Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.601
Filtrar
1.
Molecules ; 29(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930946

RESUMO

Cisplatin, a platinum-based chemotherapeutic, is effective against various solid tumors, but its use is often limited by its nephrotoxic effects. This study evaluated the protective effects of trametinib, an FDA-approved selective inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK1/2), against cisplatin-induced acute kidney injury (AKI) in mice. The experimental design included four groups, control, trametinib, cisplatin, and a combination of cisplatin and trametinib, each consisting of eight mice. Cisplatin was administered intraperitoneally at a dose of 20 mg/kg to induce kidney injury, while trametinib was administered via oral gavage at 3 mg/kg daily for three days. Assessments were conducted 72 h after cisplatin administration. Our results demonstrate that trametinib significantly reduces the phosphorylation of MEK1/2 and extracellular signal-regulated kinase 1/2 (ERK1/2), mitigated renal dysfunction, and ameliorated histopathological abnormalities. Additionally, trametinib significantly decreased macrophage infiltration and the expression of pro-inflammatory cytokines in the kidneys. It also lowered lipid peroxidation by-products, restored the reduced glutathione/oxidized glutathione ratio, and downregulated NADPH oxidase 4. Furthermore, trametinib significantly inhibited both apoptosis and necroptosis in the kidneys. In conclusion, our data underscore the potential of trametinib as a therapeutic agent for cisplatin-induced AKI, highlighting its role in reducing inflammation, oxidative stress, and tubular cell death.


Assuntos
Injúria Renal Aguda , Cisplatino , Modelos Animais de Doenças , Inflamação , Estresse Oxidativo , Piridonas , Pirimidinonas , Animais , Cisplatino/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Piridonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Pirimidinonas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Morte Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
2.
Cells ; 13(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920644

RESUMO

Hepatocellular carcinoma (HCC) development is associated with altered modifications in DNA methylation, changing transcriptional regulation. Emerging evidence indicates that DNA methyltransferase 1 (DNMT1) plays a key role in the carcinogenesis process. This study aimed to investigate how pirfenidone (PFD) modifies this pathway and the effect generated by the association between c-Myc expression and DNMT1 activation. Rats F344 were used for HCC development using 50 mg/kg of diethylnitrosamine (DEN) and 25 mg/kg of 2-Acetylaminofluorene (2-AAF). The HCC/PFD group received simultaneous doses of 300 mg/kg of PFD. All treatments lasted 12 weeks. On the other hand, HepG2 cells were used to evaluate the effects of PFD in restoring DNA methylation in the presence of the inhibitor 5-Aza. Histopathological, biochemical, immunohistochemical, and western blot analysis were carried out and our findings showed that PFD treatment reduced the amount and size of tumors along with decreased Glipican-3, ß-catenin, and c-Myc expression in nuclear fractions. Also, this treatment improved lipid metabolism by modulating PPARγ and SREBP1 signaling. Interestingly, PFD augmented DNMT1 and DNMT3a protein expression, which restores global methylation, both in our in vivo and in vitro models. In conclusion, our results suggest that PFD could slow down HCC development by controlling DNA methylation.


Assuntos
Carcinoma Hepatocelular , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Antígeno Nuclear de Célula em Proliferação , Piridonas , Animais , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Piridonas/farmacologia , Ratos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Células Hep G2 , Antígeno Nuclear de Célula em Proliferação/metabolismo , Masculino , Ratos Endogâmicos F344 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Dietilnitrosamina , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/genética
3.
Acta Chim Slov ; 71(2): 264-287, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38919094

RESUMO

Combined in silico strategy for molecular mechanisms exploration of a series 3H-thiazolo[4,5-b]pyridin-2-ones exhibiting strong anti-exudative action through QSAR analysis, molecular docking and pharmacophore modelling is reported. GA-ML technique was used for QSAR models generation with 2D autocorrelation descriptors. One- and two-parameter regressions revealed that certain structural patterns or heteroatoms contribute mutually to the anti-exudative activity potentiation. Possible action mechanisms were discovered through flexible docking simulations with cyclooxygenase pathway enzymes (COX-1, COX-2, mPGES-1). Docking results indicated the possibility of stable complexes formation with the effective docking scores and proper orientation of ligands within the enzymes active sites. Pharmacophore modelling was carried out using protein-ligand interaction fingerprints methodology. Two- and three-centre 3D pharmacophore queries were constructed. Their analysis indicated the functionality of bicyclic thiazolopyridine scaffold proved by the steric placement of heteroatoms in the corresponding pharmacophore centres.


Assuntos
Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Tiazóis , Tiazóis/química , Tiazóis/farmacologia , Simulação por Computador , Piridonas/farmacologia , Piridonas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Piridinas/farmacologia , Piridinas/química , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico
4.
J Zoo Wildl Med ; 55(2): 313-321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38875188

RESUMO

High pathogenicity avian influenza is an acute zoonotic disease with high mortality in birds caused by a high pathogenicity avian influenza virus (HPAIV). Recently, HPAIV has rapidly spread worldwide and has killed many wild birds, including endangered species. Baloxavir marboxil (BXM), an anti-influenza agent used for humans, was reported to reduce mortality and virus secretion from HPAIV-infected chickens (Gallus domesticus, order Galliformes) at a dosage of ≥2.5 mg/kg when administered simultaneously with viral challenge. Application of this treatment to endangered birds requires further information on potential avian-specific toxicity caused by repeated exposure to BXM over the long term. To obtain information of potential avian-specific toxicity, a 4-wk oral repeated-dose study of BXM was conducted in chickens (n = 6 or 7 per group), which are commonly used as laboratory avian species. The study was conducted in reference to the human pharmaceutical guidelines for nonclinical repeated-dose drug toxicity studies to evaluate systemic toxicity and exposure. No adverse changes were observed in any organs examined, and dose proportional increases in systemic exposure to active pharmaceutical ingredients were noted from 12.5 to 62.5 mg/kg per day. BXM showed no toxicity to chickens at doses of up to 62.5 mg/kg per day, at which systemic exposure was approximately 71 times higher than systemic exposure at 2.5 mg/kg, the reported efficacious dosage amount, in HPAIV-infected chickens. These results also suggest that BXM could be considered safe for treating HPAIV-infected endangered birds due to its high safety margin compared with the efficacy dose. The data in this study could contribute to the preservation of endangered birds by using BXM as a means of protecting biodiversity.


Assuntos
Antivirais , Galinhas , Dibenzotiepinas , Morfolinas , Piridonas , Triazinas , Animais , Triazinas/administração & dosagem , Dibenzotiepinas/administração & dosagem , Administração Oral , Antivirais/administração & dosagem , Antivirais/farmacologia , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Piridonas/administração & dosagem , Piridonas/farmacologia , Piridinas/administração & dosagem , Tiepinas/administração & dosagem , Tiepinas/farmacologia , Masculino , Influenza Aviária/tratamento farmacológico , Feminino , Oxazinas , Hidroxibutiratos/administração & dosagem
5.
Nat Commun ; 15(1): 4893, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849340

RESUMO

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Camundongos Transgênicos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Feminino , Animais , Masculino , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Piridonas/farmacologia , Piridonas/uso terapêutico , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Córtex Pré-Frontal/metabolismo , Transcriptoma , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Pessoa de Meia-Idade , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Caracteres Sexuais , Idoso , Fatores Sexuais , Pirimidinonas
6.
Int J Nanomedicine ; 19: 5681-5703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882541

RESUMO

Introduction: Diabetes mellitus is frequently associated with foot ulcers, which pose significant health risks and complications. Impaired wound healing in diabetic patients is attributed to multiple factors, including hyperglycemia, neuropathy, chronic inflammation, oxidative damage, and decreased vascularization. Rationale: To address these challenges, this project aims to develop bioactive, fast-dissolving nanofiber dressings composed of polyvinylpyrrolidone loaded with a combination of an antibiotic (moxifloxacin or fusidic acid) and anti-inflammatory drug (pirfenidone) using electrospinning technique to prevent the bacterial growth, reduce inflammation, and expedite wound healing in diabetic wounds. Results: The fabricated drug-loaded fibers exhibited diameters of 443 ± 67 nm for moxifloxacin/pirfenidone nanofibers and 488 ± 92 nm for fusidic acid/pirfenidone nanofibers. The encapsulation efficiency, drug loading and drug release studies for the moxifloxacin/pirfenidone nanofibers were found to be 70 ± 3% and 20 ± 1 µg/mg, respectively, for moxifloxacin, and 96 ± 6% and 28 ± 2 µg/mg, respectively, for pirfenidone, with a complete release of both drugs within 24 hours, whereas the fusidic acid/pirfenidone nanofibers were found to be 95 ± 6% and 28 ± 2 µg/mg, respectively, for fusidic acid and 102 ± 5% and 30 ± 2 µg/mg, respectively, for pirfenidone, with a release rate of 66% for fusidic acid and 80%, for pirfenidone after 24 hours. The efficacy of the prepared nanofiber formulations in accelerating wound healing was evaluated using an induced diabetic rat model. All tested formulations showed an earlier complete closure of the wound compared to the controls, which was also supported by the histopathological assessment. Notably, the combination of fusidic acid and pirfenidone nanofibers demonstrated wound healing acceleration on day 8, earlier than all tested groups. Conclusion: These findings highlight the potential of the drug-loaded nanofibrous system as a promising medicated wound dressing for diabetic foot applications.


Assuntos
Antibacterianos , Bandagens , Pé Diabético , Liberação Controlada de Fármacos , Ácido Fusídico , Moxifloxacina , Nanofibras , Piridonas , Cicatrização , Pé Diabético/tratamento farmacológico , Pé Diabético/terapia , Nanofibras/química , Animais , Moxifloxacina/administração & dosagem , Moxifloxacina/farmacologia , Moxifloxacina/química , Moxifloxacina/farmacocinética , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Piridonas/química , Piridonas/farmacologia , Piridonas/farmacocinética , Piridonas/administração & dosagem , Ácido Fusídico/administração & dosagem , Ácido Fusídico/farmacologia , Ácido Fusídico/química , Ácido Fusídico/farmacocinética , Ratos , Masculino , Diabetes Mellitus Experimental , Povidona/química , Ratos Sprague-Dawley
7.
Biomed Pharmacother ; 176: 116896, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876049

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a severe disability due to progressive lung dysfunction. IPF has long been viewed as a non-immune form of pulmonary fibrosis, but nowadays it is accepted that a chronic inflammatory response can exacerbate fibrotic patterns. IL-1-like cytokines and ATP are highly detected in the lung and broncho-alveolar lavage fluid of IPF patients. Because ATP binds the purinergic receptor P2RX7 involved in the release of IL-1-like cytokines, we aimed to understand the role of P2RX7 in IPF. PBMCs from IPF patients were treated with nintedanib or pirfenidone in the presence of ATP. Under these conditions, PBMCs still released IL-1-like cytokines and the pro-fibrotic TGFß. Bulk and scRNAseq demonstrated that lung tissues of IPF patients had higher levels of P2RX7, especially on macrophages, which were correlated to T cell activity and inflammatory response with a TGFBI and IL-10 signature. A subcluster of macrophages in IPF lung tissues had 2055 genes that were not in common with the other subclusters, and that were involved in metabolic and PDGF, FGF and VEGF associated pathways. These data confirmed what observed on circulating cells that, although treated with anti-fibrotic agents, nintedanib or pirfenidone, they were still able to release IL-1 cytokines and the fibrogenic TGFß. In conclusion, these data imply that because nintedanib and pirfenidone do not block ATP-induced IL-1-like cytokines and TGFß induced during P2RX7 activation, it is plausible to consider P2RX7 on circulating cells and/or tissue biopsies as potential pharmacological tool for IPF patients.


Assuntos
Trifosfato de Adenosina , Fibrose Pulmonar Idiopática , Indóis , Piridonas , Receptores Purinérgicos P2X7 , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Piridonas/farmacologia , Piridonas/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Masculino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Feminino , Citocinas/metabolismo , Idoso , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Fator de Crescimento Transformador beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Nat Commun ; 15(1): 3912, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724509

RESUMO

Direct oral anticoagulants (DOACs) targeting activated factor Xa (FXa) are used to prevent or treat thromboembolic disorders. DOACs reversibly bind to FXa and inhibit its enzymatic activity. However, DOAC treatment carries the risk of anticoagulant-associated bleeding. Currently, only one specific agent, andexanet alfa, is approved to reverse the anticoagulant effects of FXa-targeting DOACs (FXaDOACs) and control life-threatening bleeding. However, because of its mechanism of action, andexanet alfa requires a cumbersome dosing schedule, and its use is associated with the risk of thrombosis. Here, we present the computational design, engineering, and evaluation of FXa-variants that exhibit anticoagulation reversal activity in the presence of FXaDOACs. Our designs demonstrate low DOAC binding affinity, retain FXa-enzymatic activity and reduce the DOAC-associated bleeding by restoring hemostasis in mice treated with apixaban. Importantly, the FXaDOACs reversal agents we designed, unlike andexanet alfa, do not inhibit TFPI, and consequently, may have a safer thrombogenic profile.


Assuntos
Inibidores do Fator Xa , Hemorragia , Hemostasia , Pirazóis , Piridonas , Animais , Humanos , Masculino , Camundongos , Anticoagulantes/farmacologia , Anticoagulantes/efeitos adversos , Fator Xa/metabolismo , Inibidores do Fator Xa/farmacologia , Hemorragia/tratamento farmacológico , Hemorragia/induzido quimicamente , Hemostasia/efeitos dos fármacos , Pirazóis/farmacologia , Piridonas/farmacologia , Proteínas Recombinantes
9.
Biochem Pharmacol ; 225: 116267, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723721

RESUMO

Acute liver failure (ALF) is a critical condition that can lead to substantial liver dysfunction. It is characterized by complex clinical manifestations and rapid progression, presenting significant challenges in diagnosis and treatment. We investigated the protective effect of mefunidone (MFD), a novel antifibrosis pyridone agent, on ALF in mice, and explored its potential mechanism of action. MFD pretreatment can alleviate lipopolysaccharide (LPS) and d-galactosamine (D-GalN)-induced ALF, reduce hepatocyte apoptosis, and reduce inflammation and oxidative stress. Additionally, MFD alleviated LPS/D-GalN-stimulated reactive oxygen species (ROS) production and cell death in AML12 cells. RNA sequencing enrichment analysis showed that MFD significantly affected the Mitogen-Activated Protein Kinase (MAPK) pathway. In vivo and in vitro experiments showed that MFD inhibited MKK4 and JNK phosphorylation. JNK activation caused by MKK4 and JNK activators could eliminate the therapeutic effect of MFD on AML12. In addition, MFD pretreatment alleviated ConA-induced ALF, reduced inflammation and oxidative stress in mice, and reduced mouse mortality. These results suggest that MFD can potentially protect against ALF, partially by inhibiting the MKK4-JNK pathway, and is a promising new therapeutic drug for ALF.


Assuntos
Falência Hepática Aguda , MAP Quinase Quinase 4 , Piperazinas , Piridonas , Animais , Masculino , Camundongos , Linhagem Celular , Galactosamina/toxicidade , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 4/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Piridonas/farmacologia , Piridonas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico
10.
ACS Infect Dis ; 10(6): 2303-2317, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38725130

RESUMO

The design of siderophore-antibiotic conjugates is a promising strategy to overcome drug resistance in negative bacteria. However, accumulating studies have shown that only those antibiotics acting on the cell wall or cell membrane multiply their antibacterial effects when coupled with siderophores, while antibiotics acting on targets in the cytoplasm of bacteria do not show an obvious enhancement of their antibacterial effects when coupled with siderophores. To explore the causes of this phenomenon, we synthesized several conjugate probes using 3-hydroxypyridin-4(1H)-ones as siderophores and replacing the antibiotic cargo with 5-carboxyfluorescein (5-FAM) or malachite green (MG) cargo. By monitoring changes in the fluorescence intensity of FAM conjugate 20 in bacteria, the translocation of the conjugate across the outer membranes of Gram-negative pathogens was confirmed. Further, the use of the fluorogen activating protein(FAP)/MG system revealed that 3-hydroxypyridin-4(1H)-one-MG conjugate 26 was ultimately distributed mainly in the periplasm rather than being translocated into the cytosol of Escherichia coli and Pseudomonas aeruginosa PAO1. Additional mechanistic studies suggested that the uptake of the conjugate involved the siderophore-dependent iron transport pathway and the 3-hydroxypyridin-4(1H)-ones siderophore receptor-dependent mechanism. Meanwhile, we demonstrated that the conjugation of 3-hydroxypyridin-4(1H)-ones to the fluorescein 5-FAM can reduce the possibility of the conjugates crossing the membrane layers of mammalian Vero cells by passive diffusion, and the advantages of the mono-3-hydroxypyridin-4(1H)-ones as a delivery vehicle in the design of conjugates compared to the tri-3-hydroxypyridin-4(1H)-ones. Overall, this work reveals the localization rules of 3-hydroxypyridin-4(1H)-ones as siderophores to deliver the cargo into Gram-negative bacteria. It provides a theoretical basis for the subsequent design of siderophore-antibiotic conjugates, especially based on 3-hydroxypyridin-4(1H)-ones as siderophores.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Sideróforos , Sideróforos/química , Sideróforos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Corantes Fluorescentes/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Piridonas/farmacologia , Piridonas/química , Piridinas/química , Piridinas/farmacologia , Animais , Fluoresceína/química , Transporte Biológico , Testes de Sensibilidade Microbiana
11.
Exp Cell Res ; 439(1): 114098, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38796136

RESUMO

The involvement of γδT cells, Th17 cells, and CD4+CD25+ regulatory T cells (Tregs) is crucial in the progression of pulmonary fibrosis (PF), particularly in maintaining immune tolerance and homeostasis. However, the dynamics of these cells in relation to PF progression, especially under pharmacological interventions, remains poorly understood. This study aims to unravel the interplay between the dynamic changes of these cells and the effect of pharmacological agents in a mouse model of PF induced by intratracheal instillation of bleomycin. We analyzed changes in lung histology, lung index, hydroxyproline levels, and the proportions of γδT cells, Th17 cells, and Tregs on the 3rd, 14th, and 28th days following treatment with Neferine, Isoliensinine, Pirfenidone, and Prednisolone. Our results demonstrate that these drugs can partially or dynamically reverse weight loss, decrease lung index and hydroxyproline levels, and ameliorate lung histopathological damage. Additionally, they significantly modulated the abnormal changes in γδT, Th17, and Treg cell proportions. Notably, on day 3, the proportion of γδT cells increased in the Neferine and Prednisolone groups but decreased in the Isoliensinine and Pirfenidone groups, while the proportion of Th17 cells decreased across all treated groups. On day 14, the Neferine group showed an increase in all three cell types, whereas the Pirfenidone group exhibited a decrease. In the Isoliensinine group, γδT and Th17 cells increased, and in the Prednisolone group, only Tregs increased. By day 28, an increase in Th17 cell proportion was observed in all treatment groups, with a decrease in γδT cells noted in the Neferine group. These shifts in cell proportions are consistent with the pathogenesis changes induced by these anti-PF drugs, suggesting a correlation between cellular dynamics and pharmacological interventions in PF progression. Our findings imply potential strategies for assessing the efficacy and timing of anti-PF treatments based on these cellular changes.


Assuntos
Bleomicina , Fibrose Pulmonar , Linfócitos T Reguladores , Células Th17 , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Camundongos , Piridonas/farmacologia , Masculino , Prednisolona/farmacologia , Progressão da Doença , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/imunologia , Pulmão/efeitos dos fármacos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Isoquinolinas/farmacologia , Benzilisoquinolinas/farmacologia
12.
Biochem Biophys Res Commun ; 716: 150020, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692011

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality rates. It has been shown that pirfenidone (PFD) and nintedanib (Ofev) can slow down the decline in lung function of IPF patients, but their efficacy remains suboptimal. Some studies have suggested that the combination of PFD and Ofev may yield promising results. However, there is a lack of research on the combined application of these two medications in the treatment of IPF. A mouse model of bleomycin-induced (BLM) pulmonary fibrosis was established to investigate the impact of combination therapy on pulmonary fibrosis of mice. The findings demonstrated a significant reduction in lung tissue damage in mice treated with the combination therapy. Subsequent transcriptome analysis identified the differential gene secreted phosphoprotein 1 (SPP1), which was found to be associated with macrophages and fibroblasts based on multiple immunofluorescence staining results. Analysis of a phosphorylated protein microarray indicated that SPP1 plays a regulatory role in macrophages and fibroblasts via the AKT pathway. Consequently, the regulation of macrophages and fibroblasts in pulmonary fibrosis by the combination of PFD and Ofev is mediated by SPP1 through the AKT pathway, potentially offering a novel therapeutic option for IPF patients. Further investigation into the targeting of SPP1 for the treatment of pulmonary fibrosis is warranted.


Assuntos
Fibroblastos , Indóis , Macrófagos , Camundongos Endogâmicos C57BL , Osteopontina , Proteínas Proto-Oncogênicas c-akt , Piridonas , Animais , Piridonas/farmacologia , Piridonas/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Osteopontina/metabolismo , Osteopontina/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Masculino , Quimioterapia Combinada , Bleomicina
13.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731859

RESUMO

Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 µM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.


Assuntos
Ácido Fólico , Compostos Heterocíclicos com 3 Anéis , Oxazinas , Piperazinas , Piridonas , Peixe-Zebra , Animais , Compostos Heterocíclicos com 3 Anéis/farmacologia , Ácido Fólico/metabolismo , Oxazinas/farmacologia , Piridonas/farmacologia , Piperazinas/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Defeitos do Tubo Neural/induzido quimicamente , Neurogênese/efeitos dos fármacos , Feminino
14.
Basic Clin Pharmacol Toxicol ; 135(1): 23-42, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38745367

RESUMO

This study investigated the therapeutic benefits of para-hydroxycinnamic acid in mice with bleomycin-induced lung fibrosis. Forty male BALB/c mice were randomly assigned to four groups: normal, which received 0.9% normal saline; induced, which received a single dose of bleomycin (5 mg/kg) by oropharyngeal challenge; pirfenidone-treated; and para-hydroxycinnamic acid-treated, which challenged with bleomycin and received a daily oral dose of 300 and 50 mg/kg, respectively, from day 7 to day 21. Tissue pro-fibrotic and inflammatory cytokines, oxidative indicators, pulmonary histopathology, immunohistochemistry of fibrotic proteins and the assessment of gene expression by RT-qPCR were evaluated on day 22 after euthanizing animals. Pirfenidone and para-hydroxycinnamic acid managed to alleviate the fibrotic endpoints by statistically improving the weight index, histopathological score and reduced expression of fibrotic-related proteins in immune-stained lung sections, as well as fibrotic markers measured in serum samples. They also managed to alleviate tissue levels of oxidative stress and inflammatory and pro-fibrotic mediators. para-Hydroxycinnamic acid enhanced the expression of crucial genes associated with oxidative stress, inflammation and fibrosis in vivo. para-Hydroxycinnamic acid has demonstrated similar effectiveness to pirfenidone, suggesting it could be a promising treatment for fibrotic lung conditions by inhibiting the TGF-ß1/Smad3 pathway or through its anti-inflammatory and antioxidant properties.


Assuntos
Bleomicina , Ácidos Cumáricos , Pulmão , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/prevenção & controle , Masculino , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Ácidos Cumáricos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Piridonas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Antioxidantes/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética
15.
Anticancer Res ; 44(6): 2533-2544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821596

RESUMO

BACKGROUND/AIM: Chemotherapy is mainly used in the clinical treatment of prostate cancer. Different anticancer mechanisms can induce cell death in various cancers. Reactive oxygen species (ROS) play crucial roles in cell proliferation, differentiation, apoptosis, and signal transduction. It is widely accepted that ROS accumulation is closely related to chemical drug-induced cancer cell death. MATERIALS AND METHODS: We utilized the MTT assay to detect changes in cell proliferation. Additionally, colony formation and wound healing assay were conducted to investigate the effect of hispidin on cell colony formation and migration ability. Fluorescence microscopy was used to detect intracellular and mitochondrial ROS levels, while western blot was used for detection of cell apoptosis. RESULTS: Hispidin treatment significantly decreased viability of PC3 and DU145 cancer cells but exhibited no cytotoxicity in WPMY-1 cells. Furthermore, hispidin treatment inhibited cell migration and colony formation and triggered cellular and mitochondrial ROS accumulation, leading to mitochondrial dysfunction and mitochondrion-dependent apoptosis. Moreover, hispidin treatment induced ferroptosis in PC3 cells. Scavenging of ROS with N-acetyl cysteine significantly inhibited hispidin-induced apoptosis by altering the expression of apoptosis-related proteins, such as cleaved caspase-3, 9, Bax, and Bcl2. Furthermore, hispidin treatment dramatically up-regulated MAPK (involving p38, ERK, and JNK proteins) and NF-kB signaling pathways while down-regulating AKT phosphorylation. Hispidin treatment also inhibited ferroptosis signaling pathways (involving P53, Nrf-2, and HO-1 proteins) in PC3 cells. In addition, inhibiting these signaling pathways via treatment with specific inhibitors significantly reversed hispidin-induced apoptosis, cellular ROS levels, mitochondrial dysfunction, and ferroptosis. CONCLUSION: Hispidin may represent a potential candidate for treating prostate cancer.


Assuntos
Apoptose , Ferroptose , Neoplasias da Próstata , Espécies Reativas de Oxigênio , Humanos , Masculino , Ferroptose/efeitos dos fármacos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Piridonas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Pironas
16.
Eur J Pharm Sci ; 198: 106783, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703918

RESUMO

RATIONALE: Transforming growth factor-beta1 (TGF-ß1) plays a pivotal role in promoting hepatic fibrosis, pirfenidone (PFD) could inhibit TGF-ß1 signaling pathway to alleviate hepatic stellate cells (HSC) activation mediated hepatic fibrosis. The targeting delivery strategy of PFD to hepatic stellate cells is a challenge. Extracellular vesicles (EVs), cell-derived membranous particles are intraluminal nano-vesicles that play a vital role in intercellular communication, they also be considered as an ideal nano-carrier. METHODS: In this study, we developed a target strategy to deliver PFD to HSC with CD44 over-expression by EVs, hyaluronic acid (HA) modified DSPE-PEG2000 endows the active targeting ability of activated HSCs to PFD-loaded EVs. RESULTS: In both rat hepatic stellate cell line HSC-T6 and rat hepatocyte cell line BRL, HA@EVs-PFD demonstrated the capacity to down-regulate the expression of collagen-synthesis-related proteins and showed superior inhibition efficacy of HSC-T6 activation compared to free PFD. In hepatic fibrosis model, 4 weeks of HA@EVs-PFD treatment resulted in a reduction in liver collagen fibers, significant improvement in hepatic cell morphology, and amelioration of hepatic fibrosis. CONCLUSIONS: HA@EVs-PFD, as a drug delivery system that effectively targets and inhibits activated HSCs to treat hepatic fibrosis, holds promise as a potential therapeutic agent against hepatic fibrosis.


Assuntos
Vesículas Extracelulares , Células Estreladas do Fígado , Ácido Hialurônico , Cirrose Hepática , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Ratos , Linhagem Celular , Masculino , Piridonas/farmacologia , Piridonas/administração & dosagem , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley
17.
Int J Biol Macromol ; 269(Pt 1): 132050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777690

RESUMO

Solid dispersions (SDs) have emerged as a promising strategy to enhance the solubility and bioavailability of poorly soluble active pharmaceutical ingredients. However, SDs tend to recrystallize unless suitable excipients are utilized. This study aimed to facilitate the rational selection of polymers and formulation design by evaluating the impact of various polymers on the miscibility, and phase behavior of SDs using baloxavir marboxil (BXM) with a high crystallization tendency as a model drug. Meanwhile, the effects of these polymers on the solubility enhancement and recrystallization inhibition were also assessed. The results indicated that the miscibility limit of BXM for HPMCAS was around 40 % drug loading (DL), whereas for PVP, PVPVA, and HPMC approximately 20 % DL. The BXM-HPC system exhibited limited miscibility with DL of 10 % or higher. BXM SDs based on various polymers exhibited varying degrees of spontaneous phase separation once DL exceeded the miscibility limit. Interestingly, a correlation was discovered between the phase separation behavior and the ability of the polymer to inhibit recrystallization. BXM-HPMCAS SDs exhibited optimal dissolution performance, compared with other systems. In conclusion, the physicochemical properties of polymers significantly influence BXM SDs performance and the BXM-HPMCAS SDs might promote an efficient and stable drug delivery system.


Assuntos
Cristalização , Derivados da Hipromelose , Solubilidade , Derivados da Hipromelose/química , Polímeros/química , Piridonas/química , Piridonas/farmacologia
18.
Cell Commun Signal ; 22(1): 282, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778340

RESUMO

Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.


Assuntos
Movimento Celular , Vesículas Extracelulares , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Humanos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Vemurafenib/farmacologia , Pirimidinonas/farmacologia , Piridonas/farmacologia , Piridonas/uso terapêutico , Imidazóis/farmacologia , Oximas/farmacologia
19.
Biochem Pharmacol ; 224: 116252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701866

RESUMO

The mitogen-activated protein kinase (MAPK/ERK) pathway is pivotal in controlling the proliferation and survival of melanoma cells. Several mutations, including those in BRAF, exhibit an oncogenic effect leading to increased cellular proliferation. As a result, the combination therapy of a MEK inhibitor with a BRAF inhibitor demonstrated higher efficacy and lower toxicity than BRAF inhibitor alone. This combination has become the preferred standard of care for tumors driven by BRAF mutations. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a known marker of stemness involved in drug resistance in several type of tumors, including melanoma. This study demonstrates that melanoma cells overexpressing ALDH1A1 displayed resistance to vemurafenib and trametinib through the activation of PI3K/AKT signaling instead of MAPK axis. Inhibition of PI3K/AKT signaling partially rescued sensitivity to the drugs. Consistently, pharmacological inhibition of ALDH1A1 activity downregulated the activation of AKT and partially recovered responsiveness to vemurafenib and trametinib. We propose ALDH1A1 as a new potential target for treating melanoma resistant to MAPK/ERK inhibitors.


Assuntos
Família Aldeído Desidrogenase 1 , Resistencia a Medicamentos Antineoplásicos , Melanoma , Células-Tronco Neoplásicas , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Retinal Desidrogenase , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Linhagem Celular Tumoral , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Retinal Desidrogenase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Pirimidinonas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Piridonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Vemurafenib/farmacologia , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/genética , Antineoplásicos/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fenótipo
20.
Bioorg Chem ; 147: 107419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703440

RESUMO

We formerly reported that EZH2 inhibitors sensitized HIF-1 inhibitor-resistant cells and inhibited HIF-1α to promote SUZ12 transcription, leading to enhanced EZH2 enzyme activity and elevated H3K27me3 levels, and conversely, inhibition of EZH2 promoted HIF-1α transcription. HIF-1α and EZH2 interacted to form a negative feedback loop that reinforced each other's activity. In this paper, a series of 2,2- dimethylbenzopyran derivatives containing pyridone structural fragments were designed and synthesized with DYB-03, a HIF-1α inhibitor previously reported by our group, and Tazemetostat, an EZH2 inhibitor approved by FDA, as lead compounds. Among these compounds, D-01 had significant inhibitory activities on HIF-1α and EZH2. In vitro experiments showed that D-01 significantly inhibited the migration of A549 cells, clone, invasion and angiogenesis. Moreover, D-01 had good pharmacokinetic profiles. All the results about compound D-01 could lay a foundation for the research and development of HIF-1α and EZH2 dual-targeting compounds.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Proteína Potenciadora do Homólogo 2 de Zeste , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Piridonas , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Piridonas/química , Piridonas/farmacologia , Piridonas/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Animais , Benzopiranos/química , Benzopiranos/farmacologia , Benzopiranos/síntese química , Movimento Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA