hidrazonas/farmacologia , Leishmania/efeitos dos fármacos , Sapindus/química , Saponinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Hidrazonas/química , Hidrazonas/toxicidade , Leishmania/metabolismo , Leishmania/ultraestrutura , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/metabolismo , Leishmania braziliensis/ultraestrutura , Estágios do Ciclo de Vida/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Reinfecção , Saponinas/química , Saponinas/toxicidade
14.
Parasit Vectors ; 13(1): 426, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819437

RESUMO

BACKGROUND: Avian schistosomes, the causative agents of human cercarial dermatitis (or swimmer's itch), die in mammals but the mechanisms responsible for parasite elimination are unknown. Here we examined the role of reactive nitrogen species, nitric oxide (NO) and peroxynitrite, in the immune response of mice experimentally infected with Trichobilharzia regenti, a model species of avian schistosomes remarkable for its neuropathogenicity. METHODS: Inducible NO synthase (iNOS) was localized by immunohistochemistry in the skin and the spinal cord of mice infected by T. regenti. The impact of iNOS inhibition by aminoguanidine on parasite burden and growth was then evaluated in vivo. The vulnerability of T. regenti schistosomula to NO and peroxynitrite was assessed in vitro by viability assays and electron microscopy. Additionally, the effect of NO on the activity of T. regenti peptidases was tested using a fluorogenic substrate. RESULTS: iNOS was detected around the parasites in the epidermis 8 h post-infection and also in the spinal cord 3 days post-infection (dpi). Inhibition of iNOS resulted in slower parasite growth 3 dpi, but the opposite effect was observed 7 dpi. At the latter time point, moderately increased parasite burden was also noticed in the spinal cord. In vitro, NO did not impair the parasites, but inhibited the activity of T. regenti cathepsins B1.1 and B2, the peptidases essential for parasite migration and digestion. Peroxynitrite severely damaged the surface tegument of the parasites and decreased their viability in vitro, but rather did not participate in parasite clearance in vivo. CONCLUSIONS: Reactive nitrogen species, specifically NO, do not directly kill T. regenti in mice. NO promotes the parasite growth soon after penetration (3 dpi), but prevents it later (7 dpi) when also suspends the parasite migration in the CNS. NO-related disruption of the parasite proteolytic machinery is partly responsible for this effect.


Assuntos
Óxido Nítrico/farmacologia , Peptídeo Hidrolases/efeitos dos fármacos , Schistosoma/efeitos dos fármacos , Animais , Aves/parasitologia , Sistema Nervoso Central/parasitologia , Guanidinas/farmacologia , Proteínas de Helminto/efeitos dos fármacos , Proteínas de Helminto/metabolismo , Humanos , Camundongos , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Peptídeo Hidrolases/metabolismo , Ácido Peroxinitroso/farmacologia , Schistosoma/crescimento & desenvolvimento , Schistosoma/patogenicidade , Schistosomatidae/efeitos dos fármacos , Schistosomatidae/crescimento & desenvolvimento , Schistosomatidae/patogenicidade , Esquistossomose/tratamento farmacológico , Pele/parasitologia , Medula Espinal/parasitologia , Infecções por Trematódeos/tratamento farmacológico
15.
Life Sci ; 257: 118080, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653520

RESUMO

The COVID-19 pandemic raised by SARS-CoV-2 is a public health emergency. However, lack of antiviral drugs and vaccine against human coronaviruses demands a concerted approach to challenge the SARS-CoV-2 infection. Under limited resource and urgency, combinatorial computational approaches to identify the potential inhibitor from known drugs could be applied against risen COVID-19 pandemic. Thereof, this study attempted to purpose the potent inhibitors from the approved drug pool against SARS-CoV-2 main protease (Mpro). To circumvent the issue of lead compound from available drugs as antivirals, antibiotics with broad spectrum of viral activity, i.e. doxycycline, tetracycline, demeclocycline, and minocycline were chosen for molecular simulation analysis against native ligand N3 inhibitor in SARS-CoV-2 Mpro crystal structure. Molecular docking simulation predicted the docking score >-7 kcal/mol with significant intermolecular interaction at the catalytic dyad (His41 and Cys145) and other essential substrate binding residues of SARS-CoV-2 Mpro. The best ligand conformations were further studied for complex stability and intermolecular interaction profiling with respect to time under 100 ns classical molecular dynamics simulation, established the significant stability and interactions of selected antibiotics by comparison to N3 inhibitor. Based on combinatorial molecular simulation analysis, doxycycline and minocycline were selected as potent inhibitor against SARS-CoV-2 Mpro which can used in combinational therapy against SARS-CoV-2 infection.


Assuntos
Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , Tetraciclinas/farmacologia , Antibacterianos , Antivirais/farmacologia , Sítios de Ligação/fisiologia , COVID-19 , Biologia Computacional/métodos , Infecções por Coronavirus/tratamento farmacológico , Bases de Dados Genéticas , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Pandemias , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/farmacologia , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2 , Proteínas não Estruturais Virais/antagonistas & inibidores
16.
Int J Biol Macromol ; 163: 135-146, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32615225

RESUMO

The increasing amount of recalcitrant keratinous wastes generated from the poultry industry poses a serious threat to the environment. Keratinase have gained much attention to convert these wastes into valuable products. Ever since primitive feathers first appeared on dinosaurs, microorganisms have evolved to degrade this most recalcitrant keratin. In this study, we identified a promising keratinolytic bacterial strain for bioconversion of poultry solid wastes. A true keratinolytic bacterium was isolated from the slaughterhouse soil and was identified and designated as Bacillus pumilus AR57 by 16S rRNA sequencing. For enhanced keratinase production and rapid keratin degradation, the media components and substrate concentration were optimized through shake flask culture. White chicken feather (1% w/v) was found to be the good substrate concentration for high keratinase production when supplemented with simple medium ingredients. The biochemical characterization reveals astounding results which makes the B. pumilus AR57 keratinase as a novel and unique protease. Optimum activity of the crude enzyme was exhibited at pH 9 and 45 °C. The crude extracellular keratinase was characterized as thermo-and-solvent (DMSO) stable serine keratinase. Bacillus pumilus AR57 showed complete degradation (100%) of white chicken feather (1% w/v) within 18 h when incubated in modified minimal medium supplemented with DMSO (1% v/v) at 150 rpm at 37 °C. Keratinase from modified minimal medium supplemented with DMSO exhibits a half-life of 4 days. Whereas, keratinase from the modified minimal medium fortified with white chicken feather (1% w/v) was stable for 3 h only. Feather meal produced by B. pumilus AR57 was found to be rich in essential amino acids. Hence, we proposed B. pumilus AR57 as a potential candidate for the future application in eco-friendly bioconversion of poultry waste and the keratinase could play a pivotal role in the detergent industry. While feather meal may serve as an alternative to produce animal feed and biofertilizers.


Assuntos
Bacillus pumilus/enzimologia , Bacillus pumilus/genética , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/química , Serina Proteases/biossíntese , Serina Proteases/química , Álcalis/química , Aminoácidos/análise , Animais , Bacillus pumilus/classificação , Bacillus pumilus/crescimento & desenvolvimento , Fenômenos Bioquímicos , Meios de Cultura/química , Plumas/química , Plumas/metabolismo , Concentração de Íons de Hidrogênio , Íons/química , Queratinas/química , Queratinas/metabolismo , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/isolamento & purificação , Aves Domésticas , Inibidores de Proteases/farmacologia , RNA Ribossômico 16S , Serina Proteases/efeitos dos fármacos , Serina Proteases/isolamento & purificação , Resíduos Sólidos , Solventes/química , Tensoativos/química , Temperatura , Gerenciamento de Resíduos/métodos
17.
World J Microbiol Biotechnol ; 36(5): 77, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32399738

RESUMO

Protease mediated proteolysis has been widely implicated in virulence of necrotrophic fungal pathogens. This is counteracted in plants by evolving new and effective antimicrobial peptides (AMP) that constitute important components of innate immune system. Peptide extraction from rhizome of Zingiber zerumbet was optimized using ammonium sulphate (50-80% w/v) and acetone (60 and 100% v/v) with maximal protein recovery of 1.2 ± 0.4 mg/g obtained using 100% acetone. Evaluation of inhibitory potential of Z. zerumbet rhizome protein extract to prominent hydrolases of necrotrophic Pythium myriotylum revealed maximal inhibition of proteases (75.8%) compared to other hydrolytic enzymes. Protein was purified by Sephacryl S200HR resin resulting in twofold purification and protease inhibition of 84.4%. Non-reducing polyacrylamide gel electrophoresis (PAGE) of the fractions yielded two bands of 75 kDa and 25 kDa molecular size. Peptide mass fingerprint of the protein bands using matrix assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectroscopy (MS) and subsequent MASCOT searches revealed peptide match to methylesterase from Arabidopsis thaliana (15%) and to hypothetical protein from Oryza sativa (98%) respectively. Further centrifugal filter purification using Amicon Ultra (10,000 MW cut-off) filter, yielded a prominent band of 25 kDa size. Concentration dependent inhibition of zoospore viability by Z. zerumbet AMP designated as ZzAMP was observed with maximal inhibition of 89.5% at 4 µg protein and an IC50 value of 0.59 µg. Studies are of particular relevance in the context of identifying the molecules involved in imparting below ground defense in Z. zerumbet as well in development of AMPs as potential candidate molecules for control of necrotrophic pathogens of agricultural relevance.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeo Hidrolases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pythium/efeitos dos fármacos , Rizoma/microbiologia , Zingiberaceae/microbiologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Arabidopsis , Inibidores Enzimáticos , Fungos/efeitos dos fármacos , Oryza , Peptídeos/farmacologia , Extratos Vegetais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zingiberaceae/crescimento & desenvolvimento
18.
Bioinformatics ; 36(11): 3295-3298, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32239142

RESUMO

MOTIVATION: Since December 2019, the newly identified coronavirus SARS-CoV-2 has caused a massive health crisis worldwide and resulted in over 70 000 COVID-19 infections so far. Clinical drugs targeting SARS-CoV-2 are urgently needed to decrease the high fatality rate of confirmed COVID-19 patients. Traditional de novo drug discovery needs more than 10 years, so drug repurposing seems the best option currently to find potential drugs for treating COVID-19. RESULTS: Compared with traditional non-covalent drugs, covalent drugs have attracted escalating attention recent years due to their advantages in potential specificity upon careful design, efficiency and patient burden. We recently developed a computational protocol named as SCAR (steric-clashes alleviating receptors) for discovering covalent drugs. In this work, we used the SCAR protocol to identify possible covalent drugs (approved or clinically tested) targeting the main protease (3CLpro) of SARS-CoV-2. We identified 11 potential hits, among which at least six hits were exclusively enriched by the SCAR protocol. Since the preclinical or clinical information of these identified drugs is already available, they might be ready for being clinically tested in the treatment of COVID-19. CONTACT: senliu.ctgu@gmail.com.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Coronavirus , Cisteína Endopeptidases , Sistemas de Liberação de Medicamentos , Pandemias , Pneumonia Viral , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Proteínas não Estruturais Virais , Betacoronavirus/efeitos dos fármacos , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/enzimologia , Cisteína Endopeptidases/efeitos dos fármacos , Humanos , Peptídeo Hidrolases/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/enzimologia , SARS-CoV-2 , Proteínas não Estruturais Virais/efeitos dos fármacos
19.
Microb Pathog ; 140: 103927, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31846743

RESUMO

The use of traditional foods and beverages or their bioactive compounds as anti-virulence agents is a new alternative method to overcome the increased global emergence of antimicrobial resistance in enteric pathogens. In the present study, we investigated the anti-virulence activity of a polyphenolic fraction previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against Vibrio cholerae O1. The isolated fraction was mainly composed of the polyphenols catechin and isorhamnetin. The fraction, the individual polyphenols and the combination of the individual polyphenols significantly inhibited bacterial swarming motility and expression of flagellar regulatory genes motY and flaC, even at sub-inhibitory concentrations. The polyphenolic compounds also decreased bacterial protease secretion and mucin penetration in vitro. In vivo study revealed that the polyphenolic fraction significantly inhibited V. cholerae induced fluid accumulation in the rabbit ileal loop model and intestinal colonization in suckling mice model. Therefore, the anti-virulence activity of the Kombucha polyphenolic fraction involved inhibition of motility and protease secretion of V. cholerae, thus preventing bacterial penetration through the mucin layer as well as fluid accumulation and bacterial colonization in the intestinal epithelial cells. The overall results implied that Kombucha might be considered as a potential alternative source of anti-virulence polyphenols against V. cholerae. To the best of our knowledge, this is the first report on the anti-virulence activity of Kombucha, mostly attributed to its polyphenolic content.


Assuntos
Chá de Kombucha , Polifenóis/farmacologia , Vibrio cholerae/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/efeitos dos fármacos , Catequina/farmacologia , Movimento Celular/efeitos dos fármacos , Cólera/tratamento farmacológico , Expressão Gênica/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/microbiologia , Camundongos , Peptídeo Hidrolases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Quercetina/análogos & derivados , Quercetina/farmacologia , Coelhos , Vibrio cholerae/patogenicidade , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
20.
Neurosci Biobehav Rev ; 108: 679-693, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794779

RESUMO

Schizophrenia (SCZ) is a complex psychiatric disorder with severe impact on patient's livelihood. In the last years, the importance of neuropeptides in SCZ and other CNS disorders has been recognized, mainly due to their ability to modulate the signaling of classical monoaminergic neurotransmitters as dopamine. In addition, a class of enzymes coined as oligopeptidases are able to cleave several of these neuropeptides, and their potential implication in SCZ was also demonstrated. Interestingly, these enzymes are able to play roles as modulators of neuropeptidergic systems, and they were also implicated in neurogenesis, neurite outgrowth, neuron migration, and therefore, in neurodevelopment and brain formation. Altered activity of oligopeptidases in SCZ was described only more recently, suggesting their possible utility as biomarkers for mental disorders diagnosis or treatment response. We provide here an updated and comprehensive review on neuropeptides and oligopeptidases involved in mental disorders, aiming to attract the attention of physicians to the potential of targeting this system for improving the therapy and for understanding the neurobiology underlying mental disorders as SCZ.


Assuntos
Neuropeptídeos/metabolismo , Peptídeo Hidrolases/metabolismo , Esquizofrenia/metabolismo , Animais , Humanos , Neuropeptídeos/efeitos dos fármacos , Peptídeo Hidrolases/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA