Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
BMC Plant Biol ; 24(1): 414, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760680

RESUMO

BACKGROUND: Variations in hydraulic conductivity may arise from species-specific differences in the anatomical structure and function of the xylem, reflecting a spectrum of plant strategies along a slow-fast resource economy continuum. Spruce (Picea spp.), a widely distributed and highly adaptable tree species, is crucial in preventing soil erosion and enabling climate regulation. However, a comprehensive understanding of the variability in anatomical traits of stems and their underlying drivers in the Picea genus is currently lacking especially in a common garden. RESULTS: We assessed 19 stem economic properties and hydraulic characteristics of 17 Picea species grown in a common garden in Tianshui, Gansu Province, China. Significant interspecific differences in growth and anatomical characteristics were observed among the species. Specifically, xylem hydraulic conductivity (Ks) and hydraulic diameter exhibited a significant negative correlation with the thickness to span ratio (TSR), cell wall ratio, and tracheid density and a significant positive correlation with fiber length, and size of the radial tracheid. PCA revealed that the first two axes accounted for 64.40% of the variance, with PC1 reflecting the trade-off between hydraulic efficiency and mechanical support and PC2 representing the trade-off between high embolism resistance and strong pit flexibility. Regression analysis and structural equation modelling further confirmed that tracheid size positively influenced Ks, whereas the traits DWT, D_r, and TSR have influenced Ks indirectly. All traits failed to show significant phylogenetic associations. Pearson's correlation analysis demonstrated strong correlations between most traits and longitude, with the notable influence of the mean temperature during the driest quarter, annual precipitation, precipitation during the wettest quarter, and aridity index. CONCLUSIONS: Our results showed that xylem anatomical traits demonstrated considerable variability across phylogenies, consistent with the pattern of parallel sympatric radiation evolution and global diversity in spruce. By integrating the anatomical structure of the stem xylem as well as environmental factors of origin and evolutionary relationships, our findings provide novel insights into the ecological adaptations of the Picea genus.


Assuntos
Clima , Picea , Madeira , Xilema , Picea/anatomia & histologia , Picea/fisiologia , Picea/crescimento & desenvolvimento , Madeira/anatomia & histologia , Xilema/anatomia & histologia , Xilema/fisiologia , China , Especificidade da Espécie , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento
2.
Glob Chang Biol ; 30(3): e17252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501719

RESUMO

The synthesis of a large body of evidence from field experiments suggests more diverse plant communities are more productive as well as more resistant to the effects of climatic extremes like drought. However, this view is strongly based on data from grasslands due to the limited empirical evidence from tree diversity experiments. Here we report on the relationship between tree diversity and productivity over 10 years in a field experiment established in 2005 that was then affected by the 2018 mega-drought in central Europe. Across a number of years, tree species diversity and productivity were significantly positively related; however, the slope switched to negative in the year of the drought. Net diversity effects increased through time, with complementarity effects making greater contributions to the net diversity effect than selection effects. Complementarity effects were clearly positive in three- and five-species mixtures before the drought (2012-2016) but were found to decrease in the year of the drought. Selection effects were clearly positive in 2016 and remained positive in the drought year 2018 in two-, three-, and five-species mixtures. The survival of Norway spruce (Picea abies) plummeted in response to the drought, and a negative relationship between species diversity and spruce survival was found. Taken together, our findings suggest that tree diversity per se may not buffer communities against the impacts of extreme drought and that tree species composition and the drought tolerance of tree species (i.e., species identity) will be important determinants of community productivity as the prevalence of drought increases.


Assuntos
Picea , Árvores , Árvores/fisiologia , Secas , Florestas , Europa (Continente) , Picea/fisiologia
3.
Environ Monit Assess ; 196(3): 226, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302669

RESUMO

In 2022, Europe emerged from eight of the hottest years on record, leading to significant spruce mortality across Europe. The particularly dry weather conditions of 2018 triggered an outbreak of bark beetles (Ips typographus), causing the loss of thousands of hectares of Norway spruce stands, including in Wallonia and North-eastern France. A methodology for detecting the health status of spruce was developed based on a dense time series of satellite imagery (Sentinel-2). The time series of satellite images allowed the modelling of the spectral response of healthy spruce forests over the seasons: a decrease in photosynthetic activity of the forest canopy causes deviations from this normal seasonal vegetation index trajectory. These anomalies are caused by a bark beetle attack and are detected automatically. The method leads in the production of an annual spruce health map of Wallonia and Grand-Est. The goal of this paper is to assess the damage caused by bark beetle using the resulting spruce health maps. A second objective was to compare the influence of basic variables on the mortality of spruce trees in these two regions. Lasted 6 years (2017-2022), bark beetle has destroyed 12.2% (23,674 ha) of the spruce area in Wallonia and Grand-Est of France. This study area is composed of three bioclimatic areas: Plains, Ardennes and Vosges, which have not been equally affected by bark beetle attacks. The plains were the most affected, with 50% of spruce forests destroyed, followed by the Ardennes, which lost 11.3% of its spruce stands. The Vosges was the least affected bioclimatic area, with 5.6% of spruce stands lost. For the most problematic sites, Norway spruce forestry should no longer be considered.


Assuntos
Abies , Besouros , Picea , Gorgulhos , Animais , Picea/fisiologia , Besouros/fisiologia , Casca de Planta , Bélgica , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental , Noruega , França , Surtos de Doenças , Árvores
4.
Plant Cell Environ ; 47(4): 1285-1299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38213092

RESUMO

Using a unique 8-year data set (2010-2017) of phloem data, we studied the effect of temperature and precipitation on the phloem anatomy (conduit area, widths of ring, early and late phloem) and xylem-ring width in two coexisting temperate tree species, Picea abies and Fagus sylvatica, from three contrasting European temperate forest sites. Histometric analyses were performed on microcores taken from tree stems in autumn. We found high interannual variability and sensitivity of phloem anatomy and xylem-ring widths to precipitation and temperature; however, the responses were species- and site-specific. The contrasting response of xylem and phloem-ring widths of the same tree species to weather conditions was found at the two Slovenian sites generally well supplied with precipitation, while at the driest Czech site, the influence of weather factors on xylem and phloem ring widths was synchronised. Since widths of mean annual xylem and phloem increments were narrowest at the Czech site, this site is suggested to be most restrictive for the radial growth of both species. By influencing the seasonal patterns of xylem and phloem development, water availability appears to be the most important determinant of tissue- and species-specific responses to local weather conditions.


Assuntos
Abies , Fagus , Picea , Pinus , Picea/fisiologia , Floema , Clima , Árvores/fisiologia
5.
Glob Chang Biol ; 30(1): e17146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273515

RESUMO

Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation-based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.


Assuntos
Fagus , Picea , Pinus sylvestris , Quercus , Árvores , Florestas , Picea/fisiologia , Noruega , Mudança Climática
6.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38070177

RESUMO

Beneficial and negative effects of species interactions can strongly influence water fluxes in forest ecosystems. However, little is known about how trees dynamically adjust their water use when growing with interspecific neighbours. Therefore, we investigated the interaction effects between Fagus sylvatica (European beech) and Picea abies (Norway spruce) on water-use strategies and aboveground structural characteristics. We used continuous in situ isotope spectroscopy of xylem and soil water to investigate source water dynamics and root water uptake depths. Picea abies exhibited a reduced sun-exposed crown area in equally mixed compared with spruce-dominated sites, which was further correlated to a reduction in sap flow of -14.5 ± 8.2%. Contrarily, F. sylvatica trees showed +13.3 ± 33.3% higher water fluxes in equally mixed compared with beech-dominated forest sites. Although a significantly higher crown interference by neighbouring trees was observed, no correlation of water fluxes and crown structure was found. High time-resolved xylem δ2H values showed a large plasticity of tree water use (-74.1 to -28.5‰), reflecting the δ2H dynamics of soil and especially precipitation water sources. Fagus sylvatica in equally mixed sites shifted water uptake to deeper soil layers, while uptake of fresh precipitation was faster in beech-dominated sites. Our continuous in situ water stable isotope measurements traced root water uptake dynamics at unprecedented temporal resolution, indicating highly dynamic use of water sources in response to precipitation and to neighbouring species competition. Understanding this plasticity may be highly relevant in the context of increasing water scarcity and precipitation variability under climate change.


Assuntos
Fagus , Picea , Picea/fisiologia , Fagus/fisiologia , Ecossistema , Água , Florestas , Árvores/fisiologia , Solo/química , Isótopos
7.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37756632

RESUMO

Continuous cover forestry (CCF) has gained interest as an alternative to even-aged management particularly on drained peatland forests. However, relatively little is known about the physiological response of suppressed trees when larger trees are removed as a part of CCF practices. Consequently, studies concentrating on process-level modeling of the response of trees to selection harvesting are also rare. Here, we compared, modeled and measured harvest response of previously suppressed Norway spruce (Picea abies) trees to a selection harvest. We quantified the harvest response by collecting Norway spruce tree-ring samples in a drained peatland forest site and measuring the change in stable carbon and oxygen isotopic ratios of wood formed during 2010-20, including five post-harvest years. The measured isotopic ratios were compared with ecosystem-level process model predictions for ${\kern0em }^{13}$C discrimination and ${\kern0em }^{18}$O leaf water enrichment. We found that the model predicted similar but lower harvest response than the measurements. Furthermore, accounting for mesophyll conductance was important for capturing the variation in ${\kern0em }^{13}$C discrimination. In addition, we performed sensitivity analysis on the model, which suggests that the modeled ${\kern0em }^{13}$C discrimination is sensitive to parameters related to CO2 transport through stomata to the mesophyll.


Assuntos
Carbono , Picea , Picea/fisiologia , Ecossistema , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise , Florestas , Árvores , Noruega
8.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37861656

RESUMO

Conifers growing in temperate forests utilize sustained forms of thermal dissipation during winter to protect the photosynthetic apparatus from damage, which can be monitored via pronounced reductions in photochemical efficiency (Fv/Fm) during winter. Eastern white pine (Pinus strobus L.) and white spruce (Picea  glauca (Moench) Voss) are known to recover from winter stress at different rates, with pine recovering more slowly than spruce, suggesting different mechanisms for sustained dissipation in these species. Our objectives were to monitor pine and spruce throughout spring recovery in order to provide insights into key mechanisms for sustained dissipation in both species. We measured chlorophyll fluorescence, pigments, and abundance and phosphorylation status of key photosynthetic proteins. We found that both species rely on two forms of sustained dissipation involving retention of high amounts of antheraxanthin (A) + zeaxanthin (Z), one that is very slowly reversible and temperature independent and one that is more dynamic and occurs only on subzero days. Differences in protein abundance suggest that spruce, but not pine, likely upregulates cyclic or alternative pathways of electron transport involving the cytochrome b6f complex and photosystem I (PSI). Both species show an increased sustained phosphorylation of the D1 protein on subzero days, and spruce additionally shows dramatic increases in the sustained phosphorylation of light-harvesting complex II (LHCII) and other PSII core proteins on subzero days only, suggesting that a mechanism of sustained dissipation that is temperature dependent requires sustained phosphorylation of photosynthetic proteins in spruce, possibly allowing for direct energy transfer from PSII to PSI as a mechanism of photoprotection. The data suggest differences in strategy among conifers in mechanisms of sustained thermal dissipation in response to winter stress. Additionally, the flexible induction of sustained A + Z and phosphorylation of photosynthetic proteins in response to subzero temperatures during spring recovery seem to be important in providing photoprotection during transitional periods with high temperature fluctuation.


Assuntos
Picea , Pinus , Picea/fisiologia , Fotossíntese , Pinus/fisiologia , Fosforilação , Temperatura , Complexo de Proteína do Fotossistema II , Clorofila/metabolismo
9.
Sci Rep ; 13(1): 21257, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040772

RESUMO

Climate change is rapidly altering weather patterns, resulting in shifts in climatic zones. The survival of trees in specific locations depends on their functional traits. Local populations exhibit trait adaptations that ensure their survival and accomplishment of growth and reproduction processes during the growing season. Studying these traits offers valuable insights into species responses to present and future environmental conditions, aiding the implementation of measures to ensure forest resilience and productivity. This study investigates the variability in functional traits among five black spruce (Picea mariana (Mill.) B.S.P.) provenances originating from a latitudinal gradient along the boreal forest, and planted in a common garden in Quebec, Canada. We examined differences in bud phenology, growth performance, lifetime first reproduction, and the impact of a late-frost event on tree growth and phenological adjustments. The findings revealed that trees from northern sites exhibit earlier budbreak, lower growth increments, and reach reproductive maturity earlier than those from southern sites. Late-frost damage affected growth performance, but no phenological adjustment was observed in the successive year. Local adaptation in the functional traits may lead to maladaptation of black spruce under future climate conditions or serve as a potent evolutionary force promoting rapid adaptation under changing environmental conditions.


Assuntos
Picea , Picea/fisiologia , Canadá , Quebeque , Florestas , Árvores , Alocação de Recursos
10.
PLoS One ; 18(10): e0292682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824484

RESUMO

Tree line areas exhibited significant changes in response to climate change, including upward migration. Lower tree line dynamics are rarely studied, but as unique features in arid and semi-arid areas, they may influence forest distribution. Here, eight lower tree line plots in a Picea crassifolia Kom. (Qinghai spruce) forest in the arid and semi-arid Qilian Mountains of northwestern China were used to determine changes in tree line location and relationships with meteorological factors during 1968-2018. The results showed that the lower tree line descended by an average of 9.82 m during 1968 to 2018, and exhibited almost no change after 2008. The change in the lower tree line was significantly correlated with the annual average temperature (°C) and annual precipitation (mm) and may be affected by human activities. In the past 50 years, the lower tree line in arid areas exhibited a downward trend. Our findings indicate that the movement of the lower tree line is also an important aspect of climatic changes in coniferous forest distribution in arid and semi-arid mountains.


Assuntos
Picea , Árvores , Humanos , Florestas , China , Temperatura , Mudança Climática , Picea/fisiologia
11.
Tree Physiol ; 43(10): 1745-1757, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37405989

RESUMO

Abiotic factors such as water and nutrient availability can exert a dominant influence on the susceptibility of plants to various pathogens. Effects of abiotic environmental factors on phenolic compound concentrations in the plant tissue may represent one of the major underlying mechanisms, as these compounds are known to play a substantial role in plant resistance to pests. In particular, this applies to conifer trees, in which a large range of phenolic compounds are produced constitutively and/or induced by pathogen attack. We subjected Norway spruce saplings to water limitation and elevated nutrient supply over 2 years and subsequently controlled infection with the needle rust Chrysomyxa rhododendri (DC.) de Bary and analysed both constitutive and inducible phenolic compound concentrations in the needles as well as the degree of infection. Compared with the control group, both drought and fertilization profoundly modified the constitutive and pathogen-induced profiles of phenolic compounds, but had little impact on the total phenolic content. Fertilization predominantly affected the inducible phenolic response and led to higher infection rates by C. rhododendri. Drought stress, in contrast, mainly shaped the phenolic profiles in healthy plant parts and had no consequences on the plant susceptibility. The results show that specific abiotic effects on individual compounds seem to be decisive for the infection success of C. rhododendri, whereby the impaired induced response in saplings subjected to nutrient supplementation was most critical. Although drought effects were minor, they varied depending on the time and length of water limitation. The results indicate that prolonged drought periods in the future may not significantly alter the foliar defence of Norway spruce against C. rhododendri, but fertilization, often propagated to increase tree growth and forest productivity, can be counterproductive in areas with high pathogen pressure.


Assuntos
Secas , Picea , Picea/fisiologia , Noruega , Árvores , Água
12.
Glob Chang Biol ; 29(17): 4842-4860, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424219

RESUMO

Common-garden trials of forest trees provide phenotype data used to assess growth and local adaptation; this information is foundational to tree breeding programs, genecology, and gene conservation. As jurisdictions consider assisted migration strategies to match populations to suitable climates, in situ progeny and provenance trials provide experimental evidence of adaptive responses to climate change. We used drone technology, multispectral imaging, and digital aerial photogrammetry to quantify spectral traits related to stress, photosynthesis, and carotenoids, and structural traits describing crown height, size, and complexity at six climatically disparate common-garden trials of interior spruce (Picea engelmannii × glauca) in western Canada. Through principal component analysis, we identified key components of climate related to temperature, moisture, and elevational gradients. Phenotypic clines in remotely sensed traits were analyzed as trait correlations with provenance climate transfer distances along principal components (PCs). We used traits showing clinal variation to model best linear unbiased predictions for tree height (R2 = .98-.99, root mean square error [RMSE] = 0.06-0.10 m) and diameter at breast height (DBH, R2 = .71-.97, RMSE = 2.57-3.80 mm) and generated multivariate climate transfer functions with the model predictions. Significant (p < .05) clines were present for spectral traits at all sites along all PCs. Spectral traits showed stronger clinal variation than structural traits along temperature and elevational gradients and along moisture gradients at wet, coastal sites, but not at dry, interior sites. Spectral traits may capture patterns of local adaptation to temperature and montane growing seasons which are distinct from moisture-limited patterns in stem growth. This work demonstrates that multispectral indices improve the assessment of local adaptation and that spectral and structural traits from drone remote sensing produce reliable proxies for ground-measured height and DBH. This phenotyping framework contributes to the analysis of common-garden trials towards a mechanistic understanding of local adaptation to climate.


Assuntos
Picea , Picea/fisiologia , Tecnologia de Sensoriamento Remoto , Dispositivos Aéreos não Tripulados , Melhoramento Vegetal , Árvores , Fenótipo
13.
Sci Total Environ ; 880: 163114, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011694

RESUMO

Prolonged drought and susceptibility to biotic stressors induced an extensive calamity in Norway spruce (Picea abies (L.) Karst.) and widespread crown defoliation in European beech (Fagus sylvatica L.) in Central Europe. For future management decisions, it is crucial to link changes in canopy cover to site conditions. However, current knowledge on the role of soil properties for drought-induced forest disturbance is limited due to the scarcity and low spatial resolution of soil information. We present a fine-scale assessment on the role of soil properties for forest disturbance in Norway spruce and European beech derived from optical remote sensing. A forest disturbance modeling framework based on Sentinel-2 time series was applied on 340 km2 in low mountain ranges of Central Germany. Spatio-temporal information on forest disturbance was calculated at 10 m spatial resolution in the period 2019-2021 and intersected with high-resolution soil information (1:10,000) based on roughly 2850 soil profiles. We found distinct differences in disturbed area, depending on soil type, texture, stoniness, effective rooting depth and available water capacity (AWC). For spruce, we found a polynomial relationship between AWC (R2 = 0.7) and disturbance, with highest disturbed area (65 %) for AWC between 90 and 160 mm. Interestingly, we found no evidence for generally higher disturbance on shallow soils, although stands on the deepest soils were significantly less affected. Noteworthy, sites affected first did not necessarily exhibit highest proportions of disturbed area post-drought, indicating recovery or adaptation. We conclude that site- and species-specific understanding of drought impacts benefits from a combination of remote sensing and fine-scale soil information. Since our approach revealed which sites were affected first and most, it qualifies for prioritizing in situ monitoring activities to most vulnerable stands in acute drought conditions as well as for developing long-term strategies for reforestation and site-specific risk assessment for precision forestry.


Assuntos
Fagus , Picea , Agricultura Florestal , Secas , Solo , Tecnologia de Sensoriamento Remoto , Europa (Continente) , Picea/fisiologia , Fagus/fisiologia , Água , Árvores/fisiologia
14.
J Environ Manage ; 339: 117783, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058930

RESUMO

Lowland conifer forests dominated by black spruce (Picea mariana) and tamarack (Larix laricina) typically occur in peatlands in the boreal North American forest with near-surface water tables throughout the year. These forests are ecologically and economically important resources that may be impacted by climate change. However, information characterizing effects of forest disturbance, such as even-aged harvest on water table dynamics is needed to evaluate which forest tree species cover types are most hydrologically susceptible to even-aged harvest and changes in precipitation. We used a chronosequence approach to evaluate water table fluctuations and evapotranspiration across four stand age classes (<10, 15-30, 40-80, and >100-years old) and three distinct forest cover types (productive black spruce, stagnant black spruce, and tamarack) for a period of three years in Minnesota, USA. In general, there is limited evidence for elevated water tables in the younger age classes; the <10-year age class had no significant difference in mean weekly water table depth compared to the older age classes across all cover types. Estimated actual daily evapotranspiration (ET) generally agreed with the water table observations, with the exception of the tamarack cover type where ET was significantly lower in the <10-year age class. Productive black spruce sites that are 40-80-years old had higher evapotranspiration, and lower water table, possibly reflecting increased transpiration associated with the stem exclusion stage of stand development. Tamarack in the 40-80-year age class had higher water tables but no difference in ET compared to all other age classes, indicating that other external factors are driving higher water tables in that age class. To evaluate susceptibility to changing climate, we also assessed the sensitivity and response of water table dynamics to pronounced differences in growing season precipitation that occurred across study years. In general, tamarack forests are more sensitive to changes in precipitation compared to the two black spruce forest cover types. These findings can inform expected responses of site hydrology for a range of precipitation scenarios that may occur under future climate and be used by forest managers to evaluate hydrologic impacts of forest management activities across lowland conifer forest cover types.


Assuntos
Água Subterrânea , Picea , Árvores , Florestas , Taiga , Picea/fisiologia , Água , Mudança Climática
15.
Tree Physiol ; 43(6): 925-937, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36864576

RESUMO

It is assumed that the stimulatory effects of elevated CO2 concentration ([CO2]) on photosynthesis and growth may be substantially reduced by co-occurring environmental factors and the length of CO2 treatment. Here, we present the study exploring the interactive effects of three manipulated factors ([CO2], nitrogen supply and water availability) on physiological (gas-exchange and chlorophyll fluorescence), morphological and stoichiometric traits of Norway spruce (Picea abies) saplings after 2 and 3 years of the treatment under natural field conditions. Such multifactorial studies, going beyond two-way interactions, have received only limited attention until now. Our findings imply a significant reduction of [CO2]-enhanced rate of CO2 assimilation under reduced water availability which deepens with the severity of water depletion. Similarly, insufficient nitrogen availability leads to a down-regulation of photosynthesis under elevated [CO2] being particularly associated with reduced carboxylation efficiency of the Rubisco enzyme. Such adjustments in the photosynthesis machinery result in the stimulation of water-use efficiency under elevated [CO2] only when it is combined with a high nitrogen supply and reduced water availability. These findings indicate limited effects of elevated [CO2] on carbon uptake in temperate coniferous forests when combined with naturally low nitrogen availability and intensifying droughts during the summer periods. Such interactions have to be incorporated into the mechanistic models predicting changes in terrestrial carbon sequestration and forest growth in the future.


Assuntos
Abies , Picea , Dióxido de Carbono/fisiologia , Picea/fisiologia , Nitrogênio , Água , Temperatura , Fotossíntese , Folhas de Planta/fisiologia
16.
Sci Total Environ ; 873: 162266, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822431

RESUMO

Mixed forest stands tend to be more resistant to drought than species-specific stands partially due to complementarity in root ecology and physiology. We asked whether complementary differences in the drought resistance of soil microbiomes might contribute to this phenomenon. We experimented on the effects of reduced soil moisture on bacterial and fungal community composition in species-specific (single species) and mixed-species root zones of Norway spruce and European beech forests in a 5-year-old throughfall-exclusion experiment and across seasonal (spring-summer-fall) and latitudinal moisture gradients. Bacteria were most responsive to changes in soil moisture, especially members of Rhizobiales, while fungi were largely unaffected, including ectomycorrhizal fungi (EMF). Community resistance was higher in spruce relative to beech root zones, corresponding with the proportions of drought-favored (more in spruce) and drought-sensitive bacterial taxa (more in beech). The spruce soil microbiome also exhibited greater resistance to seasonal changes between spring (wettest) and fall (driest). Mixed-species root zones contained a hybrid of beech- and spruce-associated microbiomes. Several bacterial populations exhibited either enhanced resistance or greater susceptibility to drought in mixed root zones. Overall, patterns in the relative abundances of soil bacteria closely tracked moisture in seasonal and latitudinal precipitation gradients and were more predictive of soil water content than other environmental variables. We conclude that complementary differences in the drought resistance of soil microbiomes can occur and the likeliest form of complementarity in mixed-root zones coincides with the enrichment of drought-tolerant bacteria associated with spruce and the sustenance of EMF by beech.


Assuntos
Fagus , Micorrizas , Picea , Solo , Florestas , Estações do Ano , Fagus/fisiologia , Bactérias , Árvores/fisiologia , Picea/fisiologia
17.
Sci Total Environ ; 868: 161601, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36646222

RESUMO

Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.


Assuntos
Fagus , Picea , Árvores/fisiologia , Ecossistema , Secas , Mudança Climática , Florestas , Picea/fisiologia , Fagus/fisiologia , Água
18.
Tree Physiol ; 43(4): 522-538, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36413114

RESUMO

As climate change progresses, the frequency and duration of drought stress events are increasing. While the mechanisms of drought acclimation of trees has received considerable attention in recent years, the recovery processes remain critically understudied. We used a unique throughfall exclusion experiment in a mature temperate mixed forest consisting of the more isohydric Norway spruce and more anisohydric European beech, to study the recovery and resilience after drought release. We hypothesized that pre-dawn water potential (ΨPD) of both species will increase within 1 day after watering, while the recovery of stomatal conductance (gs) and the reversal of osmoregulation will be significantly delayed in the more isohydric spruce. Furthermore, we hypothesized that the xylem sap flow density (udaily) will not fully recover within the growing season due to the strong drought impact. After 5 years of summer drought, trees showed significantly reduced ΨPD, udaily and increased osmoregulation in leaves, but only isohydric spruce displayed increased leaf abscisic acid concentrations. In line with our hypothesis, ΨPD and gs recovered within 1 day in beech. Conversely, isohydric spruce showed delayed increases in ΨPD and gs. The delay in recovery of spruce was partially related to the replenishment of the stem water reservoir, as indicated by the missing response of udaily at the crown base compared with DBH level upon watering. However, udaily fully recovered only in the next growing season for beech and was still reduced in spruce. Nevertheless, in both species, osmotic acclimations of leaves were reversed within several weeks. While both species displayed full resilience to drought stress in water-related physiology, the recovery time was in several cases, e.g., udaily, ΨPD and gs, shorter for beech than for spruce. With future increases in the frequency of drought events under ongoing climate change, tree species that recover more quickly will be favored.


Assuntos
Fagus , Picea , Árvores/fisiologia , Fagus/fisiologia , Secas , Água/fisiologia , Estações do Ano , Picea/fisiologia
19.
Ecol Appl ; 33(2): e2786, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477972

RESUMO

Recent ecological research suggests that, in general, mixtures are more resistant to insect herbivores and pathogens than monocultures. However, we know little about mixtures with non-native trees, where enemy release could lead to patterns that differ from commonly observed relationships among native species. This becomes particularly relevant when considering that adaptation strategies to climate change increasingly promote a larger share of non-native tree species, such as North American Douglas fir in Central Europe. We studied leaf damage on European beech (Fagus sylvatica) saplings and mature trees across a wide range of site conditions in monocultures and mixtures with phylogenetically distant conifers native Norway spruce (Picea abies) and non-native Douglas fir (Pseudotsuga menziesii). We analyzed leaf herbivory and pathogen damage in relation to tree diversity and composition effects, as well as effects of environmental factors and plant characteristics. We observed lower sapling herbivory and tree sucking damage on beech in non-native Douglas fir mixtures than in beech monocultures, probably due to a lower herbivore diversity on Douglas fir trees, and higher pathogen damage on beech saplings in Norway spruce than Douglas fir mixtures, possibly because of higher canopy openness. Our findings suggest that for low diversity gradients, tree diversity effects on leaf damage can strongly depend on tree species composition, in addition to modifications caused by feeding guild and tree ontogeny. Moreover, we found that nutrient capacity modulated the effects of tree diversity, composition, and environmental factors, with different responses in sites with low or high nutrient capacity. The existence of contrasting diversity effects based on tree species composition provides important information on our understanding of the relationships between tree diversity and plant-herbivore interactions in light of non-native tree species introductions. Especially with recent Norway spruce die-off, the planting of Douglas fir as replacement is likely to strongly increase in Central Europe. Our findings suggest that mixtures with Douglas fir could benefit the survival or growth rates of beech saplings and mature trees due to lower leaf damage, emphasizing the need to clearly identify and compare the potential benefits and ecological trade-offs of non-native tree species in forest management under ongoing environmental change.


Assuntos
Fagus , Picea , Pseudotsuga , Árvores/fisiologia , Fagus/fisiologia , Pseudotsuga/fisiologia , Florestas , Picea/fisiologia , Folhas de Planta/fisiologia
20.
Glob Chang Biol ; 29(1): 143-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178428

RESUMO

In a world of accelerating changes in environmental conditions driving tree growth, tradeoffs between tree growth rate and longevity could curtail the abundance of large old trees (LOTs), with potentially dire consequences for biodiversity and carbon storage. However, the influence of tree-level tradeoffs on forest structure at landscape scales will also depend on disturbances, which shape tree size and age distribution, and on whether LOTs can benefit from improved growing conditions due to climate warming. We analyzed temporal and spatial variation in radial growth patterns from ~5000 Norway spruce (Picea abies [L.] H. Karst) live and dead trees from the Western Carpathian primary spruce forest stands. We applied mixed-linear modeling to quantify the importance of LOT growth histories and stand dynamics (i.e., competition and disturbance factors) on lifespan. Finally, we assessed regional synchronization in radial growth variability over the 20th century, and modeled the effects of stand dynamics and climate on LOTs recent growth trends. Tree age varied considerably among forest stands, implying an important role of disturbance as an age constraint. Slow juvenile growth and longer period of suppressed growth prolonged tree lifespan, while increasing disturbance severity and shorter time since last disturbance decreased it. The highest age was not achieved only by trees with continuous slow growth, but those with slow juvenile growth followed by subsequent growth releases. Growth trend analysis demonstrated an increase in absolute growth rates in response to climate warming, with late summer temperatures driving the recent growth trend. Contrary to our expectation that LOTs would eventually exhibit declining growth rates, the oldest LOTs (>400 years) continuously increase growth throughout their lives, indicating a high phenotypic plasticity of LOTs for increasing biomass, and a strong carbon sink role of primary spruce forests under rising temperatures, intensifying droughts, and increasing bark beetle outbreaks.


Assuntos
Picea , Árvores , Picea/fisiologia , Longevidade , Mudança Climática , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA