Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 215(3): 478-482, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30611622

RESUMO

PDH E1 component subunit alpha (PDHA1) has been reported to be biologically significant in several human tumors. The aim of this study was to investigate the expression of PDHA1 in gastric cancer (GC) and its relationship with clinicopathological characteristics and prognosis. Oncomine analysis of neoplastic vs. normal tissue showed that the mRNA levels of PDHA1 were significantly underexpressed in different types of GC across three analyses. Underexpression of PDHA1 was found in intestinal-type GC (P = 0.009), diffuse-type GC (P = 0.036), and mixed-type GC (P = 0.025). Immunohistochemical staining of the 174 GC tissue microarray showed that PDHA1 staining is much stronger in normal mucosa than in GC samples (P = 0.040). Furthermore, PDHA1 expression levels were found to be significantly lower in 69.05% (87/126) of poorly differentiated GCs as compared to the well or moderately differentiated ones (P = 0.037). Intriguingly, PDHA1 expression was significantly correlated with depth of invasion (P < 0.001), lymph node metastasis (P < 0.001), TNM stage (P < 0.001), and nerve invasion (P = 0.006). However, it was not correlated with gender, age, Lauren classification, and lymphovascular invasion (P > 0.05 for all). Kaplan-Meier analysis revealed that low tumor expression of PDHA1 was significantly correlated with a poorer overall survival in patients with GC (5-year overall survival rates for patients with low vs high PDHA1 expression = 49.8% vs 72.7%, hazard ratio of death from GC = 2.594, 95% CI = 1.527 to 4.408, P < 0.001). Multivariate analysis showed that PDHA1 (P = 0.025) was an independent predictor of overall survival. These findings are of potential clinical utility and merit further validation.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/análise , Piruvato Desidrogenase (Lipoamida)/biossíntese , Neoplasias Gástricas/patologia , Adenocarcinoma/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias Gástricas/mortalidade , Adulto Jovem
2.
Cell Death Dis ; 9(5): 466, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29700317

RESUMO

PGC1α acts as a central regulator of mitochondrial metabolism, whose role in cancer progression has been highlighted but remains largely undefined. Especially, it is completely unknown about the effect of PGC1α on cholangiocarcinoma (CCA). Here we showed that PGC1α overexpression had no impact on CCA growth despite the decreased expression of PGC1α in CCA compared with adjacent normal tissue. Instead, PGC1α overexpression-promoted CCA metastasis both in vitro and in vivo. Mechanistically, for the first time, we illuminated that PGC1α reversed the Warburg effect by upregulating the expression of pyruvate dehydrogenase E1 alpha 1 subunit and mitochondrial pyruvate carrier 1 to increase pyruvate flux into the mitochondria for oxidation, whereas simultaneously promoting mitochondrial biogenesis and fusion to mediate the metabolic switch to oxidative phosphorylation. On the one hand, enhanced mitochondrial oxidation metabolism correlated with elevated reactive oxygen species (ROS) production; on the other hand, increased PGC1α expression upregulated the expression levels of mRNA for several ROS-detoxifying enzymes. To this end, the ROS levels, which were elevated but below a critical threshold, did not inhibit CCA cells proliferation. And the moderately increased ROS facilitated metastatic dissemination of CCA cells, which can be abrogated by antioxidants. Our study suggests the potential utility of developing the PGC1α-targeted therapies or blocking PGC1α signaling axis for inhibiting CCA metastasis.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte da Membrana Mitocondrial/biossíntese , Proteínas de Neoplasias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Piruvato Desidrogenase (Lipoamida)/biossíntese , Regulação para Cima , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Feminino , Glicólise/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Transporte da Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Piruvato Desidrogenase (Lipoamida)/genética
3.
Cancer Res ; 78(7): 1592-1603, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29436427

RESUMO

Downregulation of pyruvate dehydrogenase (PDH) is critical for the aberrant preferential activation of glycolysis in cancer cells under normoxic conditions. Phosphorylation-dependent inhibition of PDH is a relevant event in this process, but it is not durable as it relies on PDH kinases that are activated ordinarily under hypoxic conditions. Thus, it remains unclear how PDH is durably downregulated in cancer cells that are not hypoxic. Building on evidence that PDH activity depends on the stability of a multi-protein PDH complex, we found that the PDH-E1ß subunit of the PDH complex is downregulated to inhibit PDH activity under conditions of prolonged hypoxia. After restoration of normoxic conditions, reduced expression of PDH-E1ß was sustained such that glycolysis remained highly activated. Notably, PDH-E1ß silencing in cancer cells produced a metabolic state strongly resembling the Warburg effect, but inhibited tumor growth. Conversely, enforced exogenous expression of PDH-E1ß durably increased PDH activity and promoted the malignant growth of breast cancer cells in vivo Taken together, our results establish the specific mechanism through which PDH acts as an oncogenic factor by tuning glycolytic metabolism in cancer cells.Significance: This seminal study offers a mechanistic explanation for why glycolysis is aberrantly activated in normoxic cancer cells, offering insights into this long-standing hallmark of cancer termed the Warburg effect. Cancer Res; 78(7); 1592-603. ©2018 AACR.


Assuntos
Hipóxia Celular/fisiologia , Glicólise/fisiologia , Neoplasias/patologia , Piruvato Desidrogenase (Lipoamida)/biossíntese , Piruvato Desidrogenase (Lipoamida)/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo/genética , Metabolismo Energético/fisiologia , Feminino , Células HeLa , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Consumo de Oxigênio/fisiologia
4.
FEMS Microbiol Lett ; 293(2): 285-91, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19260967

RESUMO

Microsporidia, a large group of fungi-related intracellular parasites, are characterized by drastically reduced metabolism. They possess genes encoding glycolysis components, and the glycerol-phosphate shuttle, but lack mitochondria, Krebs cycle, respiratory chain and pyruvate-converting enzymes, except alpha and beta subunits of E(1) enzyme of pyruvate dehydrogenase (PDH) complex. Here, we have expressed PDH subunits from the microsporidum Paranosema (Antonospora) locustae in Escherichia coli. Western blot analysis with antibodies raised against recombinant proteins has revealed their specific accumulation in mature spores of P. locustae but not in the intracellular development stages. Two subunits were coprecipitated as a single heterooligomeric complex by anti-alpha or anti-beta PDH antibodies. Ultracentrifugation of spore homogenate has shown the presence of PDH in the soluble fraction. Relocalization of the mitochondrial protein in microsporidial spore cytoplasm was confirmed by immunoelectron microscopy of ultrathin cryosections with affinity-purified anti-alpha PDH antibodies. On cryosections, parasite enzyme was found partly associated with the cytoplasmic side of ER and other intraspore membranes, suggesting that electrons might be transferred to any membrane acceptor and finally to oxygen in the parasite cell.


Assuntos
Apansporoblastina/enzimologia , Subunidades Proteicas/biossíntese , Piruvato Desidrogenase (Lipoamida)/biossíntese , Apansporoblastina/química , Apansporoblastina/genética , Apansporoblastina/ultraestrutura , Microscopia Crioeletrônica , Escherichia coli/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Imunoprecipitação , Microscopia Imunoeletrônica , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Ligação Proteica , Subunidades Proteicas/genética , Piruvato Desidrogenase (Lipoamida)/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Esporos Fúngicos/química , Esporos Fúngicos/ultraestrutura
5.
Mol Genet Metab ; 93(4): 381-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18206410

RESUMO

We determined the ability of self-complementary adeno-associated virus (scAAV) vectors to deliver and express the pyruvate dehydrogenase E1alpha subunit gene (PDHA1) in primary cultures of skin fibroblasts from 3 patients with defined mutations in PHDA1 and 3 healthy subjects. Cells were transduced with scAAV vectors containing the cytomegalovirus promoter-driven enhanced green fluorescent protein (EGFP) reporter gene at a vector:cell ratio of 200. Transgene expression was measured 72h later. The transduction efficiency of scAAV2 and scAAV6 vectors was 3- to 5-fold higher than that of the other serotypes, which were subsequently used to transduce fibroblasts with wild-type PDHA1 cDNA under the control of the chicken beta-action (CBA) promoter at a vector:cell ratio of 1000. Total PDH-specific activity and E1alpha protein expression were determined 10 days post-transduction. Both vectors increased E1alpha expression 40-60% in both control and patient cells, and increased PDH activity in two patient cell lines. We also used dichloroacetate (DCA) to maximally activate PDH through dephosphorylation of E1alpha. Exposure for 24h to 5mM DCA increased PDH activity in non-transduced control (mean 37% increase) and PDH deficient (mean 44% increase) cells. Exposure of transduced patient fibroblasts to DCA increased PDH activity up to 90% of the activity measured in untreated control cells. DCA also increased expression of E1alpha protein and, to variable extents, that of other components of the PDH complex in both non-transduced and transduced cells. These data suggest that a combined gene delivery and pharmacological approach may hold promise for the treatment of PDH deficiency.


Assuntos
Dependovirus/genética , Ácido Dicloroacético/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/terapia , Células Cultivadas , Fibroblastos , Humanos , Piruvato Desidrogenase (Lipoamida)/biossíntese , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Transdução Genética
6.
Pediatr Res ; 53(5): 793-9, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12621116

RESUMO

Dichloroacetate (DCA) is a structural analog of pyruvate that has been recommended for the treatment of primary lactic acidemia, particularly in patients with pyruvate dehydrogenase (PDHC) deficiency. Recent reports have demonstrated that the response to DCA may depend on the type of molecular abnormality. In this study, we investigated the response to DCA in various PDHC-deficient cell lines and tried to determine the mechanism involved. The effect of chronic 3-d DCA treatment on PDHC activity was assessed in two PDHC-deficient cell lines, each with a different point mutation in the E1alpha subunit gene (R378C and R88C), and one cell line in which an 8-bp tandem repeat was deleted (W383 del). Only two (R378C and R88C) of the three PDHC-deficient cell lines with very low levels of PDHC activity and unstable polypeptides were sensitive to chronic DCA treatment. In these cell lines, DCA treatment resulted in an increase in PDHC activity by 125 and 70%, respectively, with concomitant increases of 121 and 130% in steady-state levels of immunoreactive E1alpha. DCA treatment reduced the turnover of the E1alpha subunit in R378C and R88C mutant cells with no significant effect on the E1beta subunit. Chronic DCA treatment significantly improved the metabolic function of PDHC in digitonin-permeabilized R378C and R88C fibroblasts. The occurrence of DCA-sensitive mutations suggests that DCA treatment is potentially useful as an adjuvant to ketogenic and vitamin treatment in PDHC-deficient patients.


Assuntos
Ácido Dicloroacético/farmacologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Células Cultivadas , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Ativação Enzimática/efeitos dos fármacos , Feminino , Fibroblastos/citologia , Fibroblastos/enzimologia , Humanos , Técnicas In Vitro , Lactente , Linfócitos/citologia , Linfócitos/enzimologia , Masculino , Piruvato Desidrogenase (Lipoamida)/biossíntese , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/biossíntese , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA