Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 219: 106475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552891

RESUMO

AA139, a variant of natural antimicrobial peptide (AMP) arenicin-3, displayed potent activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria. Nevertheless, there were currently few reports on the bioprocess of AA139, and the yields were less than 5 mg/L. Additionally, it was difficult and expensive to prepare AA139 through chemical synthesis due to its complex structure. These factors have impeded the further research and following clinical application of AA139. Here, we reported a bioprocess for the preparation of AA139, which was expressed in Escherichia coli (E. coli) BL21 (DE3) intracellularly in a soluble form via SUMO (small ubiquitin-related modifier) fusion technology. Then, recombinant AA139 (rAA139, refer to AA139 obtained by recombinant expression in this study) was obtained through the simplified downstream process, which was rationally designed in accordance with the physicochemical characteristics. Subsequently, the expression level of the interest protein was increased by 54% after optimization of high cell density fermentation (HCDF). Finally, we obtained a yield of 56 mg of rAA139 from 1 L culture with a purity of 98%, which represented the highest reported yield of AA139 to date. Furthermore, various characterizations were conducted to confirm the molecular mass, disulfide bonds, and antimicrobial activity of rAA139.


Assuntos
Peptídeos Antimicrobianos , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Fermentação , Expressão Gênica
2.
Bioprocess Biosyst Eng ; 47(5): 683-695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521865

RESUMO

One of the significant challenges during the purification and characterization of antimicrobial peptides (AMPs) from Bacillus sp. is the interference of unutilized peptides from complex medium components during analytical procedures. In this study, a semi-synthetic medium was devised to overcome this challenge. Using a genetic algorithm, the production medium of AMP is optimized. The parent organism, Bacillus licheniformis MCC2514, produces AMP in very small quantities. This AMP is known to inhibit RNA biosynthesis. The findings revealed that lactose, NH4Cl and NaNO3 were crucial medium constituents for enhanced AMP synthesis. The potency of the AMP produced was studied using bacterium, Kocuria rhizophila ATCC 9341. The AMP produced from the optimized medium was eightfold higher than that produced from the unoptimized medium. Furthermore, activity was increased by 1.5-fold when cultivation conditions were standardized using the optimized medium. Later, AMP was produced in a 5 L bioreactor under controlled conditions, which led to similar results as those of shake-flask production. The mode of action of optimally produced AMP was confirmed to be inhibition of RNA biosynthesis. Here, we demonstrate that improved production of AMP is possible with the developed semi-synthetic medium recipe and could help further AMP production in an industrial setup.


Assuntos
Algoritmos , Bacillus licheniformis , Meios de Cultura , Bacillus licheniformis/metabolismo , Bacillus licheniformis/genética , Peptídeos Antimicrobianos/biossíntese , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , RNA/biossíntese , Reatores Biológicos
3.
Nat Commun ; 14(1): 1464, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928189

RESUMO

Antimicrobial peptides (AMPs) are promising next-generation antibiotics that can be used to combat drug-resistant pathogens. However, the high cost involved in AMP synthesis and their short plasma half-life render their clinical translation a challenge. To address these shortcomings, we report efficient production of bioactive amidated AMPs by transient expression of glycine-extended AMPs in Nicotiana benthamiana line expressing the mammalian enzyme peptidylglycine α-amidating mono-oxygenase (PAM). Cationic AMPs accumulate to substantial levels in PAM transgenic plants compare to nontransgenic N. benthamiana. Moreover, AMPs purified from plants exhibit robust killing activity against six highly virulent and antibiotic resistant ESKAPE pathogens, prevent their biofilm formation, analogous to their synthetic counterparts and synergize with antibiotics. We also perform a base case techno-economic analysis of our platform, demonstrating the potential economic advantages and scalability for industrial use. Taken together, our experimental data and techno-economic analysis demonstrate the potential use of plant chassis for large-scale production of clinical-grade AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Animais , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/biossíntese , Mamíferos , Plantas , Nicotiana/química , Nicotiana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos
4.
Sci Rep ; 12(1): 1086, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058492

RESUMO

The antibiotic resistance crisis has prompted research into alternative candidates such as antimicrobial peptides (AMPs). However, the demand for such molecules can only be met by continuous production processes, which achieve high product yields and offer compatibility with the Quality-by-Design initiative by implementing process analytical technologies such as turbidimetry and dielectric spectroscopy. We developed batch and perfusion processes at the 2-L scale for the production of BR033, a cecropin-like AMP from Lucilia sericata, in stably-transformed polyclonal Sf-9 cells. This is the first time that BR033 has been expressed as a recombinant peptide. Process analytical technology facilitated the online monitoring and control of cell growth, viability and concentration. The perfusion process increased productivity by ~ 180% compared to the batch process and achieved a viable cell concentration of 1.1 × 107 cells/mL. Acoustic separation enabled the consistent retention of 98.5-100% of the cells, viability was > 90.5%. The recombinant AMP was recovered from the culture broth by immobilized metal affinity chromatography and gel filtration and was able to inhibit the growth of Escherichia coli K12. These results demonstrate a successful, integrated approach for the development and intensification of a process from cloning to activity testing for the production of new biopharmaceutical candidates.


Assuntos
Peptídeos Antimicrobianos/biossíntese , Técnicas de Cultura de Células/métodos , Animais , Peptídeos Antimicrobianos/farmacologia , Reatores Biológicos , Biotecnologia/métodos , Insetos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Células Sf9/metabolismo
5.
Sci Rep ; 11(1): 23724, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887426

RESUMO

The mouth environment comprises the second most significant microbiome in the body, and its equilibrium is critical in oral health. Secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1), a protein normally produced by the gingival epithelium to mediate its attachment to teeth, was suggested to be bactericidal. Our aim was to further explore the antibacterial potential of human SCPPPQ1 by characterizing its mode of action and identifying its active portions. In silico analysis showed that it has molecular parallels with antimicrobial peptides. Incubation of Porphyromonas gingivalis, a major periodontopathogen, with the full-length protein resulted in decrease in bacterial number, formation of aggregates and membrane disruptions. Analysis of SCPPPQ1-derived peptides indicated that these effects are sustained by specific regions of the molecule. Altogether, these data suggest that human SCPPPQ1 exhibits antibacterial capacity and provide new insight into its mechanism of action.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/farmacologia , Fosfoproteínas/química , Fosfoproteínas/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Sequência de Aminoácidos , Peptídeos Antimicrobianos/biossíntese , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Resistência à Doença , Interações Hospedeiro-Patógeno , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
6.
Front Immunol ; 12: 757434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956187

RESUMO

Evidence of immune memory in invertebrates (immune priming) has accumulated in various organisms, and both cellular and humoral immune reactions are speculated to be involved in immune priming. However, there is a lack of understanding of the molecular mechanisms involved. In the present study, the protective effect of primed haemolymph was further validated by the increased survival rate of naïve crabs receiving a transfusion of primed haemolymph. By proteomic analysis, there were 474 proteins identified from the primed haemolymph, and most of them were functionally annotated in transport and metabolism classes. A total of 70 proteins were found to be differentially expressed in haemolymph at 12 hours and 7 days after priming stimulation with Aeromonas hydrophila, among which anti-lipopolysaccharide factor 1 (EsALF-1) and 3 (EsALF-3) were identified as the most significant (p < 0.05). After being challenged with A. hydrophila, EsALF-1 and EsALF-3 were highly expressed at both mRNA (in haemocytes) and protein (in haemolymph) levels compared with blank crabs, and the mRNA expressions of components in the EsTLR1-EsMyd88-EsPelle-EsALF pathway also increased significantly (p < 0.05). The EsALF-3 and EsMyd88 were even significantly higher expressed in response to the second A. hydrophila challenge, but their expressions all decreased (p < 0.05) when EsTLR1 was knocked down by RNAi. After the naïve crabs received an injection with the recombinant protein of EsALF-1 (rEsALF-1) or EsALF-3 (rEsALF-3), their survival rate increased significantly (p < 0.05) upon A. hydrophila stimulation. In contrast, the survival rate of the primed crabs reduced significantly (p < 0.05) after they received an injection with the antibody of EsALF-1 or EsALF-3. The enhanced expressions of EsALF-1 and EsALF-3 after A. hydrophilap riming stimulation could sustain for four weeks. All the results suggested that the EsTLR1-mediated productions of EsALF-1 and EsALF-3 in haemolymph played an indispensable role in the month-long humoral immune protection induced by A. hydrophila, which provides solid evidence of immune priming in crabs and a valuable reference for further understanding immune memory in invertebrates.


Assuntos
Aeromonas hydrophila/imunologia , Peptídeos Antimicrobianos/biossíntese , Proteínas de Artrópodes/biossíntese , Braquiúros/imunologia , Lipopolissacarídeos/toxicidade , Idoso , Animais , Especificidade de Anticorpos , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/imunologia , Aquicultura , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Braquiúros/genética , Braquiúros/microbiologia , Clonagem Molecular , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hemócitos/metabolismo , Hemolinfa/imunologia , Humanos , Imunidade Humoral , Camundongos , Proteômica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Receptores Toll-Like/fisiologia
7.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885732

RESUMO

CLP is a novel hybrid peptide derived from CM4, LL37 and TP5, with significantly reduced hemolytic activity and increased antibacterial activity than parental antimicrobial peptides. To avoid host toxicity and obtain high-level bio-production of CLP, we established a His-tagged SUMO fusion expression system in Escherichia coli. The fusion protein can be purified using a Nickel column, cleaved by TEV protease, and further purified in flow-through of the Nickel column. As a result, the recombinant CLP with a yield of 27.56 mg/L and a purity of 93.6% was obtained. The purified CLP exhibits potent antimicrobial activity against gram+ and gram- bacteria. Furthermore, the result of propidium iodide staining and scanning electron microscopy (SEM) showed that CLP can induce the membrane permeabilization and cell death of Enterotoxigenic Escherichia coli (ETEC) K88. The analysis of thermal stability results showed that the antibacterial activity of CLP decreases slightly below 70 °C for 30 min. However, when the temperature was above 70 °C, the antibacterial activity was significantly decreased. In addition, the antibacterial activity of CLP was stable in the pH range from 4.0 to 9.0; however, when pH was below 4.0 and over 9.0, the activity of CLP decreased significantly. In the presence of various proteases, such as pepsin, papain, trypsin and proteinase K, the antibacterial activity of CLP remained above 46.2%. In summary, this study not only provides an effective strategy for high-level production of antimicrobial peptides and evaluates the interference factors that affect the biological activity of hybrid peptide CLP, but also paves the way for further exploration of the treatment of multidrug-resistant bacterial infections.


Assuntos
Antibacterianos/química , Peptídeos Antimicrobianos/química , Peptídeos/química , Proteínas Recombinantes de Fusão/genética , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Antimicrobianos/biossíntese , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Catelicidinas/química , Catelicidinas/genética , Escherichia coli/genética , Hemólise/efeitos dos fármacos , Humanos , Peptídeos/genética , Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia
8.
Sci Immunol ; 6(65): eabf7473, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739342

RESUMO

Inflammatory bowel disease (IBD) is characterized by inappropriate immune responses to the microbiota in genetically susceptible hosts, but little is known about the pathways that link individual genetic alterations to microbiota-dependent inflammation. Here, we demonstrated that the loss of X-linked inhibitor of apoptosis protein (XIAP), a gene associated with Mendelian IBD, rendered Paneth cells sensitive to microbiota-, tumor necrosis factor (TNF)­, receptor-interacting protein kinase 1 (RIPK1)­, and RIPK3-dependent cell death. This was associated with deficiency in Paneth cell­derived antimicrobial peptides and alterations in the stratification and composition of the microbiota. Loss of XIAP was not sufficient to elicit intestinal inflammation but provided susceptibility to pathobionts able to promote granulomatous ileitis, which could be prevented by administration of a Paneth cell­derived antimicrobial peptide. These data reveal a pathway critical for host-microbial cross-talk, which is required for intestinal homeostasis and the prevention of inflammation and which is amenable to therapeutic targeting.


Assuntos
Inflamação/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Intestinos/imunologia , Microbiota/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/imunologia , Animais , Peptídeos Antimicrobianos/administração & dosagem , Peptídeos Antimicrobianos/biossíntese , Peptídeos Antimicrobianos/farmacologia , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Proteínas Inibidoras de Apoptose/deficiência , Proteínas Inibidoras de Apoptose/genética , Intestinos/efeitos dos fármacos , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/efeitos dos fármacos , Celulas de Paneth/química , Celulas de Paneth/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/deficiência , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
9.
Mucosal Immunol ; 14(6): 1358-1368, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34465896

RESUMO

Young age is a risk factor for respiratory and gastrointestinal infections. Here, we compared infant and adult mice to identify age-dependent mechanisms that drive susceptibility to mucosal infections during early life. Transcriptional profiling of the upper respiratory tract (URT) epithelium revealed significant dampening of early life innate mucosal defenses. Epithelial-mediated production of the most abundant antimicrobial molecules, lysozyme, and lactoferrin, and the polymeric immunoglobulin receptor (pIgR), responsible for IgA transcytosis, was expressed in an age-dependent manner. This was attributed to delayed functional development of serous cells. Absence of epithelial-derived lysozyme and the pIgR was also observed in the small intestine during early life. Infection of infant mice with lysozyme-susceptible strains of Streptococcus pneumoniae or Staphylococcus aureus in the URT or gastrointestinal tract, respectively, demonstrated an age-dependent regulation of lysozyme enzymatic activity. Lysozyme derived from maternal milk partially compensated for the reduction in URT lysozyme activity of infant mice. Similar to our observations in mice, expression of lysozyme and the pIgR in nasopharyngeal samples collected from healthy human infants during the first year of life followed an age-dependent regulation. Thus, a global pattern of reduced antimicrobial and IgA-mediated defenses may contribute to increased susceptibility of young children to mucosal infections.


Assuntos
Anti-Infecciosos/metabolismo , Células Epiteliais/metabolismo , Imunidade Inata , Imunidade nas Mucosas , Mucosa/imunologia , Mucosa/metabolismo , Fatores Etários , Animais , Peptídeos Antimicrobianos/biossíntese , Biomarcadores , Resistência à Doença , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Muramidase/biossíntese , Muramidase/genética , Especificidade de Órgãos
10.
Protein Pept Lett ; 28(11): 1312-1322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34477502

RESUMO

AIM: This study was designed to screen and identify an antimicrobial peptide from rhizosphere soil. The study was further focused towards overexpression, purification and characterization of this antimicrobial peptide, and to functionally validate its efficiency and efficacy as an antimicrobial agent. Yet, the study was further aimed at corroborating structural and functional studies using biophysical tools. BACKGROUND: Antimicrobial resistance is emerging as one of the top 10 global health crisis, it is multifaceted and the second largest cause of mortality. According to the World Health Organization (WHO), around the world, an estimated 700,000 people die each year from infection caused by antibiotic-resistant microbes. Antimicrobial peptides offer the best alternative to combat and overcome this crisis. In this manuscript, we report cloning, expression, purification and characterization of an antimicrobial peptide discovered from rhizosphere soil. OBJECTIVE: Objectives of this study include construction, screening and identification of antimicrobial peptide from metagenome followed by its expression, purification and functional and biophysical investigation. Yet another objective of the study was to determine antimicrobial efficacy and efficiency as an antimicrobial peptide against MRSA strains. METHODS: In this study, we used an array of molecular biology tools that include genetic engineering, PCR amplification, construction of an expression construct and NI-NTA based purification of the recombinant peptide. We have also carried out antimicrobial activity assay to determine MIC (minimum inhibitory concentration) and IC50 values of antimicrobial peptide. To establish the structural and functional relationship, circular dichroism, and both extrinsic and intrinsic fluorescence spectroscopy studies were carried out. RESULTS: Screening of metagenomic library resulted in the identification of gene (~500bp) harbouring an open reading frame (ORF) consisting of 282 bp. Open reading frame identified in gene encodes an antimicrobial peptide which had shared ~95% sequence similarity with the antimicrobial peptide of Bacillus origin. Purification of recombinant protein using Ni-NTA column chromatography demonstrated a purified protein band of ~11 kDa on 14% SDS-PAGE, which is well corroborated to theoretical deduced molecular weight of peptide from its amino acids sequence. Interestingly, the peptide exhibited antimicrobial activity in a broad range of pH and temperature. MIC determined against gram positive Bacillus sp. was found to be 0.015mg/ml, whereas, in the case of gram negative E. coli, it was calculated to be 0.062mg/ml. The peptide exhibited IC50 values corresponding to ~0.25mg/ml against Bacillus and ~0.5 mg/ml against E. coli. Antimicrobial susceptibility assay performed against methicillin resistant Staphylococcus aureus strain ATCC 3412 and standard strain of Staphylococcus aureus ATCC 9144 revealed its strong inhibitory activity against MRSA, whereby we observed a ~16mm clearance zone at higher peptide concentrations ~2mg/ml (~181.8µM). Biophysical investigation carried out using Trp fluorescence, ANS fluorescence and circular dichroism spectroscopy further revealed conformational stability in its secondary and tertiary structure at a wide range of temperature and pH. CONCLUSION: Altogether, the peptide discovered from rhizosphere metagenome holds potential in inhibiting the growth of both gram positive and gram negative bacteria, and was equally effective in inhibiting the multidrug resistant pathogenic strains (MRSA).


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Bactérias/crescimento & desenvolvimento , Clonagem Molecular , Metagenoma , Rizosfera , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/biossíntese , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacocinética , Humanos
11.
ACS Synth Biol ; 10(8): 1980-1991, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34347446

RESUMO

A large number of antimicrobial peptides depend on intramolecular disulfide bonds for their biological activity. However, the relative instability of disulfide bonds has limited the potential of some of these peptides to be developed into therapeutics. Conversely, peptides containing intramolecular (methyl)lanthionine-based bonds, lanthipeptides, are highly stable under a broader range of biological and physical conditions. Here, the class-II lanthipeptide synthetase CinM, from the cinnamycin gene cluster, was employed to create methyllanthionine stabilized analogues of disulfide-bond-containing antimicrobial peptides. The resulting analogues were subsequently modified in vitro by adding lipid tails of variable lengths through chemical addition. Finally, the created compounds were characterized by MIC tests against several relevant pathogens, killing assays, membrane permeability assays, and hemolysis assays. It was found that CinM could successfully install methyllanthionine bonds at the intended positions of the analogues and that the lipidated macrocyclic core peptides have bactericidal activity against tested Gram-positive and Gram-negative pathogenic bacteria. Additionally, fluorescence microscopy assays revealed that the lipidated compounds disrupt the bacterial membrane and lyse bacterial cells, hinting toward a potential mode of action. Notably, the semisynthesized macrocyclic lipo-lanthipeptides show low hemolytic activity. These results show that the methods developed here extend the toolbox for novel antimicrobial development and might enable the further development of novel compounds with killing activity against relevant pathogenic bacteria.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Compostos Macrocíclicos , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/biossíntese , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Compostos Macrocíclicos/farmacologia
12.
Adv Drug Deliv Rev ; 176: 113863, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273423

RESUMO

Engineered probiotic bacteria represent an innovative approach for treating and detecting a wide range of diseases including those caused by infectious agents. Antimicrobial peptides (AMPs) are promising alternatives to conventional antibiotics for combating antibiotic-resistant infections. These molecules can be delivered orally to the gut by using engineered probiotics, which confer protection against AMP degradation, thus enabling numerous applications including treating drug-resistant enteric pathogens and remodeling the microbiota in real time. Here, we provide an update on the current state of the art on AMP-producing probiotics, discuss methods to enhance gut colonization, and end by outlining future perspectives.


Assuntos
Peptídeos Antimicrobianos/biossíntese , Probióticos/administração & dosagem , Animais , Microbioma Gastrointestinal , Humanos
13.
mBio ; 12(4): e0121921, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34281399

RESUMO

A membrane-associated lanthipeptide synthetase complex, consisting of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT, has been described for nisin biosynthesis in the coccoid bacterium Lactococcus lactis. Here, we used advanced fluorescence microscopy to visualize the functional nisin biosynthesis machinery in rod-shaped cells and analyzed its spatial distribution and dynamics employing a platform we developed for heterologous production of nisin in Bacillus subtilis. We observed that NisT, as well as NisB and NisC, were all distributed in a punctate pattern along the cell periphery, opposed to the situation in coccoid cells. NisBTC proteins were found to be highly colocalized, being visualized at the same spots by dual fluorescence microscopy. In conjunction with the successful isolation of the biosynthetic complex NisBTC from the cell membrane, this corroborated that the visual bright foci were the sites for nisin maturation and transportation. A strategy of differential timing of expression was employed to demonstrate the in vivo dynamic assembly of NisBTC, revealing the recruitment by NisT of NisBC to the membrane. Additionally, by use of mutated proteins, the nucleotide binding domain (NBD) of NisT was found to function as a membrane anchor for NisB and/or NisC. We also show that the nisin biosynthesis sites are static and likely associated with proteins residing in lipid rafts. Based on these data, we propose a model for a three-phase production of modified precursor nisin in rod-shaped bacteria, presenting the assembly dynamics of NisBTC and emphasizing the crucial role of NisBC, next to NisT, in the process of precursor nisin translocation. IMPORTANCE Nisin is a model antimicrobial peptide for LanBC-modified lantibiotics that are modified and transported by a membrane synthetase complex. Although the subcellular localization and the assembly process of such a complex in L. lactis have been described in our recent work (J. Chen, A. J. van Heel, and O. P. Kuipers, mBio 11:e02825-20, 2020, https://doi.org/10.1128/mBio.02825-20), it proved difficult to gain a more detailed insight into the exact LanBTC assembly in the L. lactis system. Rod-shaped cells, especially B. subtilis, are better suited to study the assembly dynamics of these protein complexes. In this work, we present evidence for the existence of the lanthipeptide biosynthetic complex by visualizing and isolating the machinery in vivo. The dynamic behavior of the modification machinery and the transporter within the cells was characterized in depth, revealing the dependence of first LanB and LanC on each other and subsequent recruitment of them by LanT during the machinery assembly. Importantly, the elucidation of the dynamic assembly of the complex will facilitate future studies of lanthipeptide transport mechanisms and the structural characterization of the complete complex.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Nisina/biossíntese , Nisina/genética , Peptídeos Antimicrobianos/biossíntese , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Proteínas de Bactérias/genética , Bacteriocinas/biossíntese , Bacteriocinas/genética , Bacteriocinas/metabolismo , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Microscopia de Fluorescência/métodos , Nisina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA