Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 789
Filtrar
1.
Protein Eng Des Sel ; 372024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38713696

RESUMO

Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes.


Assuntos
Evolução Molecular Direcionada , Engenharia de Proteínas , Evolução Molecular Direcionada/métodos , Plásticos/química , Plásticos/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Enzimas/genética , Enzimas/química , Enzimas/metabolismo
2.
Sci Total Environ ; 926: 172125, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38565353

RESUMO

Despite both microplastics (MPs) and harmful algae blooms (HABs) may pose a severe threat to the immunity of marine bivalves, the toxification mechanism underlying is far from being fully understood. In addition, owing to the prevalence and sudden occurrence characteristics of MPs and HABs, respectively, bivalves with MP-exposure experience may face acute challenge of harmful algae under realistic scenarios. However, little is known about the impacts and underlying mechanisms of MP-exposure experience on the susceptibility of immunity to HABs in bivalve mollusks. Taking polystyrene MPs and diarrhetic shellfish toxin-producing Prorocentrum lima as representatives, the impacts of MP-exposure on immunity vulnerability to HABs were investigated in the thick-shell mussel, Mytilus coruscus. Our results revealed evident immunotoxicity of MPs and P. lima to the mussel, as evidenced by significantly impaired total count, phagocytic activity, and cell viability of haemocytes, which may result from the induction of oxidative stress, aggravation of haemocyte apoptosis, and shortage in cellular energy supply. Moreover, marked disruptions of immunity, antioxidant system, apoptosis regulation, and metabolism upon MPs and P. lima exposure were illustrated by gene expression and comparative metabolomic analyses. Furthermore, the mussels that experienced MP-exposure were shown to be more vulnerable to P. lima, indicated by greater degree of deleterious effects on abovementioned parameters detected. In general, our findings emphasize the threat of MPs and HABs to bivalve species, which deserves close attention and more investigation.


Assuntos
Toxinas Marinhas , Mytilus , Animais , Toxinas Marinhas/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Mytilus/metabolismo , Frutos do Mar
3.
Microb Biotechnol ; 17(4): e14457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568802

RESUMO

Plastics are versatile materials that have the potential to propel humanity towards circularity and ultimate societal sustainability. However, the escalating concern surrounding plastic pollution has garnered significant attention, leading to widespread negative perceptions of these materials. Here, we question the role microbes may play in plastic pollution bioremediation by (i) defining polymer biodegradability (i.e., recalcitrant, hydrolysable and biodegradable polymers) and (ii) reviewing best practices for evaluating microbial biodegradation of plastics. We establish recommendations to facilitate the implementation of rigorous methodologies in future studies on plastic biodegradation, aiming to push this field towards the use of isotopic labelling to confirm plastic biodegradation and further determine the molecular mechanisms involved.


Assuntos
Plásticos Biodegradáveis , Plásticos , Plásticos/metabolismo , Biodegradação Ambiental
4.
PeerJ ; 12: e17165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590706

RESUMO

Background: Plastic waste is a global environmental issue that impacts the well-being of humans, animals, plants, and microorganisms. Microplastic contamination has been previously reported at Kung Wiman Beach, located in Chanthaburi province along with the Eastern Gulf of Thailand. Our research aimed to study the microbial population of the sand and plastisphere and isolate microorganisms with potential plastic degradation activity. Methods: Plastic and sand samples were collected from Kung Wiman Beach for microbial isolation on agar plates. The plastic samples were identified by Fourier-transform infrared spectroscopy. Plastic degradation properties were evaluated by observing the halo zone on mineral salts medium (MSM) supplemented with emulsified plastics, including polystyrene (PS), polylactic acid (PLA), polyvinyl chloride (PVC), and bis (2-hydroxyethyl) terephthalate (BHET). Bacteria and fungi were identified by analyzing nucleotide sequence analysis of the 16S rRNA and internal transcribed spacer (ITS) regions, respectively. 16S and ITS microbiomes analysis was conducted on the total DNA extracted from each sample to assess the microbial communities. Results: Of 16 plastic samples, five were identified as polypropylene (PP), four as polystyrene (PS), four as polyethylene terephthalate (PET), two as high-density polyethylene (HDPE), and one sample remained unidentified. Only 27 bacterial and 38 fungal isolates were found to have the ability to degrade PLA or BHET on MSM agar. However, none showed degradation capabilities for PS or PVC on MSM agar. Notably, Planococcus sp. PP5 showed the highest hydrolysis capacity of 1.64 ± 0.12. The 16S rRNA analysis revealed 13 bacterial genera, with seven showing plastic degradation abilities: Salipiger, Planococcus, Psychrobacter, Shewanella, Jonesia, Bacillus, and Kocuria. This study reports, for the first time of the BHET-degrading properties of the genera Planococcus and Jonesia. Additionally, The ITS analysis identified nine fungal genera, five of which demonstrated plastic degradation abilities: Aspergillus, Penicillium, Peacilomyces, Absidia, and Cochliobolus. Microbial community composition analysis and linear discriminant analysis effect size revealed certain dominant microbial groups in the plastic and sand samples that were absent under culture-dependent conditions. Furthermore, 16S and ITS amplicon microbiome analysis revealed microbial groups were significantly different in the plastic and sand samples collected. Conclusions: We reported on the microbial communities found on the plastisphere at Kung Wiman Beach and isolated and identified microbes with the capacity to degrade PLA and BHET.


Assuntos
Actinomycetales , Microbiota , Actinomycetales/genética , Ágar/metabolismo , Bactérias/genética , Microbiota/genética , Plásticos/metabolismo , Poliésteres/metabolismo , Poliestirenos/metabolismo , RNA Ribossômico 16S/genética , Areia
5.
Curr Protoc ; 4(4): e1027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588063

RESUMO

The development of patient-derived intestinal organoids represents an invaluable model for simulating the native human intestinal epithelium. These stem cell-rich cultures outperform commonly used cell lines like Caco-2 and HT29-MTX in reflecting the cellular diversity of the native intestinal epithelium after differentiation. In our recent study examining the effects of polystyrene (PS), microplastics (MPs), and nanoplastics (NPs), widespread pollutants in our environment and food chain, on the human intestinal epithelium, these organoids have been instrumental in elucidating the absorption mechanisms and potential biological impacts of plastic particles. Building on previously established protocols in human intestinal organoid culture, we herein detail a streamlined protocol for the cultivation, differentiation, and generation of organoid-derived monolayers. This protocol is tailored to generate monolayers incorporating microfold cells (M cells), key for intestinal particle uptake but often absent in current in vitro models. We provide validated protocols for the characterization of MPs/NPs via scanning electron microscopy (SEM) for detailed imaging and their introduction to intestinal epithelial monolayer cells via confocal immunostaining. Additionally, protocols to test the impacts of MP/NP exposure on the functions of the intestinal barrier using transendothelial electrical resistance (TEER) measurements and assessing inflammatory responses using cytokine profiling are detailed. Overall, our protocols enable the generation of human intestinal organoid monolayers, complete with the option of including or excluding M cells, offering crucial techniques for observing particle uptake and identifying inflammatory responses in intestinal epithelial cells to advance our knowledge of the potential effects of plastic pollution on human gut health. These approaches are also amendable to the study of other gut-related chemical and biological exposures and physiological responses due to the robust nature of the systems. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Human intestinal organoid culture and generation of monolayers with and without M cells Support Protocol 1: Culture of L-WRN and production of WRN-conditioned medium Support Protocol 2: Neuronal cell culture and integration into intestinal epithelium Support Protocol 3: Immune cell culture and integration into intestinal epithelium Basic Protocol 2: Scanning electron microscopy: sample preparation and imaging Basic Protocol 3: Immunostaining and confocal imaging of MP/NP uptake in organoid-derived monolayers Basic Protocol 4: Assessment of intestinal barrier function via TEER measurements Basic Protocol 5: Cytokine profiling using ELISA post-MP/NP exposure.


Assuntos
Microplásticos , Plásticos , Humanos , Microplásticos/metabolismo , Células CACO-2 , Plásticos/metabolismo , Mucosa Intestinal/metabolismo , Organoides , Epitélio , Citocinas/metabolismo
6.
Sci Total Environ ; 929: 172775, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670383

RESUMO

Environmental pollution caused by the excessive use of plastics has resulted in the inflow of microplastics into the human body. However, the effects of microplastics on the human gut microbiota still need to be better understood. To determine whether plastic-degrading bacteria exist in the human gut, we collected the feces of six human individuals, did enrichment cultures and screened for bacterial species with a low-density polyethylene (LDPE) or polypropylene (PP)-degrading activity using a micro-spray method. We successfully isolated four bacterial species with an LDPE-degrading activity and three with a PP-degrading activity. Notably, all bacterial species identified with an LDPE or PP-degrading activity were opportunistic pathogens. We analyzed the microbial degradation of the LDPE or PP surface using scanning electron microscopy and confirmed that each bacterial species caused the physical changes. Chemical structural changes were further investigated using X-ray photoelectron spectroscopy and Fourier-transform-infrared spectroscopy, confirming the oxidation of the LDPE or PP surface with the formation of carbonyl groups (C=O), ester groups (CO), and hydroxyl groups (-OH) by each bacterial species. Finally, high temperature gel permeation chromatography (HT-GPC) analysis showed that these bacterial species performed to a limited extent depolymerization. These results indicate that, as a single species, these opportunistic pathogens in the human gut have a complete set of enzymes and other components required to initiate the oxidation of the carbon chains of LDPE or PP and to degrade them. Furthermore, these findings suggest that these bacterial species can potentially biodegrade and metabolize microplastics in the human gut.


Assuntos
Bactérias , Microbioma Gastrointestinal , Plásticos , Humanos , Bactérias/metabolismo , Plásticos/metabolismo , Fezes/microbiologia , Biodegradação Ambiental , Microplásticos/metabolismo , Poluentes Ambientais/metabolismo
7.
Arch Microbiol ; 206(5): 238, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684545

RESUMO

Nanoplastics pose significant environmental problems due to their high mobility and increased toxicity. These particles can cause infertility and inflammation in aquatic organisms, disrupt microbial signaling and act as pollutants carrier. Despite extensive studies on their harmful impact on living organisms, the microbial degradation of nanoplastics is still under research. This study investigated the degradation of nanoplastics by isolating bacteria from the gut microbiome of Tenebrio molitor larvae fed various plastic diets. Five bacterial strains capable of degrading polystyrene were identified, with Achromobacter xylosoxidans M9 showing significant nanoplastic degradation abilities. Within 6 days, this strain reduced nanoplastic particle size by 92.3%, as confirmed by SEM and TEM analyses, and altered the chemical composition of the nanoplastics, indicating a potential for enhanced bioremediation strategies. The strain also caused a 7% weight loss in polystyrene film over 30 days, demonstrating its efficiency in degrading nanoplastics faster than polystyrene film. These findings might enhance plastic bioremediation strategies.


Assuntos
Achromobacter denitrificans , Biodegradação Ambiental , Microbioma Gastrointestinal , Poliestirenos , Animais , Poliestirenos/metabolismo , Achromobacter denitrificans/metabolismo , Plásticos/metabolismo , Plásticos/química , Larva/microbiologia , Microplásticos/metabolismo
8.
Funct Integr Genomics ; 24(2): 46, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429576

RESUMO

Cyanobacteria are oxygenic photosynthetic organisms which are found across many ecosystems, including freshwater and marine habitats. They are also found on natural and artificial surfaces. In this study, we cultured and characterise a novel cyanobacterium from the surfaces of foam microplastics of tropical coastal waters. We study the chemical ecology of this cyanobacterium, Sphaerothrix gracilis gen. et sp. nov., together with its potential to form harmful cyanobacterial blooms and bioremediation applications to combat plastic pollution. The genome of S. gracilis spanned 6.7 Mbp, with identification of antibiotic resistance, nitrogen-fixation, plastic-degrading and genes involved in harmful metabolite production. The transport of potentially harmful S. gracilis in coastal environments could have severe implications on human health and food security, especially in times of a cyanobacterial bloom.


Assuntos
Cianobactérias , Ecossistema , Humanos , Microplásticos/metabolismo , Plásticos/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Fixação de Nitrogênio
9.
Enzyme Microb Technol ; 177: 110429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537325

RESUMO

Poly(ethylene furanoate) (PEF) plastic is a 100% renewable polyester that is currently being pursued for commercialization as the next-generation bio-based plastic. This is in line with growing demand for circular bioeconomy and new plastics economy that is aimed at minimizing plastic waste mismanagement and lowering carbon footprint of plastics. However, the current catalytic route for the synthesis of PEF is impeded with technical challenges including high cost of pretreatment and catalyst refurbishment. On the other hand, the semi-biosynthetic route of PEF plastic production is of increased biotechnological interest. In particular, the PEF monomers (Furan dicarboxylic acid and ethylene glycol) can be synthesized via microbial-based biorefinery and purified for subsequent catalyst-mediated polycondensation into PEF. Several bioengineering and bioprocessing issues such as efficient substrate utilization and pathway optimization need to be addressed prior to establishing industrial-scale production of the monomers. This review highlights current advances in semi-biosynthetic production of PEF monomers using consolidated waste biorefinery strategies, with an emphasis on the employment of omics-driven systems biology approaches in enzyme discovery and pathway construction. The roles of microbial protein transporters will be discussed, especially in terms of improving substrate uptake and utilization from lignocellulosic biomass, as well as from depolymerized plastic waste as potential bio-feedstock. The employment of artificial bioengineered microbial consortia will also be highlighted to provide streamlined systems and synthetic biology strategies for bio-based PEF monomer production using both plant biomass and plastic-derived substrates, which are important for circular and new plastics economy advances.


Assuntos
Biomassa , Consórcios Microbianos , Plásticos , Consórcios Microbianos/genética , Plásticos/metabolismo , Biotecnologia , Furanos/metabolismo , Polímeros/metabolismo
10.
Sci Total Environ ; 923: 171388, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432380

RESUMO

Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Bioacumulação , Poluentes Químicos da Água/análise , Plásticos/metabolismo , Microplásticos/metabolismo , Medição de Risco , Fluorocarbonos/análise
11.
Sci Total Environ ; 923: 171432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442749

RESUMO

The extensive utilization of mulch films in agricultural settings, coupled with the persistence of microplastic remnants in soil following the natural degradation of plastics, has given rise to detrimental microplastic impacts on crops. Arsenic (As) contamination in the environment is known to accumulate in crops through aquatic pathways or soil. Garlic (Allium sativum L.), a globally popular crop and seasoning, contains alliin, a precursor of its flavor compounds with medicinal properties. While alliin exhibits antimicrobial and antioxidant effects in garlic, its response to microplastics and arsenic has not been thoroughly investigated, specifically in terms of microplastic or As uptake. This study aimed to explore the impact of varied stress concentrations of microplastics on the toxicity, migration, and accumulation of As compounds. Results demonstrated that polystyrene (PS) fluorescent microspheres, with an 80 nm diameter, could permeate garlic bulbs through the root system, accumulating within vascular tissues and intercellular layers. Low concentrations of PS (10 and 20 mg L-1) and As (2 mg L-1) mitigated the production and accumulation of reactive oxygen species (ROS) and antioxidant enzymes in garlic. Conversely, garlic exhibited reduced root vigor, substance uptake, and translocation when treated with elevated As concentrations (4 mg L-1) in conjunction with PS concentrations of 40 and 80 mg L-1. An escalation in PS concentration facilitated As transport into bulbs but led to diminished As accumulation and biomass in the root system. Notably, heightened stress levels weakened garlic's antioxidant defense system, encompassing sulfur allicin and phytochelatin metabolism, crucial for combating the phytotoxicity of PS and As. In summary, PS exerted a detrimental influence on garlic, exacerbating As toxicity. The findings from this study offer insights for subsequent investigations involving Liliaceae plants.


Assuntos
Arsênio , Cisteína/análogos & derivados , Alho , Antioxidantes/metabolismo , Alho/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Solo
12.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460406

RESUMO

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Assuntos
Ammi , Poluentes do Solo , Titânio , Antioxidantes/metabolismo , Ammi/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Cromo/análise , Ecossistema , Estresse Oxidativo , Solo , Expressão Gênica , Poluentes do Solo/análise
13.
Environ Pollut ; 348: 123853, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552772

RESUMO

Microplastics (MPs) pollution, together with its consequential effect on aquatic biota, represent a burgeoning environmental concern that has garnered significant scholarly attention. Thiamethoxam (TMX), a prevalently utilized neonicotinoid insecticide, is renowned for its neurotoxic impact and selective action against targeted pests. The aquatic environment serves as a receptacle for numerous pollutants, such as MPs and neonicotinoid insecticides. However, there is currently a lack of comprehensive understanding regarding the toxic effects of co-exposure to aged MPs and neonicotinoid insecticides in aquatic organisms. Therefore, we endeavor to elucidate the deleterious impacts of aged polystyrene (PS) and TMX on zebrafish (Danio rerio) larvae when present at environmentally relevant concentrations, and to reveal the underlying molecular mechanisms driving these effects. Our study showed that exposure to aged PS, TMX, or their combination notably inhibited the heart rate and locomotion of zebrafish larvae, with a pronounced effect observed under combined exposure. Aged PS and TMX were found to diminish the activity of antioxidative enzymes (SOD, CAT, and GST), elevate MDA levels, and disrupt neurotransmitter homeostasis (5-HT, GABA and ACh). Notably, the mixtures exhibited synergistic effects. Moreover, gene expression related to oxidative stress (e.g., gstr1, gpx1a, sod1, cat1, p38a, ho-1, and nrf2b) and neurotransmission (e.g., ache, ChAT, gat1, gabra1, 5ht1b, and 5ht1aa) was significantly altered upon co-exposure to aged PS and TMX in larval zebrafish. In summary, our findings support the harmful effects of aged MPs and the neonicotinoid insecticides they carry on aquatic organisms. Results from this study enhance our understanding of the biological risks of MPs and insecticides, as well as help fill existing knowledge gaps on neonicotinoid insecticides and MPs coexistence toxicity in aquatic environment.


Assuntos
Inseticidas , Perciformes , Poluentes Químicos da Água , Animais , Tiametoxam/metabolismo , Peixe-Zebra/metabolismo , Inseticidas/metabolismo , Microplásticos/toxicidade , Plásticos/metabolismo , Larva , Poliestirenos/metabolismo , Organismos Aquáticos , Poluentes Químicos da Água/metabolismo
14.
J Hazard Mater ; 470: 134116, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547753

RESUMO

Microplastic (MP), as a new pollutant, not only affects the growth and development of plants but also may affect the secondary metabolites of plants. The anti-tumor role of Pinellia ternata is related to secondary metabolites. The role of brassinolide (BR) in regulating plant resistance is currently one of the research hotspots. The paper mainly explores the regulation of BR on growth and physiology of Pinellia ternata under MP stress. The experimental design includes two levels of MP (0, 1%) and two levels of BR (0, 0.1 mg/L). MP led to a marked reduction in plant height (15.0%), Fv/Fm (3.2%), SOD and APX activity (15.0%, 5.1%), whereas induced an evident raise in the rate of O2·- production (29.6%) and GSH content (4.4%), as well as flavonoids (6.8%), alkaloids (75%), and ß-sitosterol (26.5%) contents. Under MP addition, BR supply significantly increased plant height (15.7%), aboveground and underground biomass (16.1%, 10.3%), carotenoid and GSH content (11.8%, 4.2%), Fv/Fm (2.9%), and activities of SOD, GR, and MDHAR (32.2%, 21.08%, 20.9%). These results indicate that MP suppresses the growth of P. ternata, although it promotes secondary metabolism. BR can alleviate the inhibitory effect of MP on growth by improving photosynthesis, redox homeostasis, and the AsA-GSH cycle.


Assuntos
Brassinosteroides , Glutationa , Homeostase , Oxirredução , Fotossíntese , Pinellia , Esteroides Heterocíclicos , Fotossíntese/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Glutationa/metabolismo , Brassinosteroides/metabolismo , Pinellia/metabolismo , Pinellia/efeitos dos fármacos , Pinellia/crescimento & desenvolvimento , Esteroides Heterocíclicos/farmacologia , Plásticos/metabolismo , Sitosteroides/metabolismo , Flavonoides/metabolismo
15.
Sci Total Environ ; 924: 171653, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485023

RESUMO

Microplastics (MPs) and perfluorinated compounds (PFAS) are widespread in the global ecosystem. MPs have the ability to adsorb organic contaminants such as perfluorooctane sulfonate (PFOS), leading to combined effects. The current work aims to explore the individual and combined toxicological effects of polystyrene (PS) and PFOS on the growth and nerves of the freshwater planarian (Dugesia japonica). The results showed that PS particles could adsorb PFOS. PS and PFOS impeded the regeneration of decapitated planarians eyespots, whereas the combined treatment increased the locomotor speed of intact planarians. PS and PFOS caused significant DNA damage, while co-treatment with different PS concentrations aggravated and attenuated DNA damage, respectively. Further studies at the molecular level have shown that PS and PFOS affect the proliferation and differentiation of neoblasts in both intact and regenerating planarians, alter the expression levels of neuronal genes, and impede the development of the nervous system. PS and PFOS not only disrupted the homeostasis of intact planarians, but also inhibited the regeneration of decapitated planarians. This study is the first to assess the multiple toxicity of PS and PFOS to planarians after combined exposure. It provides a basis for the environmental and human health risks of MPs and PFAS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Planárias , Animais , Humanos , Planárias/fisiologia , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Ecossistema , Homeostase , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo
16.
Sci Total Environ ; 924: 171681, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490422

RESUMO

Nanoplastics, arising from the fragmentation of plastics into environmental pollutants and specialized commercial applications, such as cosmetics, have elicited concerns due to their potential toxicity. Evidence suggests that the oral ingestion of nanoplastics smaller than 100 nm may penetrate the brain and induce neurotoxicity. However, comprehensive research in this area has been hampered by technical challenges associated with the detection and synthesis of nanoplastics. This study aimed to bridge this research gap by successfully synthesizing fluorescent polystyrene nanoplastics (PSNPs, 30-50 nm) through the incorporation of IR-813 and validating them using various analytical techniques. We administered PSNPs orally (10 and 20 mg/kg/day) to mice and observed that they reached brain tissues and induced cognitive dysfunction, as measured by spatial and fear memory tests, while locomotor and social behaviors remained unaffected. In vitro studies (200 µg/mL) demonstrated a predominant uptake of PSNPs by microglia over astrocytes or neurons, leading to microglial activation, as evidenced by immunostaining of cellular markers and morphological analysis. Transcriptomic analysis indicated that PSNPs altered gene expression in microglia, highlighting neuroinflammatory responses that may contribute to cognitive deficits. To further explore the neurotoxic effects of PSNPs mediated by microglial activation, we measured endogenous neuronal activity using a multi-electrode array in cultured hippocampal neurons. The application of conditioned media from microglia exposed to PSNPs suppressed neuronal activity, which was reversed by inhibitors of microglial activation. Our findings offer detailed insights into the mechanisms by which nanoplastics damage the brain, particularly emphasizing the potential environmental risk factors that contribute to cognitive impairment in neurodegenerative diseases.


Assuntos
Microglia , Poliestirenos , Animais , Camundongos , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Neurônios
17.
Environ Pollut ; 348: 123822, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522609

RESUMO

Environmental pollution poses a significant and pressing threat to the overall well-being of aquatic ecosystems in modern society. This study showed that pollutants like dusts from AC filter, fan wings and Traffic dust PM 2.5 were exposed to Artemia salina in pristine form and in combination. The findings indicated that exposure to multi-pollutants had a detrimental effect on the hatching rates of A. salina cysts. Compared to untreated A. salina, the morphology of adult (7th day old) A. salina changed noticeably after each incubation period (24-120 h). Oxidative stress increased considerably as the exposure duration increased from 24 to 120 h compared to the control group. There was a time-dependent decline in antioxidant enzyme activity and total protein concentration. When all particles were used all together, the total protein content in A. salina decreased significantly. All particles showed a considerable decline in survival rate. Those exposed to traffic dust particles showed significantly higher levels of oxidative stress and antioxidant activity than those exposed to other particles.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Acetaminofen , Antioxidantes/metabolismo , Artemia/metabolismo , Ecossistema , Poluentes Ambientais/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
18.
Sci Total Environ ; 926: 171817, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513858

RESUMO

Polystyrene microplastic (PS-MPs) contamination has become a worldwide hotspot of concern, and its entry into organisms can cause oxidative stress resulting in multi-organ damage. The plasticizer di (2-ethylhexyl) phthalate (DEHP) is a common endocrine disruptor, these two environmental toxins often occur together, but their combined toxicity to the kidney and its mechanism of toxicity are unknown. Therefore, in this study, we established PS-MPS and/or DEHP-exposed mouse models. The results showed that alone exposure to both PS-MPs and DEHP caused inflammatory cell infiltration, cell membrane rupture, and content spillage in kidney tissues. There were also down-regulation of antioxidant enzyme levels, increased ROS content, activated of the NF-κB pathway, stimulated the levels of heat shock proteins (HSPs), pyroptosis, and inflammatory associated factors. Notably, the co-exposure group showed greater toxicity to kidney tissues, the cellular assay further validated these results. The introduction of the antioxidant n-acetylcysteine (NAC) and the NLRP3 inhibitor (MCC950) could mitigate the changes in the above measures. In summary, co-exposure of PS-MPs and DEHP induced oxidative stress that activated the NF-κB/NLRP3 pathway and aggravated kidney pyroptosis and inflammation, as well as that HSPs are also involved in this pathologic injury process. This study not only enriched the nephrotoxicity of plasticizers and microplastics, but also provided new insights into the toxicity mechanisms of multicomponent co-pollution in environmental.


Assuntos
Dietilexilftalato , Microplásticos , Estresse Oxidativo , Ácidos Ftálicos , Piroptose , Animais , Camundongos , Antioxidantes/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Inflamação/induzido quimicamente , Rim/metabolismo , Microplásticos/metabolismo , Microplásticos/toxicidade , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Plastificantes/toxicidade , Plastificantes/metabolismo , Plásticos/metabolismo , Plásticos/toxicidade , Poliestirenos/toxicidade , Poliestirenos/metabolismo
19.
Ecotoxicol Environ Saf ; 274: 116207, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492484

RESUMO

Plastic pollution is a common concern of global environmental pollution. Polystyrene (PS) and polyethylene (PE) account for almost one-third of global plastic production. However, so far, there have been few reports on microbial strains capable of simultaneously degrading PS and PE. In this study, Microbacterium esteraromaticum SW3, a non-pathogenic microorganism that can use PS or PE as the only carbon source in the mineral salt medium (MM), was isolated from plastics-contaminated soil and identified. The optimal growth conditions for SW3 in MM were 2% (w/v) PS or 2% (w/v) PE, 35°C and pH 6.3. A large number of bacteria and obvious damaged areas were observed on the surface of PS and PE products after inoculated with SW3 for 21 d. The degradation rates of PS and PE by SW3 (21d) were 13.17% and 5.39%, respectively. Manganese peroxidase and lipase were involved in PS and PE degradation by SW3. Through Fourier infrared spectroscopy detection, different functional groups such as carbonyl, hydroxyl and amidogen groups were produced during the degradation of PS and PE by SW3. Moreover, PS and PE were degraded into alkanes, ketones, carboxylic acids, esters and so on detected by GC-MS. Collectively, we have isolated and identified SW3, which can use PS or PE as the only carbon source in MM as well as degrade PS and PE products. This study not only provides a competitive candidate strain with broad biodegradability for the biodegradation of PS and/or PE pollution, but also provides new insights for the study of plastic biodegradation pathways.


Assuntos
Actinomycetales , Poliestirenos , Poliestirenos/metabolismo , Polietileno/metabolismo , Solo , Actinomycetales/metabolismo , Biodegradação Ambiental , Carbono , Plásticos/metabolismo , Microbacterium
20.
Sci Total Environ ; 924: 171580, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462004

RESUMO

The study focused on marine bacteria, specifically Bacillus cereus, sourced from heavily polluted coastal areas in Tamil Nadu, aiming to assess their efficacy in degrading low-density polyethylene (LDPE) and polystyrene over a 42-day period. When LDPE and polystyrene films were incubated with Bacillus cereus, they exhibited maximum weight losses of 4.13 ± 0.81 % and 14.13 ± 2.41 %, respectively. Notably, polystyrene exhibited a higher reduction rate (0.0036 day-1) and a shorter half-life (195.29 days). SEM images of the treated LDPE and polystyrene unveiled surface erosion with cracks. The energy dispersive X-ray (EDX) analysis revealed elevated carbon content and the presence of oxygen in the treated LDPE and polystyrene films. The ATR-FTIR spectra exhibited distinctive peaks corresponding to functional groups, with observable peak shifts in the treated films. Notable increases were detected in carbonyl, internal double bond, and vinyl indices across all treated groups. Additionally, both treated LDPE and polystyrene showed reduced crystallinity. This research sheds light on Bacillus cereus (OR268710) biodegradation capabilities, emphasizing its potential for eco-friendly waste management in coastal regions.


Assuntos
Polietileno , Poliestirenos , Polietileno/metabolismo , Bacillus cereus/metabolismo , Índia , Biodegradação Ambiental , Plásticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA