Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
PLoS Pathog ; 19(3): e1011256, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36952577

RESUMO

Oomycetes are filamentous microorganisms easily mistaken as fungi but vastly differ in physiology, biochemistry, and genetics. This commonly-held misconception lead to a reduced effectiveness by using conventional fungicides to control oomycetes, thus it demands the identification of novel functional genes as target for precisely design oomycetes-specific microbicide. The present study initially analyzed the available transcriptome data of the model oomycete pathogen, Phytophthora sojae, and constructed an expression matrix of 10,953 genes across the stages of asexual development and host infection. Hierarchical clustering, specificity, and diversity analyses revealed a more pronounced transcriptional plasticity during the stages of asexual development than that in host infection, which drew our attention by particularly focusing on transcripts in asexual development stage to eventually clustered them into 6 phase-specific expression modules. Three of which respectively possessing a serine/threonine phosphatase (PP2C) expressed during the mycelial and sporangium stages, a histidine kinase (HK) expressed during the zoospore and cyst stages, and a bZIP transcription factor (bZIP32) exclusive to the cyst germination stage were selected for down-stream functional validation. In this way, we demonstrated that PP2C, HK, and bZIP32 play significant roles in P. sojae asexual development and virulence. Thus, these findings provide a foundation for further gene functional annotation in oomycetes and crop disease management.


Assuntos
Phytophthora , Reprodução Assexuada , Transcriptoma , Phytophthora/enzimologia , Phytophthora/genética , Phytophthora/crescimento & desenvolvimento , Phytophthora/patogenicidade , Reprodução Assexuada/genética , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Estruturas Fúngicas/enzimologia , Estruturas Fúngicas/genética , Estruturas Fúngicas/crescimento & desenvolvimento , Histidina Quinase/genética , Histidina Quinase/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doenças das Plantas/microbiologia
2.
Nature ; 610(7931): 402-408, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131020

RESUMO

Chitin, the most abundant aminopolysaccharide in nature, is an extracellular polymer consisting of N-acetylglucosamine (GlcNAc) units1. The key reactions of chitin biosynthesis are catalysed by chitin synthase2-4, a membrane-integrated glycosyltransferase that transfers GlcNAc from UDP-GlcNAc to a growing chitin chain. However, the precise mechanism of this process has yet to be elucidated. Here we report five cryo-electron microscopy structures of a chitin synthase from the devastating soybean root rot pathogenic oomycete Phytophthora sojae (PsChs1). They represent the apo, GlcNAc-bound, nascent chitin oligomer-bound, UDP-bound (post-synthesis) and chitin synthase inhibitor nikkomycin Z-bound states of the enzyme, providing detailed views into the multiple steps of chitin biosynthesis and its competitive inhibition. The structures reveal the chitin synthesis reaction chamber that has the substrate-binding site, the catalytic centre and the entrance to the polymer-translocating channel that allows the product polymer to be discharged. This arrangement reflects consecutive key events in chitin biosynthesis from UDP-GlcNAc binding and polymer elongation to the release of the product. We identified a swinging loop within the chitin-translocating channel, which acts as a 'gate lock' that prevents the substrate from leaving while directing the product polymer into the translocating channel for discharge to the extracellular side of the cell membrane. This work reveals the directional multistep mechanism of chitin biosynthesis and provides a structural basis for inhibition of chitin synthesis.


Assuntos
Quitina , Microscopia Crioeletrônica , Acetilglucosamina/metabolismo , Aminoglicosídeos/farmacologia , Sítios de Ligação , Membrana Celular/metabolismo , Quitina/biossíntese , Quitina/química , Quitina/metabolismo , Quitina/ultraestrutura , Quitina Sintase/metabolismo , Phytophthora/enzimologia , Difosfato de Uridina/metabolismo , Uridina Difosfato N-Acetilglicosamina/metabolismo
3.
Nature ; 610(7931): 335-342, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131021

RESUMO

Plants rely on cell-surface-localized pattern recognition receptors to detect pathogen- or host-derived danger signals and trigger an immune response1-6. Receptor-like proteins (RLPs) with a leucine-rich repeat (LRR) ectodomain constitute a subgroup of pattern recognition receptors and play a critical role in plant immunity1-3. Mechanisms underlying ligand recognition and activation of LRR-RLPs remain elusive. Here we report a crystal structure of the LRR-RLP RXEG1 from Nicotiana benthamiana that recognizes XEG1 xyloglucanase from the pathogen Phytophthora sojae. The structure reveals that specific XEG1 recognition is predominantly mediated by an amino-terminal and a carboxy-terminal loop-out region (RXEG1(ID)) of RXEG1. The two loops bind to the active-site groove of XEG1, inhibiting its enzymatic activity and suppressing Phytophthora infection of N. benthamiana. Binding of XEG1 promotes association of RXEG1(LRR) with the LRR-type co-receptor BAK1 through RXEG1(ID) and the last four conserved LRRs to trigger RXEG1-mediated immune responses. Comparison of the structures of apo-RXEG1(LRR), XEG1-RXEG1(LRR) and XEG1-BAK1-RXEG1(LRR) shows that binding of XEG1 induces conformational changes in the N-terminal region of RXEG1(ID) and enhances structural flexibility of the BAK1-associating regions of RXEG1(LRR). These changes allow fold switching of RXEG1(ID) for recruitment of BAK1(LRR). Our data reveal a conserved mechanism of ligand-induced heterodimerization of an LRR-RLP with BAK1 and suggest a dual function for the LRR-RLP in plant immunity.


Assuntos
Glicosídeo Hidrolases , Phytophthora , Imunidade Vegetal , Proteínas de Plantas , Receptores de Reconhecimento de Padrão , Motivos de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Leucina/metabolismo , Ligantes , Phytophthora/enzimologia , Phytophthora/imunologia , Phytophthora/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Multimerização Proteica , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Nicotiana/química , Nicotiana/metabolismo
4.
Plant Physiol ; 187(1): 321-335, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618132

RESUMO

Diseases caused by Phytophthora pathogens devastate many crops worldwide. During infection, Phytophthora pathogens secrete effectors, which are central molecules for understanding the complex plant-Phytophthora interactions. In this study, we profiled the effector repertoire secreted by Phytophthora sojae into the soybean (Glycine max) apoplast during infection using liquid chromatography-mass spectrometry. A secreted aldose 1-epimerase (AEP1) was shown to induce cell death in Nicotiana benthamiana, as did the other two AEP1s from different Phytophthora species. AEP1 could also trigger immune responses in N. benthamiana, other Solanaceae plants, and Arabidopsis (Arabidopsis thaliana). A glucose dehydrogenase assay revealed AEP1 encodes an active AEP1. The enzyme activity of AEP1 is dispensable for AEP1-triggered cell death and immune responses, while AEP-triggered immune signaling in N. benthamiana requires the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1. In addition, AEP1 acts as a virulence factor that mediates P. sojae extracellular sugar uptake by mutarotation of extracellular aldose from the α-anomer to the ß-anomer. Taken together, these results revealed the function of a microbial apoplastic effector, highlighting the importance of extracellular sugar uptake for Phytophthora infection. To counteract, the key effector for sugar conversion can be recognized by the plant membrane receptor complex to activate plant immunity.


Assuntos
Carboidratos Epimerases/genética , Proteínas Fúngicas/genética , Phytophthora/fisiologia , Açúcares/metabolismo , Transporte Biológico , Carboidratos Epimerases/metabolismo , Proteínas Fúngicas/metabolismo , Mutação , Phytophthora/enzimologia , Phytophthora/genética
6.
Molecules ; 26(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494506

RESUMO

Pathogen infection often leads to the enhanced formation of specialized plant metabolites that act as defensive barriers against microbial attackers. In this study, we investigated the formation of potential defense compounds in roots of the Western balsam poplar (Populus trichocarpa) upon infection with the generalist root pathogen Phytophthora cactorum (Oomycetes). P. cactorum infection led to an induced accumulation of terpenes, aromatic compounds, and fatty acids in poplar roots. Transcriptome analysis of uninfected and P. cactorum-infected roots revealed a terpene synthase gene PtTPS5 that was significantly induced upon pathogen infection. PtTPS5 had been previously reported as a sesquiterpene synthase producing two unidentified sesquiterpene alcohols as major products and hedycaryol as a minor product. Using heterologous expression in Escherichia coli, enzyme assays with deuterium-labeled substrates, and NMR analysis of reaction products, we could identify the major PtTPS5 products as (1S,5S,7R,10R)-guaia-4(15)-en-11-ol and (1S,7R,10R)-guaia-4-en-11-ol, with the former being a novel compound. The transcript accumulation of PtTPS5 in uninfected and P. cactorum-infected poplar roots matched the accumulation of (1S,5S,7R,10R)-guaia-4(15)-en-11-ol, (1S,7R,10R)-guaia-4-en-11-ol, and hedycaryol in this tissue, suggesting that PtTPS5 likely contributes to the pathogen-induced formation of these compounds in planta.


Assuntos
Alquil e Aril Transferases/química , Phytophthora/enzimologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Populus/microbiologia , Sesquiterpenos/química , Alquil e Aril Transferases/genética , Phytophthora/genética , Sesquiterpenos/metabolismo
7.
PLoS Pathog ; 16(1): e1008138, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961913

RESUMO

Eukaryotic heterotrimeric guanine nucleotide-binding proteins consist of α, ß, and γ subunits, which act as molecular switches to regulate a number of fundamental cellular processes. In the oomycete pathogen Phytophthora sojae, the sole G protein α subunit (Gα; encoded by PsGPA1) has been found to be involved in zoospore mobility and virulence, but how it functions remains unclear. In this study, we show that the Gα subunit PsGPA1 directly interacts with PsYPK1, a serine/threonine protein kinase that consists of an N-terminal region with unknown function and a C-terminal region with a conserved catalytic kinase domain. We generated knockout and knockout-complemented strains of PsYPK1 and found that deletion of PsYPK1 resulted in a pronounced reduction in the production of sporangia and oospores, in mycelial growth on nutrient poor medium, and in virulence. PsYPK1 exhibits a cytoplasmic-nuclear localization pattern that is essential for sporangium formation and virulence of P. sojae. Interestingly, PsGPA1 overexpression was found to prevent nuclear localization of PsYPK1 by exclusively binding to the N-terminal region of PsYPK1, therefore accounting for its negative role in sporangium formation. Our data demonstrate that PsGPA1 negatively regulates sporangium formation by repressing the nuclear localization of its downstream kinase PsYPK1.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Phytophthora/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Esporos/crescimento & desenvolvimento , Núcleo Celular/genética , Núcleo Celular/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Phytophthora/genética , Phytophthora/crescimento & desenvolvimento , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Glycine max/parasitologia , Esporos/enzimologia , Esporos/genética , Esporos/metabolismo , Virulência
8.
BMC Microbiol ; 19(1): 265, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775609

RESUMO

BACKGROUND: Oomycetes are pathogens of mammals, fish, insects and plants, and the potato late blight agent Phytophthora infestans and the oil palm and cocoa infecting pathogen Phytophthora palmivora cause economically impacting diseases on a wide range of crop plants. Increasing genomic and transcriptomic resources and recent advances in oomycete biology demand new strategies for genetic modification of oomycetes. Most oomycete transformation procedures rely on geneticin-based selection of transgenic strains. RESULTS: We established N-acetyltransferase AAC(3)-I as a gentamicin-based selectable marker for oomycete transformation without interference with existing geneticin resistance. Strains carrying gentamicin resistance are fully infectious in plants. We further demonstrate the usefulness of this new antibiotic selection to super-transform well-characterized, already fluorescently-labelled P. palmivora strains and provide a comprehensive protocol for maintenance and zoospore electro-transformation of Phytophthora strains to aid in plant-pathogen research. CONCLUSIONS: N-acetyltransferase AAC(3)-I is functional in Phytophthora oomycetes. In addition, the substrate specificity of the AAC(3)-I enzyme allows for re-transformation of geneticin-resistant strains. Our findings and resources widen the possibilities to study oomycete cell biology and plant-oomycete interactions.


Assuntos
Arilamina N-Acetiltransferase/genética , Resistência a Medicamentos/genética , Gentamicinas/farmacologia , Isoenzimas/genética , Phytophthora infestans/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , Corantes Fluorescentes , Phytophthora/enzimologia , Phytophthora/genética , Phytophthora infestans/enzimologia , Phytophthora infestans/genética , Doenças das Plantas , Transformação Genética
9.
Fungal Genet Biol ; 133: 103268, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518653

RESUMO

Phytophthora sojae is an oomycete pathogen that causes root, stem, and leaf rot in soybean plants, frequently leading to massive economic losses. Despite its importance, the mechanism by which P. sojae penetrates the host is not yet fully understood. Evidence indicates that P. sojae is not capable of penetrating the plant cell wall via mechanical force, suggesting that alternative factors facilitate breakdown of the host cell wall and membrane. Members of the carbohydrate esterase (CE) family 10 (carboxylesterases, arylesterases, sterol esterases and acetylcholine esterases, collectively known as CE10), are thought to be important for this penetration process. To gain insight into the potential role of CE10-coding genes in P. sojae pathogenesis, the newly revised version of the P. sojae genome was searched for putative CE10-coding genes, and various bioinformatic analyses were conducted using their amino acid and nucleotide sequences. In addition, in planta infection assays were conducted with P. sojae Race 4 and soybean cultivars Williams and Williams 82, and the transcriptional activity of P. sojae CE10-coding genes was evaluated at different time points during infection. Results suggest that these genes are important for both the biotrophic and necrotrophic stages of the P. sojae infection process and provide molecular evidence for stage distinction during infection progression. Furthermore, bioinformatic analyses have identified several conserved gene and protein sequence features that appear to have a significant impact on observed levels of expression during infection. Results agree with previous reports implicating other carbohydrate-active enzymes in P. sojae infection.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glycine max/microbiologia , Phytophthora/enzimologia , Phytophthora/genética , Doenças das Plantas/microbiologia , Membrana Celular/metabolismo
10.
Environ Microbiol ; 21(12): 4537-4547, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31314944

RESUMO

Chitin is a structural and functional component of the fungal cell wall and also serves as a pathogen-associated molecular pattern (PAMP) that triggers the innate immune responses of host plants. However, no or very little chitin is found in the fungus-like oomycetes. In Phytophthora spp., the presence of chitin has not been demonstrated so far, although putative chitin synthase (CHS) genes, which encode the enzymes that synthesize chitin, are present in their genomes. Here, we revealed that chitin is present in the zoospores and released sporangia of Phytophthora, and this is most consistent with the transcriptional pattern of PcCHS in Phytophthora capsici and PsCHS1 in Phytophthora sojae. Disruption of the CHS genes indicated that PcCHS and PsCHS1, but not PsCHS2 (which exhibited very weak transcription), have similar functions involved in mycelial growth, sporangial production, zoospore release and the pathogenesis of P. capsici and P. sojae. We also suggest that chitin in the zoospores of P. capsici can act as a PAMP that is recognized by the chitin receptors AtLYK5 or AtCERK1 of Arabidopsis. These results provide new insights into the biological significance of chitin and CHSs in Phytophthora and help with the identification of potential targets for disease control.


Assuntos
Quitina Sintase/fisiologia , Phytophthora/enzimologia , Quitina/metabolismo , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Reprodução Assexuada , Esporângios/enzimologia
11.
Biochem Biophys Res Commun ; 508(4): 1011-1017, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30551874

RESUMO

Prolyl 4-hydroxylases (P4Hs) are members of the Fe2+ and 2-oxoglutarate- dependent oxygenases family, which play central roles in the collagen stabilization, hypoxia sensing, and translational regulation in eukaryotes. Thus far, nothing is known about the role of P4Hs in development and pathogenesis in oomycetes. Here we show that the Phytophthora capsici genome contains five putative prolyl 4-hydroxylases. In mycelia, all P4Hs were downregulated in response to hypoxia, but the expression of PcP4H1 was most affected. Strikingly, Pc4H1 was upregulated more than 110 fold at the onset of infection, and Pc4H5 was upregulated seven fold, while the expression of other P4H's were unchanged. Similar to well-characterized P4H proteins, the crystallographic structure of PcP4H1 contains a highly conserved double-stranded ß-helix core fold and catalytic residues. However, the binding affinity of 2-oxoglutarate to PcP4H1 is very low. The extended C-terminal α-helix bundle and longer ß2-ß3 disordered substrate binding loop may help in confirming the peptide target of this enzyme.


Assuntos
Phytophthora/enzimologia , Prolil Hidroxilases/química , Prolil Hidroxilases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Regulação da Expressão Gênica , Genoma , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Filogenia , Phytophthora/genética
12.
Phytopathology ; 109(5): 726-735, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30412010

RESUMO

The phytopathogen Phytophthora cactorum infects economically important herbaceous and woody plant species. P. cactorum isolates differ in host specificity; for example, strawberry crown rot is often caused by a specialized pathotype. Here we compared the transcriptomes of two P. cactorum isolates that differ in their virulence to garden strawberry (Pc407: high virulence; Pc440: low virulence). De novo transcriptome assembly and clustering of contigs resulted in 19,372 gene clusters. Two days after inoculation of Fragaria vesca roots, 3,995 genes were differently expressed between the P. cactorum isolates. One of the genes that were highly expressed only in Pc407 encodes a GAF sensor protein potentially involved in membrane trafficking processes. Two days after inoculation, elicitins were highly expressed in Pc407 and lipid catabolism appeared to be more active than in Pc440. Of the carbohydrate-active enzymes, those that degrade pectin were often more highly expressed in Pc440, whereas members of glycosyl hydrolase family 1, potentially involved in the metabolism of glycosylated secondary metabolites, were more highly expressed in Pc407 at the time point studied. Differences were also observed among the RXLR effectors: Pc407 appears to rely on a smaller set of key RXLR effectors, whereas Pc440 expresses a greater number of RXLRs. This study is the first step toward improving understanding of the molecular basis of differences in the virulence of P. cactorum isolates. Identification of the key effectors is important, as it enables effector-assisted breeding strategies toward crown rot-resistant strawberry cultivars.


Assuntos
Fragaria/microbiologia , Phytophthora/classificação , Doenças das Plantas/microbiologia , Transcriptoma , Carboidratos , Metabolismo dos Lipídeos , Phytophthora/enzimologia , Phytophthora/patogenicidade , Metabolismo Secundário , Virulência
13.
Genome Biol ; 19(1): 181, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382931

RESUMO

BACKGROUND: Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. RESULTS: We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. CONCLUSIONS: Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica , Genoma , Glycine max/parasitologia , Metiltransferases/metabolismo , Phytophthora/genética , Genômica , Filogenia , Phytophthora/classificação , Phytophthora/enzimologia , Virulência
14.
Curr Genet ; 64(4): 931-943, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29470644

RESUMO

Plant cell walls are pivotal battlegrounds between microbial pathogens and their hosts. To penetrate the cell wall and thereby to facilitate infection, microbial pathogens are equipped with a wide array of cell wall-degrading enzymes to depolymerize the polysaccharides in the cell wall. However, many of these enzymes and their role in the pathogenesis of microbial pathogens are not characterized, especially those from Oomycetes. In this study, we analyzed the function of four putative endo-beta-1,4-xylanase-encoding genes (ppxyn1-ppxyn4) from Phytophthora parasitica, an oomycete plant pathogen known to cause severe disease in a wide variety of plant species. All four genes belong to the glycoside hydrolase family 10 (GH10). Recombinant proteins of ppxyn1, ppxyn2, and ppxyn4 obtained from the yeast Pichia pastoris showed degrading activities toward birch wood xylan, but they behaved differently in terms of the conditions for optimal activity, thermostability, and durability. Quantitative RT-PCR revealed upregulated expression of all four genes, especially ppxyn1 and ppxyn2, during plant infection. In contrast, ppxyn3 was highly expressed in cysts and its close homolog, ppxyn4, in germinating cysts. To uncover the role of ppxyn1 and ppxyn2 in the pathogenesis of P. parasitica, we generated silencing transformants for these two genes by double-stranded RNA-mediated gene silencing. Silencing ppxyn1 and ppxyn2 reduced the virulence of P. parasitica toward tobacco (Nicotiana benthamiana) and tomato plants. These results demonstrate the crucial role of xylanase-encoding ppxyn1 and ppxyn2 in the infection process of P. parasitica.


Assuntos
Endo-1,4-beta-Xilanases/genética , Oomicetos/enzimologia , Phytophthora/enzimologia , Doenças das Plantas/genética , Parede Celular/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/microbiologia , Oomicetos/patogenicidade , Phytophthora/patogenicidade , Pichia/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia
15.
Microb Pathog ; 108: 40-48, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28438637

RESUMO

Succinate dehydrogenase (SDH) is one of the key enzymes of the tricarboxylic acid cycle (TCA cycle) and a proven target of fungicides for true fungi. To explore the roles of the SDHA gene in Phytophthora sojae, we first cloned PsSDHA to construct the PsSDHA silenced expression vector pHAM34-PsSDHA, and then utilized PEG to mediate the P. sojae protoplast transformation experiment. Through transformation screening, we obtained the silenced mutants A1 and A3, which have significant suppressive effect. Further study showed that the hyphae of the silenced mutant strains were shorter and more bifurcated; the growth of the silenced mutants was clearly inhibited in 10% V8 agar medium containing sodium chloride (NaCl), hydrogen peroxide (H2O2) or Congo Red, respectively. The pathogenicity of the silenced mutants was significantly reduced compared with the wild-type strain and the mock. The results could help us better to understand the position and function of SDH in P. sojae and provide a proven target of fungicides for the oomycete.


Assuntos
Phytophthora/enzimologia , Phytophthora/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/fisiologia , Sequência de Bases , Clonagem Molecular , Meios de Cultura/química , Regulação Fúngica da Expressão Gênica , Inativação Gênica/fisiologia , Genes Fúngicos , Peróxido de Hidrogênio/metabolismo , Hifas/citologia , Hifas/crescimento & desenvolvimento , Mutação , Fenótipo , Phytophthora/crescimento & desenvolvimento , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Interferência de RNA , Análise de Sequência , Cloreto de Sódio/metabolismo , Glycine max/microbiologia , Estresse Fisiológico , Virulência
16.
Science ; 355(6326): 710-714, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28082413

RESUMO

The extracellular space (apoplast) of plant tissue represents a critical battleground between plants and attacking microbes. Here we show that a pathogen-secreted apoplastic xyloglucan-specific endoglucanase, PsXEG1, is a focus of this struggle in the Phytophthora sojae-soybean interaction. We show that soybean produces an apoplastic glucanase inhibitor protein, GmGIP1, that binds to PsXEG1 to block its contribution to virulence. P. sojae, however, secretes a paralogous PsXEG1-like protein, PsXLP1, that has lost enzyme activity but binds to GmGIP1 more tightly than does PsXEG1, thus freeing PsXEG1 to support P. sojae infection. The gene pair encoding PsXEG1 and PsXLP1 is conserved in many Phytophthora species, and the P. parasitica orthologs PpXEG1 and PpXLP1 have similar functions. Thus, this apoplastic decoy strategy may be widely used in Phytophthora pathosystems.


Assuntos
Celulase/antagonistas & inibidores , Celulase/metabolismo , Glycine max/enzimologia , Glycine max/parasitologia , Interações Hospedeiro-Patógeno , Phytophthora/enzimologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Celulase/genética , Espaço Extracelular/parasitologia , Glucanos/metabolismo , Phytophthora/genética , Phytophthora/patogenicidade , Proteínas de Plantas/genética , Ligação Proteica , Glycine max/genética , Virulência , Xilanos/metabolismo
17.
Fungal Biol ; 120(4): 620-630, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27020161

RESUMO

Pathogen nutrient acquisition and metabolism are critical for successful infection and colonization. However, the nutrient requirements and metabolic pathways related to pathogenesis in oomycete pathogens are unknown. In this study, we bioinformatically identified Phytophthora sojae aspartate aminotransferases (AATs), which are key enzymes that coordinate carbon and nitrogen metabolism. We demonstrated that P. sojae encodes more AATs than the analysed fungi. Some of the AATs contained additional prephenate dehydratase and/or prephenate dehydrogenase domains in their N-termini, which are unique to oomycetes. Silencing of PsAAT3, an infection-inducible expression gene, reduced P. sojae pathogenicity on soybean plants and affected the growth under N-starving condition, suggesting that PsAAT3 is involved in pathogen pathogenicity and nitrogen utilisation during infection. Our results suggest that P. sojae and other oomycete pathogens may have distinct amino acid metabolism pathways and that PsAAT3 is important for its full pathogenicity.


Assuntos
Aspartato Aminotransferases/metabolismo , Glycine max/microbiologia , Phytophthora/enzimologia , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Aspartato Aminotransferases/genética , Biologia Computacional , Técnicas de Silenciamento de Genes , Nitrogênio/metabolismo , Phytophthora/genética , Phytophthora/crescimento & desenvolvimento , Domínios Proteicos
18.
PLoS One ; 10(11): e0142096, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544849

RESUMO

Phytophthora sojae is an oomycete pathogen that causes the disease known as root and stem rot in soybean plants, frequently leading to massive economic damage. Additionally, P. sojae is increasingly being utilized as a model for phytopathogenic oomycete research. Despite the economic and scientific importance of P. sojae, the mechanism by which it penetrates the host roots is not yet fully understood. It has been found that oomycetes are not capable of penetrating the cell wall solely through mechanical force, suggesting that alternative factors facilitate breakdown of the host cell wall. Pectin methylesterases have been suggested to be important for Phytophthora pathogenicity, but no data exist on their role in the P. sojae infection process. We have scanned the newly revised version of the annotated P. sojae genome for the presence of putative pectin methylesterases genes and conducted a sequence analysis of all gene models found. We also searched for potential regulatory motifs in the promoter region of the proposed P. sojae models, and investigated the gene expression levels throughout the early course of infection on soybean plants. We found that P. sojae contains a large repertoire of pectin methylesterase-coding genes and that most of these genes display similar motifs in the promoter region, indicating the possibility of a shared regulatory mechanism. Phylogenetic analyses confirmed the evolutionary relatedness of the pectin methylesterase-coding genes within and across Phytophthora spp. In addition, the gene duplication events that led to the emergence of this gene family appear to have occurred prior to many speciation events in the genus Phytophthora. Our results also indicate that the highest levels of expression occurred in the first 24 hours post inoculation, with expression falling after this time. Our study provides evidence that pectin methylesterases may be important for the early action of the P. sojae infection process.


Assuntos
Hidrolases de Éster Carboxílico/genética , Phytophthora/enzimologia , Phytophthora/genética , Evolução Molecular , Duplicação Gênica , Regulação Enzimológica da Expressão Gênica , Íntrons , Filogenia , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas , Glycine max/microbiologia , Virulência/genética , Virulência/fisiologia
19.
PLoS One ; 10(9): e0136899, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332397

RESUMO

RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, ß-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include ß-1,4-glucosidases, ß-1,4-glucanases, ß-1,4-galactanases, a ß-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade ß-1,3-glucanases during middle and late stages of infection. The results suggest that high levels of ß-1,3-glucanases may effectively degrade callose as it is produced by the plant during the defence response.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Lupinus/parasitologia , Phytophthora/enzimologia , Phytophthora/genética , Raízes de Plantas/parasitologia , Parede Celular/metabolismo , Celulose/metabolismo , Lupinus/metabolismo , Pectinas/metabolismo , Phytophthora/fisiologia , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Transcriptoma , beta-Glucanas/metabolismo
20.
Microb Pathog ; 87: 51-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26209751

RESUMO

In eukaryotic organisms, histone acetyltransferase complexes are coactivators that are important for transcriptional activation by modifying chromatin. In this study, a gene (PsGcn5) from Phytophthora sojae encoding a histone acetyltransferase was identified as a homolog of one component of the histone acetyltransferase complex from yeasts to mammals. PsGcn5 was constitutively expressed in each stage tested, but had a slightly higher expression in sporulating hyphae and 3 h after infection. PsGcn5-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation. These mutants had normal development, but compared to wild type strains they had higher sensitivity to hydrogen peroxide (H2O2) and significantly reduced virulence in soybean. Diaminobenzidine staining revealed an accumulation of H2O2 around the infection sites of PsGcn5-silenced mutants but not for wild type strains. Inhibition of the plant NADPH oxidase by diphenyleneiodonium prevented host-derived H2O2 accumulation in soybean cells and restored infectious hyphal growth of the mutants. Thus, we concluded that PsGcn5 is important for growth under conditions of oxidative stress and contributes to the full virulence of P. sojae by suppressing the host-derived reactive oxygen species.


Assuntos
Histona Acetiltransferases/metabolismo , Estresse Oxidativo , Phytophthora/enzimologia , Phytophthora/fisiologia , Fatores de Virulência/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/análise , Phytophthora/genética , Doenças das Plantas/microbiologia , Glycine max , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA