Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 978
Filtrar
1.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575023

RESUMO

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Assuntos
Secas , Florestas , Árvores , Árvores/fisiologia , Itália , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Mudança Climática , Pinus/fisiologia , Pinus/crescimento & desenvolvimento , Monitoramento Ambiental , Fraxinus/fisiologia , Fraxinus/crescimento & desenvolvimento , Acer/crescimento & desenvolvimento , Acer/fisiologia
2.
Sci Total Environ ; 927: 172241, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582119

RESUMO

Carbon sequestration via afforestation and forest growth is effective for mitigating global warming. Accurate and robust information on forest growth characteristics by tree species, region, and large-scale land-use change is vital and future prediction of forest carbon stocks based on this information is of great significance. These predictions allow exploring forestry practices that maximize carbon sequestration by forests, including wood production. Forest inventories based on field measurements are considered the most accurate method for estimating forest carbon stocks. Japan's national forest inventories (NFIs) provide stand volumes for all Japanese forests, and estimates from direct field observations (m-NFIs) are the most reliable. Therefore, using the m-NFI from 2009 to 2013, we selected four major forest plantation species in Japan: Cryptomeria japonica, Chamaecyparis obtusa, Pinus spp., and Larix kaempferi and presented their forest age-carbon density function. We then estimated changes in forest carbon stocks from the past to the present using the functions. Next, we investigated the differences in the carbon sequestration potential of forests, including wood production, between five forestry practice scenarios with varying harvesting and afforestation rates, until 2061. Our results indicate that, for all four forest types, the estimates of growth rates and past forest carbon stocks in this study were higher than those considered until now. The predicted carbon sequestration from 2011 to 2061, assuming that 100 % of harvested carbon is retained for a long time, twice the rate of harvesting compared to the current rate, and a 100 % afforestation rate in harvested area, was three to four times higher than that in a scenario with no harvesting or replanting. Our results suggest that planted Japanese forests can exhibit a high carbon sequestration potential under the premise of active management, harvesting, afforestation, and prolonging the residence time of stored carbon in wood products with technology development.


Assuntos
Sequestro de Carbono , Carbono , Cryptomeria , Agricultura Florestal , Florestas , Árvores , Japão , Carbono/análise , Larix/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Chamaecyparis , Monitoramento Ambiental
3.
BMC Ecol Evol ; 24(1): 54, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664655

RESUMO

BACKGROUND: Bolete cultivation is economically and ecologically valuable. Ectomycorrhizae are advantageous for plant development and productivity. This study investigated how boletes affect the formation of Pinus thunbergii and Quercus acutissima ectomycorrhizae using greenhouse-based mycorrhizal experiments, inoculating P. thunbergii and Q. acutissima with four species of boletes (Suillus bovinus, Suillus luteus, Suillus grevillei, and Retiboletus sinensis). RESULTS: Three months after inoculation, morphological and molecular analyses identified S. bovinus, S. luteus, S. grevillei and R. sinensis ectomycorrhizae formation on the roots of both tree species. The mycorrhizal infection rate ranged from 40 to 55%. The host plant species determined the mycorrhiza morphology, which was independent of the bolete species. Differences in plant growth, photosynthesis, and endogenous hormone secretion primarily correlated with the host plant species. Infection with all four bolete species significantly promoted the host plants' growth and photosynthesis rates; indole-3-acetic acid, zeatin, and gibberellic acid secretion increased, and the abscisic acid level significantly decreased. Indole-3-acetic acid was also detected in the fermentation broths of all bolete species. CONCLUSIONS: Inoculation with bolete and subsequent mycorrhizae formation significantly altered the morphology and hormone content in the host seedlings, indicating growth promotion. These findings have practical implications for culturing pine and oak tree species.


Assuntos
Micorrizas , Pinus , Quercus , Micorrizas/fisiologia , Quercus/microbiologia , Quercus/crescimento & desenvolvimento , Pinus/microbiologia , Pinus/crescimento & desenvolvimento , Basidiomycota/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Fotossíntese
4.
J Environ Manage ; 359: 120897, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669881

RESUMO

The spread of invasive alien species over natural environments has become one of the most serious threats to biodiversity and the functioning of ecosystems worldwide. Understanding the population attributes that allow a given species to become invasive is crucial for improving prevention and control interventions. Pampas grasslands are particularly sensitive to the invasion of exotic woody plants. In particular, the Ventania Mountains undergo the advance of alien woody plants; among which the Aleppo pine (Pinus halepensis) stands out due to the extension of the area it covers and the magnitude of the ecological changes associated to its presence. Using a model that describes the population dynamics of the species in the area, we evaluated the expected behavior of the population under different environmental conditions and different management scenarios. When the effect of stochastic fires was simulated, the growth rate was greater than 1 for all the frequencies considered, peaking under fires every nine years, on average. When evaluating the effect of periodic mechanical control of the adult population, the reduction in growth rate was insufficient, except for cutting intensities that significantly exceeded the current operational capacity of the area. Under prescribed fire scenarios, on the other hand, burning frequencies greater than seven years resulted in population reductions. The results highlight the importance of fire in regulating the population of P. halepensis in the Ventania Mountains, with contrasting effects depending on the frequency with which it occurs, which allows considering it as an effective environmental management option for the control of the species.


Assuntos
Pradaria , Espécies Introduzidas , Pinus , Dinâmica Populacional , Pinus/crescimento & desenvolvimento , Argentina , Biodiversidade , Ecossistema , Incêndios
5.
Int J Biometeorol ; 68(6): 1093-1108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441667

RESUMO

The Himalayas experienced long-term climate changes and recent extreme weather events that affected plant growth and the physiology of tree species at high-elevation sites. This study presents the first statistically robust δ18OTR chronologies for two native pine species, Pinus roxburghii, and Pinus wallichiana, in the lower Nepalese Himalaya. The isotope chronologies exhibited 0.88‰ differences in overall mean isotope values attributed to varying elevations (460-2000 m asl). Comparative analysis of climate response using data sets from different sources and resolutions revealed the superiority of the APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data set calibrated for the South Asian Summer Monsoon (SASM)-dominated region. Both species exhibited negative correlations with monsoon precipitation and positive correlations with temperature. However, during the peak monsoon season (July-August), daily resolved climate data disentangled statistically insignificant relationships, and revealed that δ18OTR is influenced by atmospheric moisture. Both congeneric species showed a decoupling between the chronologies after 1995. However, no significant change in air moisture origin and monsoon regime between the study sites was observed, indicating a consistent dominant moisture source during different monsoon seasons. Besides, we also observed the decreased inter-series correlation of both δ18OTR chronologies after 1995, with P. wallichiana experiencing a steeper decrease than P. roxburghii. The weakening correlations between and within the chronologies coincided with a regional drought during 1993-1995 in both sites, highlighting the strong regulation of local climate on the impact of regional extreme climate events. Our findings emphasise the importance of employing climate data with optimal spatial and temporal resolution for improved δ18OTR-climate relationships at the intra-annual scale while considering the influence of site-specific local environmental conditions. Assessing climate data sets with station data is vital for accurately interpreting climate change's impact on forest response and long-term climate reconstructions.


Assuntos
Secas , Isótopos de Oxigênio , Pinus , Temperatura , Pinus/crescimento & desenvolvimento , Nepal , Isótopos de Oxigênio/análise , Mudança Climática , Altitude
6.
Ann Bot ; 133(7): 953-968, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38366549

RESUMO

BACKGROUND AND AIMS: Secondary cell wall (SCW) thickening is a major cellular developmental stage determining wood structure and properties. Although the molecular regulation of cell wall deposition during tracheary element differentiation has been well established in primary growth systems, less is known about the gene regulatory processes involved in the multi-layered SCW thickening of mature trees. METHODS: Using third-generation [long-read single-molecule real-time (SMRT)] and second-generation [short-read sequencing by synthesis (SBS)] sequencing methods, we established a Pinus bungeana transcriptome resource with comprehensive functional and structural annotation for the first time. Using these approaches, we generated high spatial resolution datasets for the vascular cambium, xylem expansion regions, early SCW thickening, late SCW thickening and mature xylem tissues of 71-year-old Pinus bungeana trees. KEY RESULTS: A total of 79 390 non-redundant transcripts, 31 808 long non-coding RNAs and 5147 transcription factors were annotated and quantified in different xylem tissues at all growth and differentiation stages. Furthermore, using this high spatial resolution dataset, we established a comprehensive transcriptomic profile and found that members of the NAC, WRKY, SUS, CESA and LAC gene families are major players in early SCW formation in tracheids, whereas members of the MYB and LBD transcription factor families are highly expressed during late SCW thickening. CONCLUSIONS: Our results provide new molecular insights into the regulation of multi-layered SCW thickening in conifers. The high spatial resolution datasets provided can serve as important gene resources for improving softwoods.


Assuntos
Parede Celular , Pinus , Xilema , Parede Celular/genética , Parede Celular/metabolismo , Pinus/genética , Pinus/crescimento & desenvolvimento , Xilema/genética , Xilema/crescimento & desenvolvimento , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Madeira/genética , Madeira/crescimento & desenvolvimento , Madeira/anatomia & histologia
7.
Nature ; 620(7972): 97-103, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532816

RESUMO

Earth system models and various climate proxy sources indicate global warming is unprecedented during at least the Common Era1. However, tree-ring proxies often estimate temperatures during the Medieval Climate Anomaly (950-1250 CE) that are similar to, or exceed, those recorded for the past century2,3, in contrast to simulation experiments at regional scales4. This not only calls into question the reliability of models and proxies but also contributes to uncertainty in future climate projections5. Here we show that the current climate of the Fennoscandian Peninsula is substantially warmer than that of the medieval period. This highlights the dominant role of anthropogenic forcing in climate warming even at the regional scale, thereby reconciling inconsistencies between reconstructions and model simulations. We used an annually resolved 1,170-year-long tree-ring record that relies exclusively on tracheid anatomical measurements from Pinus sylvestris trees, providing high-fidelity measurements of instrumental temperature variability during the warm season. We therefore call for the construction of more such millennia-long records to further improve our understanding and reduce uncertainties around historical and future climate change at inter-regional and eventually global scales.


Assuntos
Mudança Climática , Pinus , Temperatura , Árvores , Mudança Climática/história , Mudança Climática/estatística & dados numéricos , Aquecimento Global/história , Aquecimento Global/estatística & dados numéricos , Reprodutibilidade dos Testes , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , História Medieval , História do Século XXI , Modelos Climáticos , Incerteza , Pinus/anatomia & histologia , Pinus/crescimento & desenvolvimento , Internacionalidade
8.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445868

RESUMO

Pinus massoniana is a species used in afforestation and has high economic, ecological, and therapeutic significance. P. massoniana experiences a variety of biotic and abiotic stresses, and thus presents a suitable model for studying how woody plants respond to such stress. Numerous families of transcription factors are involved in the research of stress resistance, with the GRAS family playing a significant role in plant development and stress response. Though GRASs have been well explored in various plant species, much research remains to be undertaken on the GRAS family in P. massoniana. In this study, 21 PmGRASs were identified in the P. massoniana transcriptome. P. massoniana and Arabidopsis thaliana phylogenetic analyses revealed that the PmGRAS family can be separated into nine subfamilies. The results of qRT-PCR and transcriptome analyses under various stress and hormone treatments reveal that PmGRASs, particularly PmGRAS9, PmGRAS10 and PmGRAS17, may be crucial for stress resistance. The majority of PmGRASs were significantly expressed in needles and may function at multiple locales and developmental stages, according to tissue-specific expression analyses. Furthermore, the DELLA subfamily members PmGRAS9 and PmGRAS17 were nuclear localization proteins, while PmGRAS9 demonstrated transcriptional activation activity in yeast. The results of this study will help explore the relevant factors regulating the development of P. massoniana, improve stress resistance and lay the foundation for further identification of the biological functions of PmGRASs.


Assuntos
Regulação da Expressão Gênica de Plantas , Pinus , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Pinus/genética , Pinus/crescimento & desenvolvimento , Transcriptoma , Estresse Fisiológico/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
9.
Int J Biol Macromol ; 235: 123688, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36801284

RESUMO

To comprehend the biosynthesis processes of conifers, it is essential to investigate the disparity between the cell wall shape and the interior chemical structures of polymers throughout the development of Chinese pine. In this study, branches of mature Chinese pine were separated according to their growth time (2, 4, 6, 8 and 10 years). The variation of cell wall morphology and lignin distribution was comprehensively monitored by scanning electron microscopy (SEM) and confocal Raman microscopy (CRM), respectively. Moreover, the chemical structures of lignin and alkali-extracted hemicelluloses were extensively characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The thickness of latewood cell walls increased steadily from 1.29 µm to 3.38 µm, and the structure of the cell wall components became more complicated as the growth time increased. Based on the structural analysis, it was found that the content of ß-O-4 (39.88-45.44/100 Ar), ß-ß (3.20-10.02/100 Ar) and ß-5 (8.09-15.35/100 Ar) linkages as well as the degree of polymerization of lignin increased with the growth time. The complication propensity increased significantly over 6 years before slowing to a trickle over 8 and 10 years. Furthermore, alkali-extracted hemicelluloses of Chinese pine mainly consist of galactoglucomannans and arabinoglucuronxylan, in which the relative content of galactoglucomannans increased with the growth of the pine, especially from 6 to 10 years.


Assuntos
Parede Celular , Lignina , Pinus , Polissacarídeos , Lignina/química , Pinus/química , Pinus/crescimento & desenvolvimento , Polissacarídeos/química , Parede Celular/química , Parede Celular/metabolismo
10.
Sci Total Environ ; 866: 161389, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610623

RESUMO

Rapid urbanization has occurred globally and resulted in increasing CO2 emissions from urban areas. Compared to natural forests, urban forests are subject to higher atmospheric CO2 concentrations in view of strong urban-periurban-rural gradients of CO2 emissions. However, relevant insights in the CO2-associated urban imprints on the physiology and growth of regional forests remain lacking. By sampling foliage and tree rings of Chinese pine (Pinus tabuliformis) in the Beijing metropolitan region, China, we explored whether and how urban CO2 emissions affect stable carbon isotope ratios (δ13C) and tree growth spatially and/or temporally. The results indicate a significant decrease in foliar δ13C values towards the urban center and this pattern was mainly explained by the urban-periurban-rural gradients of CO2 emissions as surrogated by trunk road density. Tree-ring δ13C values showed a significant decrease over last four decades and this trend was mainly explained by rising levels of CO2 and secondarily mediated by the variations of aridity index during growing season. Moreover, annual basal area increment of Chinese pine was significantly accelerated during last two decades, being mainly driven by increasing CO2 emissions and secondarily mediated by climate variations. These findings reveal significant CO2-associated imprints of urbanization on plant growth and provide empirical evidences of significant CO2-induced alteration of carbon cycles in urban forests.


Assuntos
Dióxido de Carbono , Pinus , Pequim , Carbono , Isótopos de Carbono/análise , Florestas , Pinus/crescimento & desenvolvimento
11.
Sci Total Environ ; 867: 161517, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638974

RESUMO

The American Southwest is experiencing drastic increases in aridity and wildfire incidence, triggering conversion of some frequent surface forests to non-forest. Extensive research has focused on these dynamics in regional ponderosa pine forests, but we know much less about Madrean pine-oak forests, which are broadly distributed from the Sierra Madre in Mexico to the Sky Island mountain ranges in the U.S. Increased fire incidence and drought in these forests are limiting pine regeneration and driving conversion of biodiverse forests to oak shrublands. We investigated regeneration patterns in Pinus engelmannii and P. leiophylla during severe drought 10 years after the Horseshoe Two Megafire in the Chiricahua Mountains, Arizona-a follow-up to an assessment five years post-fire. In long-term plots, we examined changes in pine seedling and resprout recruitment. Past research demonstrated that topography and fire severity influenced pine recruitment across environmental gradients. We investigated here whether Landsat-8 normalized difference vegetation index (NDVI) and evapotranspiration estimated by the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) added explanatory value to our understanding of these patterns. Conversion of Madrean pine-oak forest to oak shrublands continued 6-10 years post-fire. A dense, low oak canopy continued to coalesce in sites subject to severe fire. The importance of resprouts in P. leiophylla regeneration accelerated because these plants outgrew competing oak resprouts. Topography and fire severity (dNBR) were important predictors of 2021 patterns of pine recruitment. NDVI added explanatory value to these models, suggesting its potential in tracking forest dynamics. Evapotranspiration did not add value, likely because ECOSTRESS' larger pixel sizes and moving pixel locations created excessive subpixel heterogeneity in this highly dissected landscape. These models suggest that P. engelmannii is more drought sensitive, was more negatively affected by drought and fire, and is more at risk to shifts in climate and wildfires than P. leiophylla.


Assuntos
Monitoramento Ambiental , Incêndios , Pinus , Tecnologia de Sensoriamento Remoto , Ecossistema , Florestas , Pinus/crescimento & desenvolvimento , Monitoramento Ambiental/métodos
13.
Sci Total Environ ; 869: 161769, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702263

RESUMO

Monoculture tree plantations reduces landscape heterogeneity and the number and diversity of habitats available for species. Physical-chemical changes in soil may affect the ponds where tadpoles develop. This work aimed to study the effect on tadpoles of two species of frogs, Leptodactylus luctator (Ll) and Odontophrynus reigi (Or) exposed to soils from a pine plantation (PP), which were compared to tadpoles exposed to soils from Atlantic Forest, the native forest (NF). The impact of soils from both places on growth, development, antioxidant system and genetic damage of Ll and Or tadpoles were observed. A composite sample (5 kg) of soil was taken from the top 10 cm stratum in a 200 m transect in each site, with random plots of 50x50cm. In collected soil samples Organic Matter (OM), Organic Carbon (OC), and Total Nitrogen (TN) were determined. We conducted laboratory experiments, from 23 until 38 Gosner stages. During the experiment, pH and ammonium in the water were determined. Soil from NF presented higher content of OM, OC and TN, and water pH in PP was 0.2 units lower than in NF. Both species showed ≈60 % increase of catalase activity in PP, and ≈40 % increase of lipid peroxidation in NF. Ll tadpoles presented 10 times higher protein oxidation in PP than in NF, but Gosner stage was higher in NF. In NF the higher OM and OC in both species causes the increase of lipid peroxidation; and Ll responds to a stressor in PP that in Or is not observed. Or presented lower stress response towards PP soils, which indicates a tolerance towards this soil. The changes observed in soil chemistry, although not big from a physical-chemical point of view, affects the growth, development and oxidative stress of two species of anuran tadpoles from the NF, which can affect future populations and anuran diversity.


Assuntos
Anuros , Pinus , Solo , Animais , Carbono/metabolismo , Ecossistema , Florestas , Nitrogênio/análise , Pinus/crescimento & desenvolvimento , Solo/química , Água
14.
Braz. j. biol ; 83: 1-8, 2023. map, graf, tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468885

RESUMO

Climatic factors play an essential role in the growth of tree ring width. In this study, we aimed to evaluate the correlation between climatic variables and tree-ring growth characteristics of Pinus sibirica in Altai mountains, northwestern China. This study being is first of its kind on climate growth analysis of Pinus sibirica in northwestern China. The study showed great potential to understand the species growing under the specific climatic conditions. Total of 70 tree cores collected from three sites in the sampling area, out of which 63 tree cores considered for this study. The effect of climatic variables which was studied include precipitation, temperature and PDSI. Our results showed that Tree Ring Width chronology has a significantly positive correlation with the late winter (March) temperature and significant negative correlation with the July temperatures. A significant correlation was observed with the late summer precipitation whereas no significant relation found with the Palmer Drought Severity Index. These significant correlations with temperature and precipitation suggested that this tree species had the potential for the reconstruction of the past climate in the area.


Fatores climáticos desempenham papel essencial no crescimento da largura dos anéis das árvores. Neste estudo, objetivou-se avaliar a correlação entre variáveis climáticas e características de crescimento de anéis de árvores de Pinus sibirica nas montanhas de Altai, noroeste da China. Este estudo é o primeiro desse tipo na análise do crescimento climático de Pinus sibirica no noroeste da China. O estudo mostrou grande potencial para entender as espécies que crescem sob as condições climáticas específicas. Total de 70 testemunhos coletados em três locais na área de amostragem, dos quais 63 testemunhos considerados para este estudo. O efeito das variáveis climáticas estudadas incluem precipitação, temperatura e PDSI. Nossos resultados mostraram que a cronologia da Largura do Anel da Árvore tem uma correlação significativamente positiva com a temperatura do final do inverno (março) e uma correlação negativa significativa com as temperaturas de julho. Uma correlação significativa foi observada com a precipitação do final do verão, enquanto nenhuma relação significativa foi encontrada com o Índice de Severidade de Seca de Palmer. Essas correlações significativas com a temperatura e precipitação sugeriram que esta espécie de árvore tinha o potencial para a reconstrução do clima passado na área.


Assuntos
Mudança Climática , Pinus/crescimento & desenvolvimento
15.
PLoS Genet ; 18(2): e1010017, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108269

RESUMO

Slash pine (Pinus elliottii Engelm.) is an important timber and resin species in the United States, China, Brazil and other countries. Understanding the genetic basis of these traits will accelerate its breeding progress. We carried out a genome-wide association study (GWAS), transcriptome-wide association study (TWAS) and weighted gene co-expression network analysis (WGCNA) for growth, wood quality, and oleoresin traits using 240 unrelated individuals from a Chinese slash pine breeding population. We developed high quality 53,229 single nucleotide polymorphisms (SNPs). Our analysis reveals three main results: (1) the Chinese breeding population can be divided into three genetic groups with a mean inbreeding coefficient of 0.137; (2) 32 SNPs significantly were associated with growth and oleoresin traits, accounting for the phenotypic variance ranging from 12.3% to 21.8% and from 10.6% to 16.7%, respectively; and (3) six genes encoding PeTLP, PeAP2/ERF, PePUP9, PeSLP, PeHSP, and PeOCT1 proteins were identified and validated by quantitative real time polymerase chain reaction for their association with growth and oleoresin traits. These results could be useful for tree breeding and functional studies in advanced slash pine breeding program.


Assuntos
Pinus/crescimento & desenvolvimento , Pinus/genética , Extratos Vegetais/genética , Brasil , China , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética , Madeira/genética , Madeira/crescimento & desenvolvimento
16.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163242

RESUMO

Under the global warming scenario, obtaining plant material with improved tolerance to abiotic stresses is a challenge for afforestation programs. In this work, maritime pine (Pinus pinaster Aiton) plants were produced from somatic embryos matured at different temperatures (18, 23, or 28 °C, named after M18, M23, and M28, respectively) and after 2 years in the greenhouse a heat stress treatment (45 °C for 3 h/day for 10 days) was applied. Temperature variation during embryo development resulted in altered phenotypes (leaf histology, proline content, photosynthetic rates, and hormone profile) before and after stress. The thickness of chlorenchyma was initially larger in M28 plants, but was significantly reduced after heat stress, while increased in M18 plants. Irrespective of their origin, when these plants were subjected to a heat treatment, relative water content (RWC) and photosynthetic carbon assimilation rates were not significantly affected, although M18 plants increased net photosynthesis rate after 10 days recovery (tR). M18 plants showed proline contents that increased dramatically (2.4-fold) when subjected to heat stress, while proline contents remained unaffected in M23 and M28 plants. Heat stress significantly increased abscisic acid (ABA) content in the needles of maritime pine plants (1.4-, 3.6- and 1.9-fold in M18, M23, and M28 plants, respectively), while indole-3-acetic acid content only increased in needles from M23 plants. After the heat treatment, the total cytokinin contents of needles decreased significantly, particularly in M18 and M28 plants, although levels of active forms (cytokinin bases) did not change in M18 plants. In conclusion, our results suggest that maturation of maritime pine somatic embryos at lower temperature resulted in plants with better performance when subjected to subsequent high temperature stress, as demonstrated by faster and higher proline increase, lower increases in ABA levels, no reduction in active cytokinin, and a better net photosynthesis rate recovery.


Assuntos
Resposta ao Choque Térmico/genética , Pinus/crescimento & desenvolvimento , Pinus/genética , Agricultura/métodos , Secas , Resposta ao Choque Térmico/fisiologia , Temperatura Alta/efeitos adversos , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Temperatura
17.
BMC Plant Biol ; 22(1): 48, 2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35065611

RESUMO

BACKGROUND: Simao pine is one of the primary economic tree species for resin and timber production in southwest China. The exploitation and utilization of Simao pine are constrained by the relatively lacking of genetic information. Construction a fine genetic linkage map and detecting quantitative trait locis (QTLs) for growth-related traits is a prerequisite section of Simao Pine's molecular breeding program. RESULTS: In our study, a high-resolution Simao pine genetic map employed specific locus amplified fragment sequencing (SLAF-seq) technology and based on an F1 pseudo-testcross population has been constructed. There were 11,544 SNPs assigned to 12 linkage groups (LGs), and the total length of the map was 2,062.85 cM with a mean distance of 0.37 cM between markers. According to the phenotypic variation analysis for three consecutive years, a total of seventeen QTLs for four traits were detected. Among 17 QTLs, there were six for plant height (Dh.16.1, Dh16.2, Dh17.1, Dh18.1-3), five for basal diameter (Dbd.17.1-5), four for needle length (Dnl17.1-3, Dnl18.1) and two for needle diameter (Dnd17.1 and Dnd18.1) respectively. These QTLs individually explained phenotypic variance from 11.0-16.3%, and the logarithm of odds (LOD) value ranged from 2.52 to 3.87. CONCLUSIONS: In our study, a fine genetic map of Simao pine applied the technology of SLAF-seq has been constructed for the first time. Based on the map, a total of 17 QTLs for four growth-related traits were identified. It provides helpful information for genomic studies and marker-assisted selection (MAS) in Simao pine.


Assuntos
Pinus/crescimento & desenvolvimento , Pinus/genética , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único
18.
J Exp Bot ; 73(4): 1222-1235, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34865003

RESUMO

Although the straightening capacity of the stem is key for light capture and mechanical stability in forest trees, little is known about its adaptive implications. Assuming that stem straightening is costly, trade-offs are expected with competing processes such as growth, maintenance, and defence. We established a manipulative experiment in a common garden of Pinus pinaster including provenances typically showing either straight-stemmed or crooked-stemmed phenotypes. We imposed a bending up to 35º on plants aged 9 years of both provenance groups and followed the straightening kinetics and shoot elongation after releasing. Eight months later, we destructively assessed biomass partitioning, reaction wood, wood microdensity, xylem reserve carbohydrates, and phloem secondary metabolites. The experimental bending and release caused significant, complex changes with a marked difference between straight- and crooked-type plants. The straight-type recovered verticality faster and to a higher degree and developed more compression wood, while displaying a transitory delay in shoot elongation, reducing resource allocation to defence and maintaining the levels of non-structural carbohydrates compared with the crooked type. This combination of responses indicates the existence of intraspecific divergence in the reaction to mechanical stresses that may be related to different adaptive phenotypic plasticity.


Assuntos
Pinus , Pinus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Madeira
19.
Biol Futur ; 72(3): 359-365, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34554556

RESUMO

Electromagnetic radiation is a substantial pollution factor that most of the living things found almost everywhere are constantly exposed to with current technology. The number of studies conducted on the effects of this exposed radiation on the living things constantly is limited; and almost all of the studies conducted are aimed at measuring the effects of short-term exposure. In addition to this, most of the studies conducted on plants focus on herbaceous plant species. In this study, the effects of distance to base station on flower and cone yield and germination percentage were investigated in Pinus brutia individuals, one of the critical forest tree species. The study results revealed that being close to the base station significantly reduced the number of flowers and cones in P. brutia individuals, and that the values obtained in individuals at a distance of 800 m from the base station were 11 times more than the number of flowers and 7 times more than the number of cones compared to the individuals at a distance of 100 m. In the seeds subject to the study, there is a three-times difference in terms of the germination percentage among the individuals located at the furthest and closest distance to the base station. These results show that P. brutia individuals are considerably affected by the base station.


Assuntos
Radiação Eletromagnética , Germinação/efeitos da radiação , Pinus/crescimento & desenvolvimento , Pinus/efeitos da radiação
20.
Plant Cell Environ ; 44(12): 3623-3635, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506038

RESUMO

Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8°C temperature and -45% precipitation in a field experiment with mature piñon and juniper trees, and if any differences between species were related to differences in photosynthesis rates, shoot growth and nonstructural carbohydrates (NSCs). Short-term foliar R had a Q10 of 1.6 for piñon and 2.6 for juniper. Piñon foliar R did not respond to the +4.8°C temperatures, but R increased 1.4× for juniper. Across treatments, piñon foliage had higher growth, lower NSC content, 29% lower photosynthesis rates, and 44% lower R than juniper. Removing 45% precipitation had little impact on R for either species. Species differences in the response of R under elevated temperature were related to substrate availability and stomatal response to leaf water potential. Despite not acclimating to the higher temperature and having higher R than piñon, greater substrate availability in juniper suggests it could supply respiratory demand for much longer than piñon. Species responses will be critical in ecosystem response to a warmer climate.


Assuntos
Metabolismo dos Carboidratos , Secas , Temperatura Alta , Juniperus/fisiologia , Fotossíntese , Pinus/fisiologia , Folhas de Planta/fisiologia , Juniperus/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA