RESUMO
BACKGROUND/AIMS: There are evidences that a decrease in the functional activity of pancreatic ß-cells under type 2 diabetes conditions may be associated with their senescence, therefore, senotherapy may be a prospective strategy for the diabetes treatment. METHODS: The senotherapeutic potential of peroxiredoxin 6 (PRDX6) was studied in RIN-m5F pancreatic ß-cells with streptozotocin-induced senescence by measuring markers, associated with senescence. RESULTS: Exposure to streptozotocin (STZ) resulted in the senescence of the ß-cells. The addition of PRDX6 to the culture medium of RIN-m5F ß-cells before treatment with STZ decreased the levels of the following senescence markers: the percentage of SA-ß-Gal-positive cells, the phosphorylation of histone H2AX and p21 proteins, and the secretion of the proinflammatory cytokine IL-6 but not the anti-inflammatory cytokine IL-10. These effects were accompanied by a decrease in the production of reactive oxygen species (ROS) and the restoration of impaired NF-κB activation. In addition, PRDX6 altered the production of the heat shock protein HSP90: the production of the constitutive form of HSP90-beta decreased, while the level of inducible HSP90-alpha increased. CONCLUSION: PRDX6 prevented the senescence of RIN-m5F cells in response to the DNA damage-inducing agent streptozotocin, indicating a potential protective role of PRDX6 in type 2 diabetes mellitus.
Assuntos
Senescência Celular , Proteínas de Choque Térmico HSP90 , Células Secretoras de Insulina , Interleucina-6 , Peroxirredoxina VI , Espécies Reativas de Oxigênio , Estreptozocina , Animais , Estreptozocina/toxicidade , Ratos , Senescência Celular/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Espécies Reativas de Oxigênio/metabolismo , Peroxirredoxina VI/metabolismo , Interleucina-6/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , NF-kappa B/metabolismo , Linhagem Celular , Interleucina-10/metabolismo , Histonas/metabolismoRESUMO
Polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE), are common pollutants found in coastal areas where shrimp farming is developed. Even though PAHs can have adverse effects on physiology, shrimp can detoxify and metabolize toxic compounds and neutralize the reactive oxygen species (ROS) produced during this process. This requires the activation of multiple antioxidant enzymes, including peroxiredoxin 6 (Prx6). Prx6 uses glutathione (GSH) to reduce phospholipid hydroperoxides, a function shared with GSH peroxidase 4 (GPx4). Prx6 has been scarcely studied in crustaceans exposed to pollutants. Herein, we report a novel Prx6 from the shrimp Penaeus vannamei that is abundantly expressed in gills and hepatopancreas. To elucidate the involvement of Prx6 in response to PAHs, we analyzed its expression in the hepatopancreas of shrimp sub-lethally exposed to PHE (3.3 µg/L) and acetone (control) for 24, 48, 72, and 96 h, along with GPx4 expression, GSH-dependent peroxidase activity, and lipid peroxidation (indicated by TBARS). We found that GPx4 expression is not affected by PHE, but Prx6 expression and peroxidase activity decreased during the trial. This might contribute to the rise of TBARS found at 48 h of exposure. However, maintaining GPx4 expression could aid to minimize lipid damage during longer periods of exposure to PHE.
Assuntos
Glutationa Peroxidase , Peroxidação de Lipídeos , Penaeidae , Peroxirredoxina VI , Fenantrenos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Fenantrenos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Penaeidae/metabolismo , Penaeidae/efeitos dos fármacos , Penaeidae/genética , Penaeidae/enzimologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peroxirredoxina VI/metabolismo , Peroxirredoxina VI/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Poluentes Químicos da Água/toxicidade , Hepatopâncreas/metabolismo , Hepatopâncreas/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genéticaRESUMO
Silicosis is the most common type of pneumoconiosis, having a high incidence in workers chronically exposed to crystalline silica (CS). No specific medication exists for this condition. GHK, a tripeptide naturally occurring in human blood and urine, has antioxidant effects. We aimed to investigate the therapeutic effect of GHK-Cu on silicosis and its potential underlying molecular mechanism. An experimental silicosis mouse model was established to observe the effects of GHK-Cu on lung inflammation and fibrosis. Moreover, the effects of GHK-Cu on the alveolar macrophages (AM) were examined using the RAW264.7 cell line. Its molecular target, peroxiredoxin 6 (PRDX6), has been identified, and GHK-Cu can bind to PRDX6, thus attenuating lung inflammation and fibrosis in silicosis mice without significant systemic toxicity. These effects were partly related to the inhibition of the CS-induced oxidative stress in AM induced by GHK-Cu. Thus, our results suggest that GHK-Cu acts as a potential drug by attenuating alveolar macrophage oxidative stress. This, in turn, attenuates the progression of pulmonary inflammation and fibrosis, which provides a reference for the treatment of silicosis.
Assuntos
Cobre , Modelos Animais de Doenças , Macrófagos Alveolares , Oligopeptídeos , Estresse Oxidativo , Peroxirredoxina VI , Silicose , Animais , Silicose/tratamento farmacológico , Silicose/metabolismo , Silicose/patologia , Camundongos , Cobre/química , Oligopeptídeos/farmacologia , Peroxirredoxina VI/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Humanos , Masculino , Antioxidantes/farmacologiaRESUMO
Ferroptosis is a form of regulated cell death induced by iron-dependent accumulation of lipid hydroperoxides. Selenoprotein glutathione peroxidase 4 (GPX4) suppresses ferroptosis by detoxifying lipid hydroperoxides via a catalytic selenocysteine (Sec) residue. Sec, the genetically encoded 21st amino acid, is biosynthesized from a reactive selenium donor on its cognate tRNA[Ser]Sec. It is thought that intracellular selenium must be delivered 'safely' and 'efficiently' by a carrier protein owing to its high reactivity and very low concentrations. Here, we identified peroxiredoxin 6 (PRDX6) as a novel selenoprotein synthesis factor. Loss of PRDX6 decreases the expression of selenoproteins and induces ferroptosis via a reduction in GPX4. Mechanistically, PRDX6 increases the efficiency of intracellular selenium utilization by transferring selenium between proteins within the selenocysteyl-tRNA[Ser]Sec synthesis machinery, leading to efficient synthesis of selenocysteyl-tRNA[Ser]Sec. These findings highlight previously unidentified selenium metabolic systems and provide new insights into ferroptosis.
Assuntos
Ferroptose , Ferro , Peroxirredoxina VI , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Selênio , Ferroptose/efeitos dos fármacos , Selênio/metabolismo , Ferro/metabolismo , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Peroxirredoxina VI/metabolismo , Peroxirredoxina VI/genética , Camundongos , Selenoproteínas/metabolismo , Selenocisteína/metabolismo , Aminoacil-RNA de Transferência/metabolismoRESUMO
This study aims to investigate the influence of thymol on primordial follicle growth and survival, as well as on collagen fibers and stromal cells density in bovine ovarian tissues cultured in vitro. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), the thiol levels and the expression of mRNAs for SOD1, CAT, periredoxin 6 (PRDX6) and GPX1 were also investigated. Ovarian cortical tissues were cultured in α-MEM+ alone or with thymol (400, 800, 1600 or 3200⯵g/mL) for six days. Before and after culture, the tissues were processed for histological analysis to evaluate follicular activation, growth, morphology, ovarian stromal cell density and collagen fibers. The levels of mRNA for SOD1, CAT, GPX1 and PRDX6 were evaluated by real-time PCR. The results show that tissues cultured with thymol (400 and 800⯵g/mL) had increased percentages of normal follicles, when compared to tissues cultured in other treatments. At concentrations of 400 and 800⯵g/mL, thymol maintained the rate of normal follicles similar to the uncultured control. In addition, 400⯵g/mL thymol increased follicle activation, collagen fibers and stromal cell density of when compared to tissues cultured in control medium. The presence of 800⯵g/mL thymol in culture medium increased CAT activity, while 400 or 800⯵g/mL thymol reduced mRNA levels for SOD1, CAT and PRDX6, but did not alter GPX1 expression. In conclusion, 400⯵g/mL thymol increases primordial follicle activation, preserves stromal cells, collagen fibers, and down-regulates expression of mRNA for SOD1, CAT and PRDX6 in cultured bovine ovarian tissues.
Assuntos
Catalase , Colágeno , Folículo Ovariano , RNA Mensageiro , Células Estromais , Timol , Animais , Feminino , Bovinos , Timol/farmacologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Folículo Ovariano/efeitos dos fármacos , Catalase/metabolismo , Catalase/genética , Colágeno/metabolismo , Colágeno/genética , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Técnicas de Cultura de Tecidos , Regulação da Expressão Gênica/efeitos dos fármacosRESUMO
Introduction: This study aimed to demonstrate the potential of activated leukocyte cell adhesion molecule (ALCAM), hemopexin (HPX), and peroxiredoxin 6 (PRDX6) as urine biomarkers for systemic lupus erythematosus (SLE). Methods: Urine samples were collected from 138 Korean patients with SLE from the Ajou Lupus Cohort and 39 healthy controls (HC). The concentrations of urine biomarkers were analyzed using enzyme-linked immunosorbent assay kits specific for ALCAM, HPX, and PRDX6, respectively. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic utility, and Pearson's correlation analysis was conducted to assess the relationships between the disease activity and urine biomarkers. Results: Patients with SLE and patients with lupus nephritis (LN) showed significantly elevated ALCAM, HPX, and PRDX6 levels compared with HCs. ALCAM, HPX, and PRDX6 showed significant diagnostic values, especially for lupus nephritis (LN), with areas under the receiver operating characteristic curve for LN was 0.850 for ALCAM (95% CI, 0.778-0.921), 0.781 for HPX (95% CI, 0.695-0.867), and 0.714 for PRDX6 (95% CI, 0.617-0.812). Correlation analysis revealed that all proteins were significantly associated with anti-double stranded DNA antibody (ALCAM, r = 0.350, p < 0.001; HPX, r = 0.346, p < 0.001; PRDX6, r = 0.191, p = 0.026) and SLEDAI (ALCAM, r = 0.526, p < 0.001; HPX, r = 0.479, p < 0.001; PRDX6, r = 0.262, p = 0.002). Results from the follow-up of the three biomarker levels in these patients revealed a significant decrease, showing a positive correlation with changes in SLEDAI-2k scores (ALCAM, r = 0.502, p < 0.001; HPX, r = 0.475, p < 0.001; PRDX6, r = 0.245, p = 0.026), indicating their potential as indicators for tracking disease activity. Discussions: Urinary ALCAM, HPX, and PRDX6 levels have diagnostic value and reflect disease activity in Korean patients with SLE, emphasizing their potential for non-invasive monitoring and treatment response evaluation.
Assuntos
Biomarcadores , Lúpus Eritematoso Sistêmico , Peroxirredoxina VI , Humanos , Feminino , Masculino , Biomarcadores/urina , Adulto , Lúpus Eritematoso Sistêmico/urina , Lúpus Eritematoso Sistêmico/diagnóstico , República da Coreia , Peroxirredoxina VI/urina , Pessoa de Meia-Idade , Proteínas Fetais/urina , Estudos Longitudinais , Índice de Gravidade de Doença , Adulto Jovem , Antígenos CD/urina , Curva ROC , Moléculas de Adesão Celular Neuronais/urina , Estudos de Casos e Controles , Nefrite Lúpica/urina , Nefrite Lúpica/diagnóstico , Molécula de Adesão de Leucócito AtivadoRESUMO
Peroxiredoxin 6 (Prdx6) repairs peroxidized membranes by reducing oxidized phospholipids, and by replacing oxidized sn-2 fatty acyl groups through hydrolysis/reacylation by its phospholipase A2 (aiPLA2) and lysophosphatidylcholine acyltransferase activities. Prdx6 is highly expressed in the lung, and intact lungs and cells null for Prdx6 or with single-point mutations that inactivate either Prdx6-peroxidase or aiPLA2 activity alone exhibit decreased viability, increased lipid peroxidation, and incomplete repair when exposed to paraquat, hyperoxia, or organic peroxides. Ferroptosis is form of cell death driven by the accumulation of phospholipid hydroperoxides. We studied the role of Prdx6 as a ferroptosis suppressor in the lung. We first compared the expression Prdx6 and glutathione peroxidase 4 (GPx4) and visualized Prdx6 and GPx4 within the lung. Lung Prdx6 mRNA levels were five times higher than GPx4 levels. Both Prdx6 and GPx4 localized to epithelial and endothelial cells. Prdx6 knockout or knockdown sensitized lung endothelial cells to erastin-induced ferroptosis. Cells with genetic inactivation of either aiPLA2 or Prdx6-peroxidase were more sensitive to ferroptosis than WT cells, but less sensitive than KO cells. We then conducted RNA-seq analyses in Prdx6-depleted cells to further explore how the loss of Prdx6 sensitizes lung endothelial cells to ferroptosis. Prdx6 KD upregulated transcriptional signatures associated with selenoamino acid metabolism and mitochondrial function. Accordingly, Prdx6 deficiency blunted mitochondrial function and increased GPx4 abundance whereas GPx4 KD had the opposite effect on Prdx6. Moreover, we detected Prdx6 and GPx4 interactions in intact cells, suggesting that both enzymes cooperate to suppress lipid peroxidation. Notably, Prdx6-depleted cells remained sensitive to erastin-induced ferroptosis despite the compensatory increase in GPx4. These results show that Prdx6 suppresses ferroptosis in lung endothelial cells and that both aiPLA2 and Prdx6-peroxidase contribute to this effect. These results also show that Prdx6 supports mitochondrial function and modulates several coordinated cytoprotective pathways in the pulmonary endothelium.
Assuntos
Células Endoteliais , Ferroptose , Fosfolipases A2 do Grupo VI , Peroxidação de Lipídeos , Pulmão , Peroxirredoxina VI , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Piperazinas , Ferroptose/genética , Peroxirredoxina VI/metabolismo , Peroxirredoxina VI/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Pulmão/metabolismo , Pulmão/patologia , Animais , Células Endoteliais/metabolismo , Camundongos , Humanos , Fosfolipases A2/metabolismo , Fosfolipases A2/genética , Camundongos KnockoutRESUMO
Calcified cartilage digested by chondroclasts provides an excellent scaffold to initiate bone formation. We analyzed bioactive proteins and microarchitecture of calcified cartilage either separately or in combination and evaluated biomimetic osteogenic culture conditions of surface-coated micropatterning. To do so, we prepared a crude extract from porcine femoral growth plates, which enhanced in vitro mineralization when coated on flat-bottom culture dishes, and identified four candidate proteins by fractionation and mass spectrometry. Murine homologues of two candidates, desmoglein 4 (DSG4) and peroxiredoxin 6 (PRDX6), significantly promoted osteogenic activity based on in vitro mineralization and osteoblast differentiation. Moreover, we observed DSG4 and PRDX6 protein expression in mouse femur. In addition, we designed circular, triangular, and honeycomb micropatterns with 30 or 50 µm units, either isolated or connected, to mimic hypertrophic chondrocyte-sized compartments. Isolated, larger honeycomb patterns particularly enhanced osteogenesis in vitro. Mineralization on micropatterns was positively correlated with the reduction of osteoblast migration distance in live cell imaging. Finally, we evaluated possible combinatorial effects of coat proteins and micropatterns and observed an additive effect of DSG4 or PRDX6 coating with micropatterns. These data suggest that combining a bioactive surface coating with osteogenic micropatterns may recapitulate initiation of bone formation during endochondral ossification.
Assuntos
Osteogênese , Animais , Osteogênese/efeitos dos fármacos , Camundongos , Suínos , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Cartilagem/metabolismo , Cartilagem/citologia , Peroxirredoxina VI/metabolismo , Calcificação Fisiológica/efeitos dos fármacosRESUMO
Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.
Assuntos
Apoptose , Cervos , Dietilexilftalato , Estresse Oxidativo , Animais , Apoptose/efeitos dos fármacos , Dietilexilftalato/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxina VI/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Disruptores Endócrinos/toxicidadeRESUMO
OBJECTIVE: To explore the levels of expression and clinical role of peroxiredoxin 6 (PRDX6) in lung adenocarcinoma. METHODS: This retrospective study used a series of bioinformatics methods to detect the levels of expression of and mutations in the PRDX6 gene in a range of cancers and lung adenocarcinoma. Immunohistochemistry was used to verify the levels of expression of PRDX6 protein in samples of lung adenocarcinoma compared with normal adjacent tissue. The effect of PRDX6 gene knockdown on the in vitro proliferation of a lung adenocarcinoma cell line was measured. Bioinformatics methods were used to determine the diagnostic value and impact on survival of the PRDX6 gene in patients with lung adenocarcinoma. RESULTS: The results showed that the PRDX6 gene was highly expressed in lung adenocarcinoma and there were five mutations at different sites on the gene. PRDX6 promoted the proliferation of the lung adenocarcinoma cell line. The survival duration of lung adenocarcinoma patients with high levels of PRDX6 gene expression was significantly shorter than that of patients with low PRDX6 gene expression. CONCLUSION: PRDX6 is highly expressed in lung adenocarcinoma and higher levels of expression of the PRDX6 gene were associated with a poorer prognosis.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Estudos Retrospectivos , Adenocarcinoma de Pulmão/genética , Linhagem Celular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologiaRESUMO
Peroxiredoxin 6 (PRDX6) is a protective biomarker associated with ferroptosis in heart failure (HF). This study investigated the specific mechanism of PRDX6 on doxorubicin (DOX)-induced ferroptosis in HF. Wistar rats and H9c2 cells were induced by DOX to construct HF models. Pathological changes and collagen deposition in myocardium were investigated using HE and Masson staining. PRDX6 levels, indexes of ferroptosis, and JAK2/STAT1 pathway were detected by qRT-PCR, Western blot, and biochemical kits. DOX promoted heart weight/body weight, increased inflammation and collagen deposition, increased PTGS2 and MDA levels, and decreased SLC7A11, GPX4, FTH1, and PRDX6 levels in myocardium. PRDX6 overexpression reduced PTGS2, MDA, Fe2+, and LDH levels, inhibited JAK2 and STAT1 phosphorylation, and increased SLC7A11, GPX4, and FTH1 levels in DOX-added H9c2 cells. RO8191 and erastin reversed the inhibition of PRDX6 on ferroptosis through the JAK2/STAT1 pathway. Overall, PRDX6 alleviated HF by inhibiting DOX-induced ferroptosis through the JAK2/STAT1 pathway inactivation.
Assuntos
Doxorrubicina , Ferroptose , Insuficiência Cardíaca , Janus Quinase 2 , Peroxirredoxina VI , Fator de Transcrição STAT1 , Animais , Masculino , Ratos , Linhagem Celular , Doxorrubicina/farmacologia , Ferroptose/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Janus Quinase 2/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Peroxirredoxina VI/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismoRESUMO
This study addressed the efficacy of a liposome-encapsulated nine amino acid peptide [peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2)] for the prevention or treatment of acute lung injury (ALI) +/- sepsis. PIP-2 inhibits the PLA2 activity of peroxiredoxin 6 (Prdx6), thereby preventing rac release and activation of NADPH oxidases (NOXes), types 1 and 2. Female Yorkshire pigs were infused intravenously with lipopolysaccharide (LPS) + liposomes (untreated) or LPS + PIP-2 encapsulated in liposomes (treated). Pigs were mechanically ventilated and continuously monitored; they were euthanized after 8 h or earlier if preestablished humane endpoints were reached. Control pigs (mechanical ventilation, no LPS) were essentially unchanged over the 8 h study. LPS administration resulted in systemic inflammation with manifestations of clinical sepsis-like syndrome, decreased lung compliance, and a marked decrease in the arterial Po2 with vascular instability leading to early euthanasia of 50% of untreated animals. PIP-2 treatment significantly reduced the requirement for supportive vasopressors and the manifestations of lung injury so that only 25% of animals required early euthanasia. Bronchoalveolar lavage fluid from PIP-2-treated versus untreated pigs showed markedly lower levels of total protein, cytokines (TNF-α, IL-6, IL-1ß), and myeloperoxidase. Thus, the porcine LPS-induced sepsis-like model was associated with moderate to severe lung pathophysiology compatible with ALI, whereas treatment with PIP-2 markedly decreased lung injury, cardiovascular instability, and early euthanasia. These results indicate that inhibition of reactive oxygen species (ROS) production via NOX1/2 has a beneficial effect in treating pigs with LPS-induced ALI plus or minus a sepsis-like syndrome, suggesting a potential role for PIP-2 in the treatment of ALI and/or sepsis in humans.NEW & NOTEWORTHY Currently available treatments that can alter lung inflammation have failed to significantly alter mortality of acute lung injury (ALI). Peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2) targets the liberation of reactive O2 species (ROS) that is associated with adverse cell signaling events, thereby decreasing the tissue oxidative injury that occurs early in the ALI syndrome. We propose that treatment with PIP-2 may be effective in preventing progression of early disease into its later stages with irreversible lung damage and relatively high mortality.
Assuntos
Lesão Pulmonar Aguda , Sepse , Humanos , Feminino , Animais , Suínos , Lipopolissacarídeos/farmacologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Peroxirredoxina VI/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipossomos/metabolismo , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Pulmão/metabolismo , Lesão Pulmonar Aguda/metabolismo , Peptídeos/farmacologia , Sepse/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/farmacologiaRESUMO
Glycyrrhetinic acid (GA) shows great efficiency against non-small cell lung cancer (NSCLC), but the detailed mechanism is unclear, which has limited its clinical application. Herein, we investigated the potential targets of GA against NSCLC by activity-based protein profiling (ABPP) technology and the combination of histopathology and proteomics validation. In vitro and in vivo results indicated GA significantly inhibited NSCLC via promotion of peroxiredoxin-6 (Prdx6) and caspase-3 (Casp3)-mediated mitochondrial apoptosis. This original finding will provide theoretical and data support to improve the treatment of NSCLC with the application of GA.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácido Glicirretínico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Ácido Glicirretínico/farmacologia , Neoplasias Pulmonares/patologia , Caspase 3 , Peroxirredoxina VI/uso terapêutico , Linhagem Celular Tumoral , ApoptoseRESUMO
The crosstalk between astrocytes and microglia plays a pivotal role in neuroinflammation following ischemic stroke, and phenotypic distribution of these cells can change with the progression of ischemic stroke. Peroxiredoxin (PRDX) 6 phospholipase A2 (iPLA2) activity is involved in the generation of reactive oxygen species(ROS), with ROS driving the activation of microglia and astrocytes; however, its exact function remains unexplored. MJ33, PRDX6D140A mutation was used to block PRDX6-iPLA2 activity in vitro and vivo after ischemic stroke. PRDX6T177A mutation was used to block the phosphorylation of PRDX6 in CTX-TNA2 cell lines. NAC, GSK2795039, Mdivi-1, U0126, and SB202190 were used to block the activity of ROS, NOX2, mitochondrial fission, ERK, and P38, respectively, in CTX-TNA2 cells. In ischemic stroke, PRDX6 is mainly expressed in astrocytes and PRDX6-iPLA2 is involved in the activation of astrocytes and microglia. In co-culture system, Asp140 mutation in PRDX6 of CTX-TNA2 inhibited the polarization of microglia, reduced the production of ROS, suppressed NOX2 activation, and inhibited the Drp1-dependent mitochondrial fission following OGD/R. These effects were further strengthened by the inhibition of ROS production. In subsequent experiments, U0126 and SB202190 inhibited the phosphorylation of PRDX6 at Thr177 and reduced PRDX6-iPLA2 activity. These results suggest that PRDX6-iPLA2 plays an important role in the astrocyte-induced generation of ROS and activation of microglia, which are regulated by the activation of Nox2 and Drp1-dependent mitochondrial fission pathways. Additionally, PRDX6-iPLA2 activity is regulated by MAPKs via the phosphorylation of PRDX6 at Thr177 in astrocytes.
Assuntos
Astrócitos , Butadienos , AVC Isquêmico , Nitrilas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismoRESUMO
Phospholemman (PLM) regulates the cardiac sodium pump: PLM phosphorylation activates the pump whereas PLM palmitoylation inhibits its activity. Here, we show that the anti-oxidant protein peroxiredoxin 6 (Prdx6) interacts with and depalmitoylates PLM in a glutathione-dependent manner. Glutathione loading cells acutely reduce PLM palmitoylation; glutathione depletion significantly increases PLM palmitoylation. Prdx6 silencing abolishes these effects, suggesting that PLM can be depalmitoylated by reduced Prdx6. In vitro, only recombinant Prdx6, among several peroxiredoxin isoforms tested, removes palmitic acid from recombinant palmitoylated PLM. The broad-spectrum depalmitoylase inhibitor palmostatin B prevents Prdx6-dependent PLM depalmitoylation in cells and in vitro. Our data suggest that Prdx6 is a thioesterase that can depalmitoylate proteins by nucleophilic attack via its reactive thiol, linking PLM palmitoylation and hence sodium pump activity to cellular glutathione status. We show that protein depalmitoylation can occur via a catalytic cysteine in which substrate specificity is determined by a protein-protein interaction.
Assuntos
Peroxirredoxina VI , Fosfoproteínas , ATPase Trocadora de Sódio-Potássio , Proteínas de Membrana , GlutationaRESUMO
BACKGROUND: Oxidative stress-induced damage and dysfunction of retinal pigment epithelium (RPE) cells are important pathogenetic factors of age-related macular degeneration (AMD) and hereditary retinopathy diseases (HRDs). This study aimed to elucidate the roles and mechanisms of circ-CARD6 and miR-29b-3p in oxidative stress-induced RPE and provide new ideas for the diagnosis and treatment of retinopathy disease (RD). METHODS: A model of oxidative stress-induced RPE (ARPE-19) was established, and the level of malondialdehyde (MDA) and concentration of reactive oxygen species (ROS) were detected by a DCFH-DA fluorescent probe and MDA kit. The cell viability was measured by a CCK-8 assay. The expression of PRDX6/PI3K/Akt axis genes and proteins related to apoptosis and autophagy were determined by RTâqPCR and Western blot analyses. The dual-luciferase reporter system confirmed the targeting relationship between miR-29b-3p and circ-CARD6 and between miR-29b-3p and PRDX6. RESULTS: In H2O2-treated ARPE-19 cells, the expression of circ-CARD6 and PRDX6 was decreased, while the expression of miR-29b-3p was increased. The overexpression of circ-CARD6 inhibits oxidative stress-induced increases in ROS, apoptosis and autophagy in ARPE-19 cells. circ-CARD6 targets miR-29b-3p, miR-29b-3p targets PRDX6, and circ-CARD6 regulates PRDX6 via miR-29b-3p. Further studies showed that circ-CARD6 acts as a competitive endogenous RNA of miR-29b-3p to affect the expression of PRDX6, thereby inhibiting autophagy and apoptosis in ARPE-19 cells. CONCLUSION: circ-CARD6 can inhibit oxidative stress and apoptosis by regulating the miR-29b-3p/PRDX6/PI3K/Akt axis.
Assuntos
Degeneração Macular , MicroRNAs , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Autofagia , Apoptose , Estresse Oxidativo , Degeneração Macular/genética , MicroRNAs/genética , Proliferação de Células , Proteínas Adaptadoras de Sinalização CARD , Peroxirredoxina VIRESUMO
The continuum of antioxidant response dysregulation in aging/oxidative stress-driven Nlrp3 inflammasome activation-mediated inflammatory response is associated with age-related diseases. Peroxiredoxin (Prdx) 6 is a key antioxidant that provides cytoprotection by regulating redox homeostasis. Herein, using lens epithelial cells (LECs) derived from the targeted inactivation of Prdx6 gene and aging lenses, we present molecular evidence that Prdx6-deficiency causes oxidative-driven Nlrp3 inflammasome activation, resulting in pyroptosis in aging/redox active cells wherein Prdx6 availability offsets the inflammatory process. We observed that Prdx6-/- and aging LECs harboring accumulated reactive oxygen species (ROS) showed augmented activation of Nlrp3 and bioactive inflammatory components, like Caspase-1, IL-1ß, ASC and Gasdermin-D. Similar to lipopolysaccharide treatment, oxidative exposure led to further ROS amplification with increased activation of the Nlrp3 inflammasome pathway. Mechanistically, we found that oxidative stress enhanced Kruppel-like factor 9 (Klf9) expression in aging/Prdx6-/- mLECs, leading to a Klf9-dependent increase in Nlrp3 transcription, while the elimination of ROS by the delivery of Prdx6 or by silencing Klf9 prevented the inflammatory response. Altogether, our data identify the biological significance of Prdx6 as an intrinsic checkpoint for regulating the cellular health of aging or redox active LECs and provide opportunities to develop antioxidant-based therapeutic(s) to prevent oxidative/aging-related diseases linked to aberrant Nlrp3 inflammasome activation.
Assuntos
Antioxidantes , Inflamassomos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Inflamassomos/metabolismo , Estresse Oxidativo , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Células Epiteliais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismoRESUMO
As one of the common plasticizers, di-n-butyl phthalate (DBP) has been using in various daily consumer products worldwide. Since it is easily released from products and exists in the environment for a long time, it has a lasting impact on human health, especially male reproductive health. However, the detailed mechanism of testicular damage from DBP and the protection strategy are still not clear enough. In this study, we found that DBP could induce dose-dependent ferroptosis in testicular tissue. Mechanism dissection indicates that DBP can upregulate SP1 expression, which could directly transcriptionally upregulate PRDX6, a negative regulator of ferroptosis. Overexpression of PRDX6 or adding SP1 agonist curcumin could suppress the DBP-induced ferroptosis on testicular cells. In vivo, rats were given 500 mg/kg/day DBP orally for 3 weeks; elevated levels of ferroptosis were detected in testicular tissue. When the above-mentioned doses of DBP and curcumin at a dose of 300 mg/kg/day were administered intragastrically simultaneously, the testicular ferroptosis induced by DBP was alleviated. Immunohistochemistry and quantitative real-time PCR of testis tissue showed that the expression of PRDX6 was upregulated under the action of DBP and curcumin. These findings suggest a spontaneous self-protection mechanism of testicular tissue from DBP damage by upregulating SP1 and PRDX6. However, it is not strong enough to resist the DBP-induced ferroptosis. Curcumin can strengthen this self-protection mechanism and weaken the level of ferroptosis induced by DBP. This study may help us to develop a novel therapeutic option with curcumin to protect the testicular tissue from ferroptosis and function impairment by DBP.
Assuntos
Curcumina , Ferroptose , Ratos , Masculino , Humanos , Animais , Testículo , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Plastificantes/toxicidade , Plastificantes/metabolismo , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismoRESUMO
The aim of the work was to study effects of peroxiredoxin 6 (PRDX6), a recombinant antioxidant protein, on the level of pro-inflammatory responses of RAW 264.7 macrophages to endotoxin exposure. Addition of LPS to the RAW 264.7 cell culture medium expectedly increased production of TNF-α, and addition of PRDX6 led to a significant (15-20%) decrease in its production. The level of production of another pro-inflammatory cytokine, IL-1ß, which was significantly activated by endotoxin, was completely normalized under the PRDX6 action. Moreover, addition of PRDX6 reduced production of reactive oxygen species (ROS) induced by endotoxin and also prevented overexpression of the iNos gene in the RAW 264.7 cells. The results showed that PRDX6 had a suppressive effect on the expression of Nrf-2 gene and production of the transcription factor NRF-2 during the first 6 h of cell cultivation. Addition of endotoxin caused activation of the NF-κB and SAPK/JNK signaling cascades, while in the presence of PRDX6, activity of these signaling cascades decreases. It is known that the pro-inflammatory response of cells caused by exposure to bacterial LPS leads to activation of apoptosis and elimination of the damaged cells. Our studies confirm this, since exposure to LPS led to activation of the expression of P53 gene, a marker of apoptosis. Peroxiredoxin 6 added within the first hours of the development of acute pro-inflammatory response suppressed the P53 gene expression, indicating protective effect of PRDX6 that reduced apoptosis in the RAW 264.7 macrophages.